
On the Scalability of Addressing in Private Networks
Using RPX

Sanchai Rattananon, Zhe Guang Zhou, Björn Landfeldt and Aruna Seneviratne

Abstract: In recent times, the imminent lack of public IPv4
addresses has attracted the attention of both research community
and industry. The cellular industry has decided to combat this
problem by using IPv6 for all new terminals. However, the
success of 3G network deployment will depend on the services
offered to end users. Currently, almost all services reside in the
public IPv4 address space, making them inaccessible to users in
IPv6 networks. Thus, an intermediate translation mechanism is
required. Previous studies on network address translation
methods have shown that REBEKAH-IP with Port Extension
(RPX) supports all types of services that can be offered to IPv6
terminals from the public IPv4 based Internet, and provides
excellent scalability. However, this method suffers from an
ambiguity problem which may lead to call blocking.

In this paper, we present an improvement to RPX scheme in
which the side effect is removed and fully scalable system. We
firstly show the expected number of public IPv4 addresses
utilization to the DNS of RPX server. This utilization is computed
in terms of the probability of socket open requests from mobile
terminals, the probability of call blocking and the estimated
number of mobile terminals at the network initialization phase.
The mathematical model is also provided as a guideline to
determine the range of public IPv4 addresses allocated to an RPX
gateway in a cellular network. In addition, the results are
presented through a set of simulations. However, we proposed the
RPX scheme to use a simple round robin scheduling algorithm is
sub-optimal in terms of call blocking probability and further
propose to use a priority queue algorithm to improve the
scalability. In addition, we present extensive simulation results on
the practical scalability of RPX with different traffic
compositions to provide a guideline of the expected scalability in
large-scale networks such as 3G networks.

 Index terms: IPv4, IPv6, Terminals, Algorithms

I. INTRODUCTION

With the introduction of third generation cellular networks,
the number of IP enabled devices is expected to grow rapidly
to number of ways above the current level. Since the current
version of IP, version 4, has a limited address space of 32-bits,
it is expected that we will have used all available addresses in
a foreseeable future [1]. In order to overcome this problem
and to meet the demand for addresses, the cellular industry has

Manuscript received May 21, 2006 and revised May 24, 2007 and November
 17, 2007.
Sanchai Rattananon is with University of the Thai Chamber of Commerce,

Thailand, (e-mail: Sunchai_rat@utcc.ac.th)
Zhe Guang Zhou and Aruna Seneviratne are both with National ICT

Australia Limited, Australia (e-mail: zheguang@mobqos.ee.unsw.edu.au,
Aruna.seneviratne@nicta.com.au)

Björn Landfeldt is with University of Sydney, Australia (e-mail:
bjornl@it.usyd.edu.au).

decided to use the next generation IP, IP version 6 [2], which
expand the address field to 128-bits as the primary network
protocol in third generation (3G) cellular networks. However,
in [3] it has been shown that the successful rollout of 3G will
depend heavily on the services accessible through the new
networks, and the added value compared with second
generation networks such as GSM. It will be crucial for
operators and vendors to obtain a good return on the
investment for the network coverage to reach predicted levels.
Unfortunately, the vast majority of services available to 3G
users currently reside in the public IPv4 based Internet,
rendering them inaccessible to IPv6 based 3G terminals since
IPv6 and IPv4 are incompatible. This means that 3G terminals
cannot directly communicate with IPv4 terminals and instead
need to communicate via an intermediate translation
mechanism. Because of this, there is a need for a short to
medium term solution that will enable IPv6 terminals to access
public IPv4 Internet services until IPv6 based services have
been widely deployed enough for the majority of services to
migrate into this space.

Over the past few years, there have been a number of
proposals from the research community aimed at providing
methods for both extending the address space and for
performing translation between the Internet domains. These
proposals can be divided into two major groups, namely
Network Address Translators (NATs) [4] that aim to extend
the address range of IPv4 and IP tunneling solutions [5, 6] that
aim at enabling co-existence of IPv4 and IPv6. However, none
of the proposed methods are transparent to the applications
and impose different restrictions on the type of applications
that can be used [7]. In addition, the proposals based on these
two methods are limited and will not meet the requirements of
operators and users for a successful deployment of 3G
networks by the following of these criteria properties:

• It should be scalable (being able to support millions of
new 2.5 and 3G terminals that are currently being
added to the Internet).

• It should be application friendly (It should not restrict
the applications that can be used together with the
scheme).

• It should allow network initiated communication (make
private terminals reachable from the public Internet).

• It should have relatively low impact on the current
infrastructure (so it can be deployed).

For example, the first group of NATs uses different forms
of address translation methods to enable traffic traversal
between different address realms. A classical NAT [4] has a

JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 3, NO. 4, DECEMBER 2007 235

1845-6421/07/5190 © 2007 CCIS

FESB
Typewritten Text
 Original scientific paper

set of public IPv4 addresses that can be assigned to individual
private nodes on a per-session basis. When a terminal, with
private address X is located within a private realm and wants
to contact a remote terminal on the public Internet, the NAT
assigns one of its public addresses to the private terminal such
as IPv4 address Y. The NAT then rewrites the sender address
in the IP header of the outgoing packet with the assigned
public address Y. Thus, to the terminals outside the private
realm it appears as if the packet originated from another public
domain terminal. On the return path, the NAT rewrites the
destination address Y in the IP header with the private address
X so the packet is correctly routed within the private realm as
shown in Fig. 1.

Fig. 1. Operation of Classical NAT.

This method of translating between realms is simple but
suffers from three drawbacks which will harm the deployment
of 2.5 and 3G networks. Firstly, it is a mechanism of single
direction connection initiation. It does not allow a terminal in
the public Internet to initiate session to a terminal within the
private realm because NAT would not advertise private
addresses to the public realm. Thus, a packet from a public
realm host cannot be routed to the private address. Secondly,
it does not scale since every time a private terminal wants to
communicate to a terminal in the public network, a public
IPv4 address is reserved exclusively for that terminal’s use.
Thirdly, some applications and protocols such as ICQ, Real
Player and Session Initial Protocol (SIP) carry private network
addresses in their payloads. Thus, when the application layer
signalled address is a private realm address, despite the NAT
changing the addresses in the IP packet header, the addresses
in the payload remain unchanged. The receiver detects a non-
routable address that will result in a malfunction. In order to
overcome this problem, it is necessary to deploy Application
Layer Gateways (ALGs) [7] in the NAT. These ALGs needs
to be application specific to correctly decipher the addressing
information embedded in the payload and substitute the
signalled private address with the appropriate public address.
However, the ALG function is limited to supporting only a
small subset of selected application.

Moreover, Network Address Port Translation, NAPT [4]
improves the scalability of the classical NAT by enabling
multiple private realm terminals to share a single public IPv4
address. This is achieved by using the transport identifier (e.g.
TCP and UDP port numbers) in the translation procedure.
This port multiplexing enables the NAPT to share one IPv4
address among several private terminals. In [8], Audet et al.
detail a proposal to ascribe the address and port mapping

behavior of the NAPT method called Endpoint-Independent
Mapping, which reuses the same public address and port
mapping to service multiple private terminals simultaneous to
communicate to any public terminal. As a result, the method
has a good scalability but it is still impossible for terminals
within the public realm to initiate sessions to terminals within
the private realm. Furthermore, NAPT also requires the use of
ALGs to deal with applications which embed IP addressing
information in the IP payload.

The second group of extension methods use different forms
of tunnelling mechanisms to forward data between two
different address realms. The ngtrans working group within
the IETF [9] has proposed a number of methods for transition
from IPv4 to IPv6 based networks. The work has primarily
concerned itself with methods for co-existence of the two
protocols and not interoperability. However, through the use
of a combination of tunnelling mechanisms [10] it is possible
to interconnect IPv6 and IPv4 domains. In [5], Borella et al.
present a proposal of the Realm Specific IP (RSIP) scheme
that performs IP tunnelling. RSIP scheme takes a different
approach than the above-mentioned NATs to provide
connectivity between different realms. It uses a client server
type architecture, where the client and the server, are aware of
the different realms. Consider the following operational
scenario of RSIP as shown in Fig. 2, the client first request a
public IPv4 address from the RSIP server and the server leases
a public realm address X to the client. The client then
constructs the message using the leased public address X as
the source address. To get the packets with the public realm
addresses through the private realm, clients tunnel the packets
to the server by using the destination address M which is a
private realm address. The server decapsulates the tunnel
header and passes them to the public realm. Thus, a RSIP
client makes use of a public address when communicating
with a host in a public realm, thereby alleviating the need for
rewriting of addresses at an intermediate point. An advantage
of this scheme is that there is no need to deploy ALGs for
applications since public realm addresses are used by the
private clients when constructing application data packets.
However, the tunnelling mechanism does not extend the public
IPv4 address space and still requires public IPv4 addresses for
the communication between terminals in the public realm and
private realms. Therefore, the mechanism does not solve the
immediate need for address expansion until IPv6 gains enough
momentum to start easing the burden on IPv4 addressing

Fig. 2. Operation of RSIP.

236 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 3, NO. 4, DECEMBER 2007

To overcome these limitations, we proposed a method
called REBEKAH-IP with Port Extension (RPX) [11-13]
which meets the demands for cellular operators whilst
ensuring the support of three main criteria, namely scalability,
public realm initiated communication and application
friendliness. However, this method suffers from an ambiguity
problem which may lead to call blocking. In this paper, we
present an improvement to RPX scheme in which the side
effect is removed and fully scalable system. We firstly
provide a mathematical model that allocates the expected
number of public IPv4 addresses utilization to the RPX
server. The calculations consider the probability of socket
open requests from mobile terminals, the probability of call
blocking and the estimated number of mobile terminals at the
network as the main factors to estimate public IPv4 address
utilization.

However, the exact scalability of RPX will depend on the
traffic composition in terms of the duration of IP flows. In
addition, we proposed RPX scheme to use a round robin
scheduling algorithm for the assignment of addresses. Thus,
there is an additional limitation to the number of flows that
the RPX scheme can support. Under heavy load conditions it
is possible that a single public IPv4 address may run out of
free combinations well in advance of other IPv4 addresses
causing call blocking to some terminals. This happens
because the private terminals are only configured with a
single public IPv4 address for any subsequent connections.
Thus, if the terminals using a certain IPv4 address should
have many long-lived connections, there is a chance is that
they will exhaust the number of free combinations for that
address well before another address with fewer long-lived
connections. The selection of an algorithm for assigning
addresses to private terminals is pivotal in avoiding this
effect. Therefore, in this paper we also propose to use a
priority queue algorithm instead of a round robin scheduling
algorithm for RPX server, in order to overcome the problem
mentioned above and further increase the scalability of RPX
scheme. In addition, we show that the priority queue
algorithm outperforms the round-robin algorithm and perform
extensive simulations to investigate the expected number of
terminals a 3G network can support in the face of actual IP
traffic. The results can act as a guide to estimate the number
of terminals networks can support given a range of available
public IPv4 addresses available to an operator.

The rest of this article is organized as the follows. We first
detail background information on the original REBEKAH-IP
proposal and REBEKAH-IP with Port Extension (RPX) in
Section II. Then the mathematical model is provided used to
determine the expected number of public IPv4 addresses
utilization in the network together with simulation results in
Section III. Section IV provides the round robin and priority
queue algorithms for assigning addresses and port numbers
within RPX and also presents simulation results of different
traffic models to highlight their performance. Finally, the
conclusion is presented in Section V.

II. BACKGROUND

In [11], we proposed a scheme called Realm Base Kluge
Address Heuristic-IP (REBEKAH-IP) and its extension

REBEKAH-IP with Port Extension (RPX) [13] for expanding
the public IPv4 address space that scale satisfactorily while
preserving the Internet model of catering for a multitude of
service.

A. Realm Base Kluge Address Heuristic-IP (REBEKAH-IP)

REBEKAH-IP [11, 12] was introduced to overcome some
of the drawbacks of previous translation proposals [4], while
allowing full connectivity. The scheme was designed to allow
both terminal and network initiated communication and
supports for all types of public Internet services to IPv6
terminals without the need for Application Layer Gateways
(ALG). It requires minor changes to existing infrastructure
with the addition of a REBEKAH-IP server (RS) acting as a
border gateway at the edge of the private network connecting
to the public Internet.

The REBEKAH-IP server (RS) integrates features from
two existing NAT proposals [4], namely RSIP and Bi-
directional NAT, and extends the combination of Layer 3
(Network Layer) and Layer 4 (Transport Layer) switching
functions. Therefore, the routing proposed in this scheme is
based on a four tuple (sender and receiver IP address and port
numbers) rather than only a parameter pair (destination IP
address and sender port number). The number of unique
combinations between the four tuple can be used to
distinguish between flows and thereby increase the scalability
of REBEKAH-IP, far surpassing those of the previous NAT
proposals. In this scheme, we also use a pool of public IPv4
addresses to configure private terminals while allowing the
public IPv4 addresses to be reused as long as the combination
is unique as the identifier for a single flow.

Fig. 3. All components view of REBEKAH-IP.

A simplistic view of REBEKAH-IP is shown in Fig. 3.
Similar to RSIP [5], there is a REBEKAH-IP server (RS) that
delegates public IPv4 addresses to private terminals on
demand.
In addition, there is a purpose built DNS for interoperating in
both IPv4 and IPv6 address spaces in a similar manner to Bi-
directional NAT [4]. Thus, the DNS function within the
server is responsible for resolving a private address and also
the assignment of public IPv4 addresses to the private
realm terminals. The terminals in the private realm

RATTANANON et al.: ON THE SCALABILITY OF ADDRESSING IN PRIVATE NETWORKS 237

implement a specific REBEKAH-IP client (RC) for address
resolution and session setup similar to RSIP scheme [5], and
the terminals in the public realm are left unchanged for
backward compatibility unless they reside inside another
REBEKAH-IP realm.

Furthermore, we consider the following operational
scenario as shown in Fig. 3. When client A/RC connects to a
REBEKAH-IP server and requests to be assigned a public
IPv4 address with an opened ephemeral port number as sender
port, and informs the RS server of both the IP address and port
number of the public realm terminal to which it wishes to
communicate. The selection process is simple. The DNS
function within the RS server has a pool of public IPv4
addresses and it selects addresses from this pool using a
round-robin algorithm. The RS server then queries the DNS
with predetermined parameters (destination address, sender
and destination port numbers) as input. It takes the
predetermined parameters into account and searches for a
unique combination of the three parameters together with the
public IPv4 addresses from the pool. In the example, the RS
server obtains public IPv4 address (x.x.x.x) from the DNS
function and assigns it to A/RC to open the socket. Once this
is done, the client A/RC and the RS server establish an IPv6
tunnel between themselves to route the IPv4 traffic through
the IPv6 domain, the same as RSIP. When client B/RC
requests a public IPv4 address, the DNS function is able to
pick and assign to it the same IPv4 address (x.x.x.x) as long as
the four tuple is kept unique.

However, once a private realm terminal has been assigned a
public IPv4 address it will maintain this address until all
communication channels are closed. This avoids assigning
multiple public IPv4 addresses to one private terminal. Thus,
there is a small possibility that more than one private terminal
will try to open a connection to the same public terminal using
the same four-tuple (sender and receiver IP address and port
numbers). In this case it will be impossible to distinguish
between the different flows resulting in request rejection (i.e.
this is the same terminology of call blocking in the rest of this
paper) for the all but the first terminal. Even though there is a
very low probability of this happening [11], it is an
undesirable property of the system. The reader is referred to
[11, 12] for additional details on REBEKAH-IP scheme.

B. REBEKAH-IP with Port Extension (RPX)

The problem with the REBEKAH-IP scheme stems from
the usage of ephemeral (sender) ports when applications open
sockets. Since there is no control over the port allocation, it is
impossible for a REBEKAH-IP server to predict the sender
port that a private terminal will use for a certain flow. In order
to overcome this problem, we proposed a REBEKAH-IP with
Port Extension, RPX [13]. RPX involves modification of the
REBEKAH-IP scheme to incorporate centralised management
of both public IPv4 addresses and port numbers, since new
terminals can be shipped with special support and it is possible
to have them implement more optimised versions of the
REBEKAH-IP scheme. Therefore, the DNS function of RPX
is able to decide on not only public IPv4 addresses but also

source ports to assign private terminals for use. Thus, instead
of querying the DNS for a public IPv4 address only when
setting up a connection, as in the RSIP scheme [5], in our
proposal the private terminal will obtain the sender port
number to use for the socket as well as the public IPv4 address
to use. This way, RPX will be able to fully avoid possible
clashes between sessions and to unambiguously extend the
IPv4 address space. Thus, the RPX scheme is capable of
unambiguously supporting a maximum of:

2
)2()2(R

p
IPNa

IPN −×−×=φ (1)

flows where NIP is the number of publicly available IPv4
addresses to the DNS, p is the number of bits in the port range,
a is the number of bits in the IP address range and R is the
number of ports excluded from the assignment by the IANA
[14].

Even though a terminal is not position to establish sessions
at the complete range of 232 addresses (minus private,
reserved, broadcast and multicast address range) according to
the IPv4 address assignment procedures [15], the most of
these addresses can be used by a terminal for inter-domain
communication. Thus, with an example from a cellular
network, if NIP = 1000, p = 16, a = 32 and the number of
reserved ports R = 1024, the maximum number of flows RPX
can support becomes: (216 – 1024) x 1000 x (232 – 1000) x (216 –
1024) = 1.8 x 1022

 flows. Note however that this figure requires
all connections to be made to different processes in the public
Internet. In addition, since each terminal is limited to a
maximum of 2P–R connections, the minimum number of
terminals needed to reach this number of flows is:

)2()2(R
p

IPNa
IPNn −×−×= (2)

which with the above parameters yields 2.8 x 107 terminals. In
addition, if the number of connections should be made to the
same public server process (and the server can handle an
unlimited number if connections), the theoretical minimum
number of flows RPX can uniquely identify becomes:

)2(R
p

IPN −×=φ (3)

with the same parameters as above this yields; 1000 x (216 –
1024) = 6.5 x 107 flows, the same as classical NAT with port

translation (NAPT) [4]. In reality, the number of flows an
RPX system will be able to support will vary in-between these
two extremes.

B.1 Private Terminal Implementation

The private realm terminals will have to support RPX by
special functions that are not implemented in current operating
systems. Even though this is a negative aspect of the scheme,
we argue that it does not have a major impact on the
deployment of the scheme for the following reasons:

238 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 3, NO. 4, DECEMBER 2007

• First, 3G networks are in the beginning of the rollout
phase and since the vast majority of terminals for these
networks are yet to be deployed, the challenge is
limited to incorporating this function from the
beginning (no retro fitting required). For the existing
terminals, it is possible to deploy RPX enabled
terminals in parallel so that the gateways treat the RPX
and non-RPX terminals differently.

• Second, if RPX is deployed in a small-scale domain, it
is possible to upgrade existing hosts within the domain
while shifting them from their current environment into
an RPX environment.

The great advantage is that existing services and network
infrastructure such as routers in the public Internet do not have
to be modified in any way in order for RPX to be deployed.
The terminals have to be able to signal the DNS and expect
configuration information in return. They also have to be able
to configure themselves with the returned information and
possibly also override an application’s attempt to specify
sender port for a socket.

In Fig. 4, we show a flow chart of the steps taken by a
private domain terminal when it wants to open a connection to
another terminal in either the private or public realm. After the
terminal gets a reply from the DNS the record type determines
how the terminal is configured. However, there is a new type
of record which is called a SRV record [16] that can be used
to contain not only an IP address corresponding to an Fully
Qualified Domain Names (FQDN) [17], but also any
information; hence we can add public address and port
information to this record. If the record is an SRV record, the
connection is destined for a public domain terminal and the
RPX scheme comes into play. If on the other hand the
returned record is a standard A or AAAA record, the terminal
uses a standard socket creation process using its private
address and a randomly assigned ephemeral port number. This
way, RPX only comes into play when traversing the border
between the private and public realms.

Fig. 4. Flowchart of private terminal signaling function.

An overview of the prototype implementation of RPX
scheme set up is shown in Fig. 5. The figure shows the steps
taken to configure the private terminal with the obtained
parameters (the assigned public IPv4 address and sender port
number) to initiate communication to a public realm terminal.
In addition, it also shows the steps taken for the DNS to relay
the query to the foreign DNS server and resolve the FQDN.

Fig. 5. Operation of RPX.

III. PROVIIDING THE NUMBER OF PUBLIC IPV4 ADDRESSES

UTILIZATION

Form the equation (1) to (3) it can be seen that the
scalability of the RPX scheme depends on the number of
public IPv4 addresses (NIP) that are allocated to the RPX
DNS. Therefore, the purpose of this section is to determine the
range of public IPv4 addresses utilized by an RPX server in a
cellular network. This utilization is computed in terms of the
probability of socket open requests from terminals, the
probability of call blocking and the estimated number of
mobile terminals at the network initialization phase as the
main factors to estimate IPv4 address utilization. In addition,
the results are presented through a set of simulations.

A. System Design and Mathematical Model

In our model, the network is divided into different
connection areas. We assumed that mobile terminals are free
to move between different areas. These areas are analogous to
sub-networks in IP terminology. Each area has a dedicated
RPX server (RS) acting as a border gateway. Finally, we also
assumed that all areas belong to a common administrative
domain as shown in Fig. 6.

Fig. 6. System design for distributing RPX servers.

RATTANANON et al.: ON THE SCALABILITY OF ADDRESSING IN PRIVATE NETWORKS 239

As the RS servers are distributed among the sub-networks,
the operator needs to manage and allocate a subset of the
publicly available IPv4 address pool to each server in each
sub-network. The allocation method depends on the
probability of requests, the probability of call blocking and the
estimated number of mobile terminals within the sub-network.

Assume there are a total of N mobile terminals in the
network domain and let Nj be the total number of mobile
terminals within sub-network j with the condition 1≤Nj≤N. The
handoff frequency for a new terminal and the probability of
the terminal moving out of the network are assumed equal at
the network initialization phase. Therefore, we only need to
calculate the expected public IPv4 address utilization for
network j by considering the estimated number of existing
terminals within the area. Given that the probability of
requests for assigning addresses and port numbers, Pr,j is equal
among all mobile terminals so that the probability of call
blocking, PB,j is given by:

⎪⎩

⎪
⎨

⎧
>−

=

otherwise

ANRNfor

RN

AN

jBP

,0

,1

, (4)

where NA is the maximum number of unambiguously
supported flows by the RPX scheme and NR is the total
number of requests from the mobile terminals in the network j.

We express the number of public IPv4 addresses a sub-
network j utilizes as follows. Let the average rate for opening
new sockets be λ, the average socket holding time be t and
the port range for each public IPv4 address be m.

Then, equation (4) could be written as a function of the
expected public IPv4 addresses utilization as follows:

()
jB

P
m

j
NK

jIP
N

,
1

2322,
−⋅

⋅

⋅
= (5)

where NIP,j is the expected public IPv4 address utilization for
network j and K = λtPr,j.

In addition, if number of connections would be made to the
same server process according to equation (3), then equation
(5) would be become:

()
jB

P
m

j
NK

jIP
N

,
1

,
−⋅

⋅
= (6)

In reality, the expected public IPv4 address utilization for
sub-network j will be varied in-between the two equations (5)
and (6). Thus, these equations provide the upper and lower
bounds of the expected number of public IPv4 addresses that
the network operator will assign to each RPX server to support
mobile terminals in each sub-network.

However, the sum of allocated public IPv4 addresses for
each sub-network must be less than or equal to the total
number of available public IPv4 addresses from the network

domain pool IPoftotalN __ . Therefore, the sum of allocated

public IPv4 addresses for m networks with IPN̂ addresses

each is defined as:

∑
=

≤=
K

j
IPoftotal

N
jIP

N
IP

N

1
__,

ˆ (7)

In the case when IPoftotalNIPN __
ˆ > , we also provide a

negotiation method for solving the problem as follows:

jIP
N

IP
N

exceedIP
N

jIP
N

,ˆ
,

1
,

⋅−= ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
 (8)

where jIPN , is the new number of allocated public IPv4

addresses that the network domain has allocated to sub-

network j when IPoftotalNIPN __∈ and

IPoftotalNIPNexceedIPN __
ˆ

, −= is the total number of

allocated public IPv4 addresses exceeding the total number of
available public IPv4 addresses within the network domain.

For example, we assume that there are two sub-networks,
sub-network 1 and sub-network 2. Assume that the total
number of publicly available IPv4 addresses within the RS
domain is 1000 and also that the result of the allocated public
IPv4 addresses for sub-network 1 and sub-network 2, from
equation (6), are 500 and 600 respectively. When the
summation of these results of allocated public IPv4 addresses
is greater than the total number of available public IPv4
addresses from the domain, the operator has to re-allocate
addresses according to equation (8). Therefore, the new
resulting number of allocated public IPv4 addresses becomes
450 and 550 for sub-network 1 and 2 respectively. This
solution will slightly increase the call blocking probability for
both sub-networks because of the decreasing number of
requested public IPv4 addresses, as can be seen from equation
(6). However, the negotiation method balances the blocking
probability in both sub-networks in terms of address sharing
and utilization, which is also dependent on the address
assignment requests and the number of mobile terminals of
each sub-network according to equation (5) and (6). In
addition, the RS domain also has a sufficient number of public
IPv4 addresses to allocate for both sub-networks.

Moreover, the conclusion of the negotiation method above
works well for the initialization phase of the sub-networks.
Once, the public IPv4 address pool allocation process is
complete, all sub-networks are able to operate with the
allocated public IPv4 address pool from the RS domain. After
this, if the RS domain still has a set of free public IPv4
addresses. This set can be further allocated for the new sub-
networks by the RS domain. When the new sub-networks are
created, the negotiation method will be applied only to the set
of free public IPv4 addresses if these free addresses are not

240 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 3, NO. 4, DECEMBER 2007

enough to allocate for all new sub-networks. Thus, the
operation of all existing sub-networks will remain un-affected.

B. Simulation Results

In order to obtain realistic input values to the mathematical
model, we examined traffic using parameters from previous
work [11]. The average number of sockets opened per second
and the average socket holding time for a mobile terminal
were 0.015 and 17 seconds respectively. In addition, the
available number of ports for each IP address was 216 – 1024 as
specified in [18].

Fig. 7 shows the number of utilized public IPv4 address
(NIP,j) versus the number of mobile terminals (Nj) when using
different probabilities of call blocking (PB,j). The probability
of socket open requests from the number of terminals (Pr,j)
was set to one in the network. The results show that the public
IPv4 address utilized increases with the increasing number of
mobile terminals that can be supported by RPX in the
network, as expected. However, the address utilization can
also be contained by varying the probability of the call
blocking. This figure illustrates the utilization with a blocking
probability of 0%, 5% and 10% respectively.

Fig. 7. Public IPv4 address utilization and number of mobile

terminals with 1, =jrP .

Fig. 8 shows the public IPv4 addresses (NIP,j) utilization
versus the number of mobile terminals (Nj) when the
probability of socket open requests from the number of
terminals (Pr,j) is varied. The call blocking probability was set
to a constant of 5% in the simulation. The figure illustrates
how the number of utilized public IPv4 addresses will be
reduced as the probability of request decreases since the call
blocking probability (PB,j) is dependent on the probability of
socket open requests from the mobile terminals (Pr,j) with the
condition PB,j α Pr,j. Furthermore, we can see that the number
of terminals that the RPX server can support increases as the
probability of socket open requests decreases with a fixed
public IPv4 addresses utilization.

Fig. 8. Public IPv4 addresses utilization and number of mobile

terminals with %5=BP .

In this section, the results from our simulations allow us to

draw some conclusions regarding the number of public IPv4
addresses utilized by the RPX scheme as follows:

Firstly, the results in Fig. 7 and 8 were obtained with the
assumption that all connections were opened up to the same
server process in the public Internet as simplified in equation
(6). Therefore, the results illustrate the maximum number of
public IPv4 addresses utilized, while scaling the expected
number of mobile terminals in the network from ten to one
hundred million hosts under the assumed conditions of call
blocking probability and number of sockets of each host. From
the results above it can be seen that RPX can provide excellent
scalability in terms of supporting a large number of private
terminals, while only utilizing a small number of public IPv4
addresses, meaning that cellular 3G operators may operate
with a realistic value of 1000 IPv4 addresses available for
allocation.

Secondly, the formulas used in the simulations above enable
us to give a good estimation of the number of IPv4 addresses
utilized in order to achieve reasonable estimates of RPX in
actual deployment, and indicate that the scalability of RPX is
very promising.

IV. ALGORITHM FOR DISTRIBUTING ADDRESSES AND PORT

NUMBERS

The RPX scheme was designed to use a round robin
scheduling algorithm in the address assignment to IPv6 host
according to REBEKAH-IP scheme [11]. In the
implementation of the original round-robin algorithm to
allocate public IPv4 addresses and port numbers we used a
simple method by which the IPv4 addresses are arranged in a
linked list and stepped through sequentially for address
allocation. If there is no free port for a specific address, the
next address in the list is selected instead. The address range is
in a circular list. When the end of the address list is reached,
the server starts assigning addresses from the beginning of the
list. However, this method is susceptible to IPv4 address
blocking or call blocking as described above.

RATTANANON et al.: ON THE SCALABILITY OF ADDRESSING IN PRIVATE NETWORKS 241

To overcome this problem, we propose another algorithm,
the Minimum-Oriented Priority Queue algorithm [19] for
distributing IPv4 addresses and port numbers from the address
pool. The priority queue tries to balance the port utilization of
each IPv4 address by looking for the IPv4 address with the
least number of occupied port numbers and assigning an IPv4
address/port combination from this address.

In this section, we perform extensive simulations to
investigate the expected number of terminals a 3G network
can support in the face of actual IP traffic for both round robin
and priority queue algorithms, and also present simulation
results of different traffic models to highlight their
performance by given a range of available public IPv4
addresses available to an operator.

A.. Simulation Model and Results

We have made a simulation study to investigate the call
blocking probability of the two algorithms in large scale
scenarios to determine their comparative performance as well
as obtaining a good indication of the RPX scalability in real
life cellular network scenarios. We have used the simulation
model shown in Fig. 9.

BP

SN

N

Fig. 9. Simulation model.

In Fig. 9, the number of new mobile terminals is N, the

number of existing mobile terminals in the system is NS and
the call blocking probability is PB. In our simulations we have
constructed three different traffic scenarios and investigated
the scalability of both the round robin and priority queue
algorithms.

A.1 Input Parameters

We have made a number of assumptions and based our
simulation parameters on previous work [20] as follows.
Assume a very large population of N mobile nodes in the

system and a number of nodes SN that the system can

accommodate with the condition 1≤NS≤N. The new call rate is
uniformly distributed over the mobile service area and the
average call rate in the simulation is independent from the
number of calls in progress and the number of new calls after a
socket is closed.

The call blocking probability will depend on the
constitution of the traffic in terms of the channel holding
times. Therefore, in our simulations, we used three traffic
models, voice traffic, web traffic and long-lived connections in
which the node keeps the socket open for one hour. We
simulated three different scenarios with different traffic
compositions as follows:

• In the first scenario, we generated 10% voice traffic,
80% web traffic with 4 sockets per session and 10%
long-lived connections.

• In the second scenario, we generated 10% voice traffic,
80% web traffic with 1 socket per session and 10%
long-lived connections.

• In the third scenario, we generated 30% voice traffic,
50% web traffic with 1 socket per session and 20%
long-lived connections.

We used the following parameters for our simulations:
• The nodes randomly generated traffic proportional to

the three cases above.
• The time to open a socket was 1 second according to

[20].
• The average socket holding time in a mobile node in

the three different categories were: voice call 1 minute,
web browser 17 seconds according to [11] and long-
lived connections 1 hour.

• The average waiting time before a mobile terminal
would make a new call after closing a socket was: voice
call 1 hour, web browser 10 minutes and long-lived
connection 3 hours.

• The pool of public IPv4 addresses was set to 5 and the
number of ports was 1000 per IPv4 address.

A.2 Simulation Results

Using the above input parameters, the simulations were
conducted to compare the performance of the round robin
algorithm and the priority queue algorithm with respect to the
number of terminals the system could support (NS) before the
first blocking occurred and also until the call blocking
probability (PB) reached 1%, 2% and 3%.

Fig. 10 and Fig. 11 illustrate the number of mobile
terminals (NS) versus the total number of combinations of IPv4
addresses and port numbers (the product of the number of
IPv4 addresses and the number of ports per IPv4 address)
from the different scenarios above. The figures show the
number of terminals in the system that RPX can support and
the number of successful addressing assignments before the
first call block took place using both round robin and priority
queue algorithms.

Fig. 10. Number of terminals in the system using round robin

algorithm, when the first call blocking occurs.

242 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 3, NO. 4, DECEMBER 2007

Fig. 11. Number of terminals in the system using priority queue

algorithm, when the first call blocking occurs.

The following conclusions can be made regarding the two
algorithms. Firstly, the round robin algorithm implements a
weaker balancing strategy, which results in a smaller number
of assigned combinations of IPv4 addresses and port numbers
before call blocking is experienced. Secondly, we can deduce
that the round robin algorithm can support a smaller number
of mobile terminals (NS) than the priority queue algorithm,
which is intuitive since the priority queue algorithm performs
better in terms of call blocking probability.

Fig. 12 and Fig. 13 show the distribution of allocated ports
for each IPv4 address in a pool when the first call blocking
occurs. The figures clearly illustrate how the priority queue
algorithm distributes the load between addresses better than
the round robin algorithm thereby achieving a better address
utilization.

Fig. 12. Number of ports in use for each public IPv4 address using

round robin algorithm.

Fig. 13. Number of ports in use for each public IPv4 address using

priority queue algorithm.

Fig. 14 shows the number of mobile terminals (NS) that
could be supported by the system while the call blocking
probability (PB) was increased from 0% to 3%. The figure
illustrates the performance of both the priority queue and
round robin algorithms in terms of call blocking probability
from the different scenarios above. The results show that the
priority queue algorithm still outperforms the round robin
algorithm.

Fig. 14. Number of terminals in the system for both round robin and
priority queue algorithms, when the call blocking reaches 1%, 2%

and 3%.

Fig. 15 shows the number of mobile terminals (NS) that the
system can support as a function of the fraction of long-lived
nodes using the two algorithms. The parameters used were
derived from scenario 2 where the number of voice call nodes
was kept at a constant 10% and the number of web traffic
terminals and long-lived terminals were changed. The results
illustrate the relative performance of the two algorithms over a
broad range of traffic compositions. From the graph we can
see that even though the priority queue algorithm is constantly
better performing than the round robin algorithm, it too will be
affected by the traffic composition.

Fig. 15. Number of terminals in the system for both round robin and
priority queue algorithms, when the long-lived nodes are increased.

We also carried out a simulation study to verify that the

behavior with a small number of IPv4 addresses that was
indeed preserved within the context of a real cellular network.
We therefore carried out a simulation with 10 million
terminals using 1000 IPv4 addresses in the RPX address pool

RATTANANON et al.: ON THE SCALABILITY OF ADDRESSING IN PRIVATE NETWORKS 243

and investigated the distribution of occupied ports over the
IPv4 addresses. The results using the above mentioned
scenarios can be seen in Fig. 16 and 17 for the round robin
and the priority queue algorithms respectively. The figures
reveal that the behavior is indeed similar and that the round
robin scheme is somewhat more unbalanced than the priority
queue scheme as in the previous results. It is also worth noting
that given these traffic scenarios, we can derive an indication
of the scalability of RPX and verify that it comes very close to
the theoretical best behavior since the priority queue scheme
performs very well in terms of load balancing.

Fig. 16. Number of ports used for each IPv4 address using round

robin algorithm, when there are 10 million terminals in the system.

Fig. 17: Number of ports used for each IPv4 address using priority
queue algorithm, when there are 10 million terminals in the system.

In addition, in these scenarios, the network utilizes only

3.5% or less of its theoretical lower bound capacity (all
sockets opened to the same process in the public realm) which
leads to the observation that 3G deployment with RPX would
not be limited by a lack of IPv4 addresses.

B. A Comparison Performance of Two Algorithms

The selection of algorithm for assigning an address and port
combination is not only dependent on maximum scalability. In
our previous experiments, we have found that the main
contribution to system delay comes from searches to assign
and delete address mappings in the RPX gateway. Therefore,

it is imperative that the complexity of the two algorithms is
taken into account as well.

There are two cases when a mobile terminal requests to be
assigned an address and port combination for a
communication end-point.
I) The terminal has no previous assignments. We define

this type of terminal as a new terminal to the RPX Server
(RS). Therefore, this terminal accepts any IPv4 address
allocated from the RS.

II) The terminal has a previous open communication
channel and thus it has already been assigned a public
IPv4 address. We define this type of terminal as an in-
use terminal to the RS. Therefore, for such a terminal,
the RS needs to search the corresponding IPv4 address
and assign a new port from the pool belonging to this
IPv4 address.

In the following section, we analyse the complexities of the
two algorithms in the average and worst case using Big-O
notation. The assumption is that the address and port
allocation process has been performed for considerable time
so that there are no unused IPv4 addresses in the system and
that the client may request more than one port. In the
following analysis, n represents the size of the IPv4 address
pool and m represents the size of the port pool for each IPv4
address.

The difference between the priority queue algorithm and
round robin algorithm is the key used when searching for the
IPv4 address to use for the requesting terminal. The priority
queue searches for the IPv4 address in the address pool that
has the minimum number of used ports. The round robin
algorithm searches for the next IPv4 address that has sufficient
number of free ports to allocate to the requesting terminal.

Priority queue: Min {key (the number of ports allocated in
each IP address)}

Round robin: Array {key (next IP address which has
sufficient available ports)}

This leads to the following complexity analysis for both
round robin and priority queue algorithms:

B.1 Priority Queue Algorithm

B.1.1 An operation of RPX to assign an address/port to a
mobile terminal

In case I, the requesting terminal is a new terminal. The root
of the priority queue is the IPv4 address that has the minimum
number of allocated ports (m). Thus, we can simply assign an
available port along with the IPv4 address at the root to the
mobile terminal and then reorder the priority queue since the
first terminal in the priority queue has the minimum number of
ports in use. It is well known that the complexity of reordering
one terminal in a priority queue is O(log n) [19]. Then the
complexity becomes O(m + log n).

In case II, for a mobile terminal that has previously been
configured with a public IPv4 address. The IPv4 address of
the mobile terminal is used as the index for searching an array.
Therefore, the server only searches for an available port and
then updates the priority queue. Therefore, the complexity
becomes O(m + log n) as the same as case I

244 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 3, NO. 4, DECEMBER 2007

B.1.2 An operation of RPX to delete assigned address/port
from a mobile terminal

There are also two scenarios for a mobile terminal releasing
assigned address and port combinations. In the first scenario, a
mobile terminal releases one or more assigned ports but
maintains some open connections. In the second scenario, the
mobile terminal releases all assigned ports and the assigned
IPv4 address. The priority queue algorithm has the same
complexity in both cases since the operation is a simple queue
update and the complexity becomes O(log n).

B.1.3 An operation of RPX to detect blocking

When blocking occurs, there are also two possible cases
since blocking occurs only in the request scenario. For a new
terminal, there is a constant time required since the root of the
priority queue immediately reports the maximum number of
ports that is available in the pool. For the in-use terminal,
since its IPv4 address is the index of the address array, there is
no searching operation required. Since the priority of the
corresponding IPv4 address indicates the number of ports
used, this can be used to detect blocking.

In addition, in the priority queue algorithm there is always
an update operation after an IPv4 address and port has been
allocated or released which has the complexity of O(log n). In
our implementations, the server also performs the update after
the IP address or ports are allocated to the requesting node.
Therefore, the requesting terminal is able to establish the
communication at the same time as the server updates the
priority queue. Thus, the total waiting time for the requesting
node is reduced by O(log n).

B.2 Round Robin Algorithm

B.2.1 An operation of RPX to assign an address/port to a
mobile terminal

The operations when using the Round Robin algorithm are
more complex than those of the priority queue algorithm. In
case I, for an un-configured mobile terminal, the RPX gateway
initially searches for an IPv4 address which has sufficient
number of available ports for the request. This operation is of
complexity O(n). The gateway then searches the port range for
available ports which has complexity O(m). The
implementations use a variable for each IPv4 address that
indicates the number of ports that are used. Thus, the
complexity for the round robin algorithm in this case becomes
O(n + m).

In case II, for an previously configured terminal, the
operation becomes the same as the case above, since the
server still terminals to find the correct IPv4 address entry in
the table and then searches for the available port number.
Therefore, the complexity becomes O(n + m) as the same as
case I.

B.2.2 An operation of RPX to delete assigned address/port
from a mobile terminal

For a mobile terminal releasing assigned address and port
combinations, the operation follows the same rules above.

Therefore, the release procedure is also O(n + m) of
complexity.

B.2.3 An operation of RPX to detect blocking

When blocking occurs, as mentioned before, there are two
cases, one is for a new terminal and another is for a previously
configured terminal. For a new terminal, a search is required
since the server does not have a global view of the status of
the system. Thus, the server needs to search each IPv4 address
to determine the available ports. Therefore, the operation of
blocking detection is O(n).

B.3 Discussion: performance of the two algorithms

From the simulation results and the complexity analysis of
the two algorithms we can draw the following conclusions
regarding the two algorithms for address and port assignments
in RPX and therefore conclude that the priority queue is
evidently a better choice for providing this function:

Firstly, the RPX server has a global view of the system and
the root of the priority queue is always the IPv4 address that
has the minimum number of used ports. Secondly, it provides
a lower call blocking probability and therefore a better address
utilization when addresses are scarce. Thirdly, the balancing
between IPv4 addresses in terms of port utilization is better
which leads to a much more predictable behavior from the
system and also better confidence in the call blocking behavior
for individual terminals. Fourthly, the complexity using the
priority queue is lower than that of round robin both for
assignment for the new terminals and the blocking detection.
Thus, the load on the gateway is lower which increases the
scalability of the gateway.

Therefore, the comparison of the the complexities for both
Round Robin and Priority Queue algorithms in terms of an
operation of searching to assign/delete an address and port
numbers combination and the blocking detection is shown as
Table I.

TABLE I
A COMPARISON OF THE COMPLEXITIES OF THE TWO ALGORITHMS.

An operation of RPX Round Robin

Algorithm
Priority Queue

Algorithm
A New Node O(m+n) O(m+log n)
A Configured Node O(m+n) O(m+log n)
Delete assigned IPv4
addresss and port

O(m+n) O(log n)

IPv4 address and port
blocking detection

O(n) O(1)

From Table I, a new node means that a terminal has no
previous assignments for both a public IPv4 address and port.
A configured node means that a terminal has already been
assigned a public IPv4 address. In addition, n is the size of the
public IPv4 address pool while m is the size of the port pool
for each public IPv4 address.

In this section, the results from our simulations allow us to
conclude regarding for these reasons and their mapping to the

RATTANANON et al.: ON THE SCALABILITY OF ADDRESSING IN PRIVATE NETWORKS 245

three main criteria namely, scalability, minimum call blocking
probability and cost, the priority queue algorithm is
preferable.

V. CONCLUSION

One of the main threats to successfully deploying 3G
services and other new services is the limitation of available
IPv4 addresses. Previous work has shown that IPv6 will not
overcome this problem in the short to medium term and
effective translation mechanisms are therefore necessary at
least until IPv6 is mature enough to overtake IPv4. In previous
work, REBEKAH-IP with port extension (RPX) was proposed
as a candidate solution to this end. However, the scalability of
RPX will depend on a set of number of publicly available

IPv4 addresses (IPN) to the DNS. In this paper, we have

presented a mathematical model that an operator can use to
determine the expected IPv4 address utilization of an RPX
system. In addition, we proposed a negotiation method to
manage the balancing of address allocations between several
sub-networks in a system.

Furthermore, we have studied the performance of the round
robin algorithm for assigning addresses and ports from the
original proposal and found that it is not optimal. Next, we
have proposed to use a priority queue algorithm and have
shown that this algorithm is more suitable in that it has lower
complexity, better predictability and exhibits better address
utilization and lower call blocking probability than the round
robin algorithm. In addition, our simulations give a good
indication on the actual scalability RPX can achieve given an
address and port range coupled with different traffic
compositions.

VI. ACKNOWLEDGMENTS

The authors would like to thank Dr.Krit Wongrujira and
Dr.Stephen Herborn for their invaluable helps.

REFERENCES

[1] Minutes of the Address Lifetime Expectations working group,

proceedings of 29th ETF meeting, Seattle, April 1994.
[2] S.Deering, R.Hinden: Internet Protocol, Version 6 (IPv6)

Specification, Internet RFC 2460, December 1998.
[3] A.Jamalipour, M.Yabusaki: 3G Mobile Network Technologies

and Experiences, IEEE Wireless Communications Magazine,
special issue on 3G Networks, vol10 no.1, February 2003.

[4] P.Srisuresh, M.Holdrege: IP Network Address Translator (NAT)
Terminology and Considerations, IETF RFC 2663, August
1999.

[5] M.Borella, J.Lo, D.Grabelsky, G.Montenegro: Realm Specific
IP: Framework, RFC 3120, October 2001.

[6] M.Borella, D.Grabelsky, J.Lo, K.Taniguchi: Realm Specific IP:
Protocol Specification, RFC 3103, October 2001.

[7] D.Senie: Network Address Translator (NAT)-Friendly
Application Design Guideline, RFC 3235, January 2002.

[8] F.Audet, C.Jennungs: Network Address Translation (NAT)
Behavioral Requirements for Unicast UDP, RFC 4787, January
2007.

[9] Work of the IETF Next Generation Transition (ngtrans)
working group, http://www.ietf.org.

[10] F.Templin, T.Gleeson, M.Lehman: ISATAP Transition Scenario
for Enterprise/Managed Networks, IETF draft-ietf-ngtrans-
isatap-scenario-01.txt.

[11] B.Landfedt, S.Rattananon, A.Seneviratne: Providing Scalable
and Deployable Addressing in the Third Generation Cellular
Networks, IEEE Wireless Communications Magazine, special
issue on 3G Networks, vol10 no.1, pp.36-42, February 2003.

[12] B.Landfeldt, S.Rattananon, A.Seneviratne: Expanding the
Address space through REBEKAH-IP: An Architectural View,
ICITA 2002, November 2002.

[13] S.Rattananon, B.Landfeldt, A.Seneviratne, Extending
REBEKAH-IP with Central Port Allocations for Un-Ambiguous
IPv4 Address Expansion, ICON 2003, September 2003.

[14] http://www.iana.org/assignment/port-numbers
[15] http://www.iana.org/ipaddress/ip-addresses.htm
[16] A.Gulbrandsen, P.Vixie, L.Esibov: A DNS RR for specifying the

location of service (DNS SRV), IETF RFC 2782, February
2000.

[17] P.Mockapetris: Domain Names – Concepts and Facilities, RFC
1034, November 1987.

[18] J.Reynolds, J.Postel: Assigned Numbers, Internet RFC 1700,
October 1994.

[19] R.Sedgewick: Algorithms IN C (Third Edition), Addison-
Wesley, 2001.

[20] D.Hong, S.S.Rappaport: Traffic Model and Performance
Analysis for Cellular Mobile Radio Telephone System with
Prioritized and Nonprioritized Handoff Procedures, IEEE
Transactions on Vehicular Technology, vol VT-35 no.3, August
1986.

Sanchai Rattananon received the BEng
degree in electronic engineering form the
University of the Thai Chamber of
Commerce, Thailand in 1994, and MEng
degree in Telecommunication from
Swinburne University of Technology,
Australia in 1997. He also received his Ph.D.
at University of New South Wales, Australia
in 2006. Currently he is working in the

Department of Electronic and Telecommunication, School of
Engineering at the University of the Thai Chamber of Commerce,
Thailand. His research interests are network middleware and IP
mobility management.

Zhe Guang Zhou has completed a combined
degree Bachelor of Computer Science and
Bachelor of Electrical Engineering with first
class honours at University of New South
Wales, Australia in 2000. He received his
Ph.D. at University of New South Wales,
Australia in 2005. His research interests are
mobile location management and wireless
network connectivity.

246 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 3, NO. 4, DECEMBER 2007

Björn Landfeldt started his studies at the
Royal Institute of Technology in Sweden.
After receiving a BSc equiv, he continued
studying at The University of New South
Wales where he received his PhD in 2000. In
parallel with his studies in Sweden he was
running a mobile computing consultancy
company and after his studies he joined
Ericsson Research in Stockholm as a Senior

Researcher where he worked on mobility management and QoS
issues. In 2001, Dr. Landfeldt took up a position as a CISCO Senior
lecturer in Internet Technologies at the University of Sydney with the
School of Electrical and Information Engineering and the School of
Information Technologies. Dr Landfeldt has been awarded 8 patents
in the US and globally. He has published more than 60 publications
in international conferences, journals and books and been awarded
many competitive grants such as ARC discovery and linkage grants.
Dr. Landfeldt is also a research associate of National ICT Australia
(NICTA). Currently, he is serving on the editorial boards of
international journals and as a program member of many
international conferences and is supervising 8 Ph.D students. Dr.
Landfeldt¹s research interests include; mobility management, QoS,
performance-enhancing middleware, wireless systems and service
provisioning.

Aruna Seneviratne (M'94) received the
B.Sc.(Hons) degree from Middlesex
Polytechnic, London, U.K., and the Ph.D.
degree from the University of Bath, Bath,
U.K. Since graduating, he has held academic
appointments at the University Bradford
(U.K.), Curtin University, Australian Defense
Force Academy (UNSW), and the University
of Technology, Sydney. Outside academia he

has worked at the Standard Telecommunication Laboratories (U.K.),
Muirhead and Company (U.K.), and Telecom Australia (Telstra). He
has also spent time at the MASI Laboratory, University of Pierre
Marie Curie (Paris), and the Rodeo Group at INRIA (Nice) as a
Visiting Professor. He is currently the Director of the Australian
Technology Park Laboratory, National ICT Australia. He also holds
the Mahanakorn Chair of Telecommunication in the School of
Electrical Engineering and Telecommunication, University of New
South Wales. His current research interests are in mobile data
communication systems.

RATTANANON et al.: ON THE SCALABILITY OF ADDRESSING IN PRIVATE NETWORKS 247

