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Abstract: In recent times, the imminent lack of public IPv4 
addresses has attracted the attention of both research community 
and industry. The cellular industry has decided to combat this 
problem by using IPv6 for all new terminals. However, the 
success of 3G network deployment will depend on the services 
offered to end users. Currently, almost all services reside in the 
public IPv4 address space, making them inaccessible to users in 
IPv6 networks. Thus, an intermediate translation mechanism is 
required. Previous studies on network address translation 
methods have shown that REBEKAH-IP with Port Extension 
(RPX) supports all types of services that can be offered to IPv6 
terminals from the public IPv4 based Internet, and provides 
excellent scalability. However, this method suffers from an 
ambiguity problem which may lead to call blocking. 

In this paper, we present an improvement to RPX scheme in 
which the side effect is removed and fully scalable system. We 
firstly show the expected number of public IPv4 addresses 
utilization to the DNS of RPX server. This utilization is computed 
in terms of the probability of socket open requests from mobile 
terminals, the probability of call blocking and the estimated 
number of mobile terminals at the network initialization phase. 
The mathematical model is also provided as a guideline to 
determine the range of public IPv4 addresses allocated to an RPX 
gateway in a cellular network. In addition, the results are 
presented through a set of simulations. However, we proposed the 
RPX scheme to use a simple round robin scheduling algorithm is 
sub-optimal in terms of call blocking probability and further 
propose to use a priority queue algorithm to improve the 
scalability. In addition, we present extensive simulation results on 
the practical scalability of RPX with different traffic 
compositions to provide a guideline of the expected scalability in 
large-scale networks such as 3G networks. 

  Index terms: IPv4, IPv6, Terminals, Algorithms 
 

I. INTRODUCTION 
 

With the introduction of third generation cellular networks, 
the number of IP enabled devices is expected to grow rapidly 
to number of ways above the current level. Since the current 
version of IP, version 4, has a limited address space of 32-bits, 
it is expected that we will have used all available addresses in 
a foreseeable future [1]. In order to overcome this problem 
and to meet the demand for addresses, the cellular industry has 
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decided to use the next generation IP, IP version 6 [2], which 
expand the address field to 128-bits as the primary network 
protocol in third generation (3G) cellular networks. However, 
in [3] it has been shown that the successful rollout of 3G will 
depend heavily on the services accessible through the new 
networks, and the added value compared with second 
generation networks such as GSM. It will be crucial for 
operators and vendors to obtain a good return on the 
investment for the network coverage to reach predicted levels. 
Unfortunately, the vast majority of services available to 3G 
users currently reside in the public IPv4 based Internet, 
rendering them inaccessible to IPv6 based 3G terminals since 
IPv6 and IPv4 are incompatible. This means that 3G terminals 
cannot directly communicate with IPv4 terminals and instead 
need to communicate via an intermediate translation 
mechanism. Because of this, there is a need for a short to 
medium term solution that will enable IPv6 terminals to access 
public IPv4 Internet services until IPv6 based services have 
been widely deployed enough for the majority of services to 
migrate into this space. 

Over the past few years, there have been a number of 
proposals from the research community aimed at providing 
methods for both extending the address space and for 
performing translation between the Internet domains. These 
proposals can be divided into two major groups, namely 
Network Address Translators (NATs) [4] that aim to extend 
the address range of IPv4 and IP tunneling solutions [5, 6] that 
aim at enabling co-existence of IPv4 and IPv6. However, none 
of the proposed methods are transparent to the applications 
and impose different restrictions on the type of applications 
that can be used [7]. In addition, the proposals based on these 
two methods are limited and will not meet the requirements of 
operators and users for a successful deployment of 3G 
networks by the following of these criteria properties: 

• It should be scalable (being able to support millions of 
new 2.5 and 3G terminals that are currently being 
added to the Internet). 

• It should be application friendly (It should not restrict 
the applications that can be used together with the 
scheme). 

• It should allow network initiated communication (make 
private terminals reachable from the public Internet). 

• It should have relatively low impact on the current 
infrastructure (so it can be deployed). 

For example, the first group of NATs uses different forms 
of address translation methods to enable traffic traversal 
between different address realms. A classical NAT [4] has a 
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set of public IPv4 addresses that can be assigned to individual 
private nodes on a per-session basis. When a terminal, with 
private address X is located within a private realm and wants 
to contact a remote terminal on the public Internet, the NAT 
assigns one of its public addresses to the private terminal such 
as IPv4 address Y. The NAT then rewrites the sender address 
in the IP header of the outgoing packet with the assigned 
public address Y. Thus, to the terminals outside the private 
realm it appears as if the packet originated from another public 
domain terminal. On the return path, the NAT rewrites the 
destination address Y in the IP header with the private address 
X so the packet is correctly routed within the private realm as 
shown in Fig. 1. 
 

Fig. 1. Operation of Classical NAT. 
 
This method of translating between realms is simple but 
suffers from three drawbacks which will harm the deployment 
of 2.5 and 3G networks. Firstly, it is a mechanism of single 
direction connection initiation. It does not allow a terminal in 
the public Internet to initiate session to a terminal within the 
private realm because NAT would not advertise private 
addresses to the public realm. Thus, a packet from a public 
realm host cannot be routed to the private address. Secondly, 
it does not scale since every time a private terminal wants to 
communicate to a terminal in the public network, a public 
IPv4 address is reserved exclusively for that terminal’s use. 
Thirdly, some applications and protocols such as ICQ, Real 
Player and Session Initial Protocol (SIP) carry private network 
addresses in their payloads. Thus, when the application layer 
signalled address is a private realm address, despite the NAT 
changing the addresses in the IP packet header, the addresses 
in the payload remain unchanged. The receiver detects a non-
routable address that will result in a malfunction. In order to 
overcome this problem, it is necessary to deploy Application 
Layer Gateways (ALGs) [7] in the NAT. These ALGs needs 
to be application specific to correctly decipher the addressing 
information embedded in the payload and substitute the 
signalled private address with the appropriate public address. 
However, the ALG function is limited to supporting only a 
small subset of selected application. 

Moreover, Network Address Port Translation, NAPT [4] 
improves the scalability of the classical NAT by enabling 
multiple private realm terminals to share a single public IPv4 
address. This is achieved by using the transport identifier (e.g. 
TCP and UDP port numbers) in the translation procedure. 
This port multiplexing enables the NAPT to share one IPv4 
address among several private terminals. In [8], Audet et al. 
detail a proposal to ascribe the address and port mapping 

behavior of the NAPT method called Endpoint-Independent 
Mapping, which reuses the same public address and port 
mapping to service multiple private terminals simultaneous to 
communicate to any public terminal. As a result, the method 
has a good scalability but it is still impossible for terminals 
within the public realm to initiate sessions to terminals within 
the private realm. Furthermore, NAPT also requires the use of 
ALGs to deal with applications which embed IP addressing 
information in the IP payload. 

The second group of extension methods use different forms 
of tunnelling mechanisms to forward data between two 
different address realms. The ngtrans working group within 
the IETF [9] has proposed a number of methods for transition 
from IPv4 to IPv6 based networks. The work has primarily 
concerned itself with methods for co-existence of the two 
protocols and not interoperability. However, through the use 
of a combination of tunnelling mechanisms [10] it is possible 
to interconnect IPv6 and IPv4 domains. In [5], Borella et al. 
present a proposal of the Realm Specific IP (RSIP) scheme 
that performs IP tunnelling. RSIP scheme takes a different 
approach than the above-mentioned NATs to provide 
connectivity between different realms. It uses a client server 
type architecture, where the client and the server, are aware of 
the different realms. Consider the following operational 
scenario of RSIP as shown in Fig. 2, the client first request a 
public IPv4 address from the RSIP server and the server leases 
a public realm address X to the client. The client then 
constructs the message using the leased public address X as 
the source address. To get the packets with the public realm 
addresses through the private realm, clients tunnel the packets 
to the server by using the destination address M which is a 
private realm address. The server decapsulates the tunnel 
header and passes them to the public realm. Thus, a RSIP 
client makes use of a public address when communicating 
with a host in a public realm, thereby alleviating the need for 
rewriting of addresses at an intermediate point. An advantage 
of this scheme is that there is no need to deploy ALGs for 
applications since public realm addresses are used by the 
private clients when constructing application data packets. 
However, the tunnelling mechanism does not extend the public 
IPv4 address space and still requires public IPv4 addresses for 
the communication between terminals in the public realm and 
private realms. Therefore, the mechanism does not solve the 
immediate need for address expansion until IPv6 gains enough 
momentum to start easing the burden on IPv4 addressing 
 

Fig. 2. Operation of RSIP. 
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To overcome these limitations, we proposed a method 
called REBEKAH-IP with Port Extension (RPX) [11-13] 
which meets the demands for cellular operators whilst 
ensuring the support of three main criteria, namely scalability, 
public realm initiated communication and application 
friendliness. However, this method suffers from an ambiguity 
problem which may lead to call blocking. In this paper, we 
present an improvement to RPX scheme in which the side 
effect is removed and fully scalable system. We firstly 
provide a mathematical model that allocates the expected 
number of public IPv4 addresses utilization to the RPX 
server. The calculations consider the probability of socket 
open requests from mobile terminals, the probability of call 
blocking and the estimated number of mobile terminals at the 
network as the main factors to estimate public IPv4 address 
utilization. 

However, the exact scalability of RPX will depend on the 
traffic composition in terms of the duration of IP flows. In 
addition, we proposed RPX scheme to use a round robin 
scheduling algorithm for the assignment of addresses. Thus, 
there is an additional limitation to the number of flows that 
the RPX scheme can support. Under heavy load conditions it 
is possible that a single public IPv4 address may run out of 
free combinations well in advance of other IPv4 addresses 
causing call blocking to some terminals. This happens 
because the private terminals are only configured with a 
single public IPv4 address for any subsequent connections. 
Thus, if the terminals using a certain IPv4 address should 
have many long-lived connections, there is a chance is that 
they will exhaust the number of free combinations for that 
address well before another address with fewer long-lived 
connections. The selection of an algorithm for assigning 
addresses to private terminals is pivotal in avoiding this 
effect. Therefore, in this paper we also propose to use a 
priority queue algorithm instead of a round robin scheduling 
algorithm for RPX server, in order to overcome the problem 
mentioned above and further increase the scalability of RPX 
scheme. In addition, we show that the priority queue 
algorithm outperforms the round-robin algorithm and perform 
extensive simulations to investigate the expected number of 
terminals a 3G network can support in the face of actual IP 
traffic. The results can act as a guide to estimate the number 
of terminals networks can support given a range of available 
public IPv4 addresses available to an operator. 

The rest of this article is organized as the follows. We first 
detail background information on the original REBEKAH-IP 
proposal and REBEKAH-IP with Port Extension (RPX) in 
Section II. Then the mathematical model is provided used to 
determine the expected number of public IPv4 addresses 
utilization in the network together with simulation results in 
Section III. Section IV provides the round robin and priority 
queue algorithms for assigning addresses and port numbers 
within RPX and also presents simulation results of different 
traffic models to highlight their performance. Finally, the 
conclusion is presented in Section V. 
 

II. BACKGROUND 
 

In [11], we proposed a scheme called Realm Base Kluge 
Address Heuristic-IP (REBEKAH-IP) and its extension 

REBEKAH-IP with Port Extension (RPX) [13] for expanding 
the public IPv4 address space that scale satisfactorily while 
preserving the Internet model of catering for a multitude of 
service. 
 
A. Realm Base Kluge Address Heuristic-IP (REBEKAH-IP) 
 

REBEKAH-IP [11, 12] was introduced to overcome some 
of the drawbacks of previous translation proposals [4], while 
allowing full connectivity. The scheme was designed to allow 
both terminal and network initiated communication and 
supports for all types of public Internet services to IPv6 
terminals without the need for Application Layer Gateways 
(ALG). It requires minor changes to existing infrastructure 
with the addition of a REBEKAH-IP server (RS) acting as a 
border gateway at the edge of the private network connecting 
to the public Internet. 

The REBEKAH-IP server (RS) integrates features from 
two existing NAT proposals [4], namely RSIP and Bi-
directional NAT, and extends the combination of Layer 3 
(Network Layer) and Layer 4 (Transport Layer) switching 
functions. Therefore, the routing proposed in this scheme is 
based on a four tuple (sender and receiver IP address and port 
numbers) rather than only a parameter pair (destination IP 
address and sender port number). The number of unique 
combinations between the four tuple can be used to 
distinguish between flows and thereby increase the scalability 
of REBEKAH-IP, far surpassing those of the previous NAT 
proposals. In this scheme, we also use a pool of public IPv4 
addresses to configure private terminals while allowing the 
public IPv4 addresses to be reused as long as the combination 
is unique as the identifier for a single flow. 
 

Fig. 3. All components view of REBEKAH-IP. 
 

A simplistic view of REBEKAH-IP is shown in Fig. 3. 
Similar to RSIP [5], there is a REBEKAH-IP server (RS) that 
delegates public IPv4 addresses to private terminals on 
demand.  
In addition, there is a purpose built DNS for interoperating in 
both IPv4 and IPv6 address spaces in a similar manner to Bi-
directional NAT [4].  Thus, the DNS function within the 
server is responsible for resolving a private address and also 
the assignment of public IPv4  addresses  to  the  private 
realm  terminals.  The  terminals  in  the  private  realm  

RATTANANON et al.: ON THE SCALABILITY OF ADDRESSING IN PRIVATE NETWORKS 237



implement a specific REBEKAH-IP client (RC) for address 
resolution and session setup similar to RSIP scheme [5], and 
the terminals in the public realm are left unchanged for 
backward compatibility unless they reside inside another 
REBEKAH-IP realm. 

Furthermore, we consider the following operational 
scenario as shown in Fig. 3. When client A/RC connects to a 
REBEKAH-IP server and requests to be assigned a public 
IPv4 address with an opened ephemeral port number as sender 
port, and informs the RS server of both the IP address and port 
number of the public realm terminal to which it wishes to 
communicate. The selection process is simple. The DNS 
function within the RS server has a pool of public IPv4 
addresses and it selects addresses from this pool using a 
round-robin algorithm. The RS server then queries the DNS 
with predetermined parameters (destination address, sender 
and destination port numbers) as input. It takes the 
predetermined parameters into account and searches for a 
unique combination of the three parameters together with the 
public IPv4 addresses from the pool. In the example, the RS 
server obtains public IPv4 address (x.x.x.x) from the DNS 
function and assigns it to A/RC to open the socket. Once this 
is done, the client A/RC and the RS server establish an IPv6 
tunnel between themselves to route the IPv4 traffic through 
the IPv6 domain, the same as RSIP. When client B/RC 
requests a public IPv4 address, the DNS function is able to 
pick and assign to it the same IPv4 address (x.x.x.x) as long as 
the four tuple is kept unique. 

However, once a private realm terminal has been assigned a 
public IPv4 address it will maintain this address until all 
communication channels are closed. This avoids assigning 
multiple public IPv4 addresses to one private terminal. Thus, 
there is a small possibility that more than one private terminal 
will try to open a connection to the same public terminal using 
the same four-tuple (sender and receiver IP address and port 
numbers). In this case it will be impossible to distinguish 
between the different flows resulting in request rejection (i.e. 
this is the same terminology of call blocking in the rest of this 
paper) for the all but the first terminal. Even though there is a 
very low probability of this happening [11], it is an 
undesirable property of the system. The reader is referred to 
[11, 12] for additional details on REBEKAH-IP scheme. 
 

B. REBEKAH-IP with Port Extension (RPX) 
 

The problem with the REBEKAH-IP scheme stems from 
the usage of ephemeral (sender) ports when applications open 
sockets. Since there is no control over the port allocation, it is 
impossible for a REBEKAH-IP server to predict the sender 
port that a private terminal will use for a certain flow. In order 
to overcome this problem, we proposed a REBEKAH-IP with 
Port Extension, RPX [13]. RPX involves modification of the 
REBEKAH-IP scheme to incorporate centralised management 
of both public IPv4 addresses and port numbers, since new 
terminals can be shipped with special support and it is possible 
to have them implement more optimised versions of the 
REBEKAH-IP scheme. Therefore, the DNS function of RPX 
is able to decide on not only public IPv4 addresses but also 

source ports to assign private terminals for use. Thus, instead 
of querying the DNS for a public IPv4 address only when 
setting up a connection, as in the RSIP scheme [5], in our 
proposal the private terminal will obtain the sender port 
number to use for the socket as well as the public IPv4 address 
to use. This way, RPX will be able to fully avoid possible 
clashes between sessions and to unambiguously extend the 
IPv4 address space. Thus, the RPX scheme is capable of 
unambiguously supporting a maximum of: 
 

2
)2()2( R

p
IPNa

IPN −×−×=φ  (1) 

 
flows where NIP is the number of publicly available IPv4 
addresses to the DNS, p is the number of bits in the port range, 
a is the number of bits in the IP address range and R is the 
number of ports excluded from the assignment by the IANA 
[14]. 

Even though a terminal is not position to establish sessions 
at the complete range of 232 addresses (minus private, 
reserved, broadcast and multicast address range) according to 
the IPv4 address assignment procedures [15], the most of 
these addresses can be used by a terminal for inter-domain 
communication. Thus, with an example from a cellular 
network, if NIP = 1000, p = 16, a = 32 and the number of 
reserved ports R = 1024, the maximum number of flows RPX 
can support becomes: (216 – 1024) x 1000 x (232 – 1000) x (216 – 
1024) = 1.8 x 1022

 flows. Note however that this figure requires 
all connections to be made to different processes in the public 
Internet. In addition, since each terminal is limited to a 
maximum of 2P–R connections, the minimum number of 
terminals needed to reach this number of flows is: 
 

)2()2( R
p

IPNa
IPNn −×−×=  (2) 

 
which with the above parameters yields 2.8 x 107 terminals. In 
addition, if the number of connections should be made to the 
same public server process (and the server can handle an 
unlimited number if connections), the theoretical minimum 
number of flows RPX can uniquely identify becomes: 
 

)2( R
p

IPN −×=φ    (3) 

 

with the same parameters as above this yields; 1000 x (216 – 
1024) = 6.5 x 107 flows, the same as classical NAT with port 

translation (NAPT) [4]. In reality, the number of flows an 
RPX system will be able to support will vary in-between these 
two extremes. 
 

B.1 Private Terminal Implementation 
 

The private realm terminals will have to support RPX by 
special functions that are not implemented in current operating 
systems. Even though this is a negative aspect of the scheme, 
we argue that it does not have a major impact on the 
deployment of the scheme for the following reasons: 
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• First, 3G networks are in the beginning of the rollout 
phase and since the vast majority of terminals for these 
networks are yet to be deployed, the challenge is 
limited to incorporating this function from the 
beginning (no retro fitting required). For the existing 
terminals, it is possible to deploy RPX enabled 
terminals in parallel so that the gateways treat the RPX 
and non-RPX terminals differently. 

• Second, if RPX is deployed in a small-scale domain, it 
is possible to upgrade existing hosts within the domain 
while shifting them from their current environment into 
an RPX environment. 

The great advantage is that existing services and network 
infrastructure such as routers in the public Internet do not have 
to be modified in any way in order for RPX to be deployed. 
The terminals have to be able to signal the DNS and expect 
configuration information in return. They also have to be able 
to configure themselves with the returned information and 
possibly also override an application’s attempt to specify 
sender port for a socket. 

In Fig. 4, we show a flow chart of the steps taken by a 
private domain terminal when it wants to open a connection to 
another terminal in either the private or public realm. After the 
terminal gets a reply from the DNS the record type determines 
how the terminal is configured. However, there is a new type 
of record which is called a SRV record [16] that can be used 
to contain not only an IP address corresponding to an Fully 
Qualified Domain Names (FQDN) [17], but also any 
information; hence we can add public address and port 
information to this record. If the record is an SRV record, the 
connection is destined for a public domain terminal and the 
RPX scheme comes into play. If on the other hand the 
returned record is a standard A or AAAA record, the terminal 
uses a standard socket creation process using its private 
address and a randomly assigned ephemeral port number. This 
way, RPX only comes into play when traversing the border 
between the private and public realms. 
 

Fig. 4. Flowchart of private terminal signaling function. 

An overview of the prototype implementation of RPX 
scheme set up is shown in Fig. 5. The figure shows the steps 
taken to configure the private terminal with the obtained 
parameters (the assigned public IPv4 address and sender port 
number) to initiate communication to a public realm terminal. 
In addition, it also shows the steps taken for the DNS to relay 
the query to the foreign DNS server and resolve the FQDN. 
 

Fig. 5. Operation of RPX. 

 
III. PROVIIDING THE NUMBER OF PUBLIC IPV4 ADDRESSES 

UTILIZATION 
 

Form the equation (1) to (3) it can be seen that the 
scalability of the RPX scheme depends on the number of 
public IPv4 addresses (NIP) that are allocated to the RPX 
DNS. Therefore, the purpose of this section is to determine the 
range of public IPv4 addresses utilized by an RPX server in a 
cellular network. This utilization is computed in terms of the 
probability of socket open requests from terminals, the 
probability of call blocking and the estimated number of 
mobile terminals at the network initialization phase as the 
main factors to estimate IPv4 address utilization. In addition, 
the results are presented through a set of simulations. 
 
A. System Design and Mathematical Model 
 

In our model, the network is divided into different 
connection areas. We assumed that mobile terminals are free 
to move between different areas. These areas are analogous to 
sub-networks in IP terminology. Each area has a dedicated 
RPX server (RS) acting as a border gateway. Finally, we also 
assumed that all areas belong to a common administrative 
domain as shown in Fig. 6. 
 

Fig. 6. System design for distributing RPX servers. 
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As the RS servers are distributed among the sub-networks, 
the operator needs to manage and allocate a subset of the 
publicly available IPv4 address pool to each server in each 
sub-network. The allocation method depends on the 
probability of requests, the probability of call blocking and the 
estimated number of mobile terminals within the sub-network. 

Assume there are a total of N  mobile terminals in the 
network domain and let Nj be the total number of mobile 
terminals within sub-network j with the condition 1≤Nj≤N. The 
handoff frequency for a new terminal and the probability of 
the terminal moving out of the network are assumed equal at 
the network initialization phase. Therefore, we only need to 
calculate the expected public IPv4 address utilization for 
network j by considering the estimated number of existing 
terminals within the area. Given that the probability of 
requests for assigning addresses and port numbers, Pr,j is equal 
among all mobile terminals so that the probability of call 
blocking, PB,j is given by: 
 

⎪⎩

⎪
⎨

⎧
>−

=

otherwise
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AN

jBP
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,   (4) 

 
where NA is the maximum number of unambiguously 
supported flows by the RPX scheme and NR is the total 
number of requests from the mobile terminals in the network j. 

We express the number of public IPv4 addresses a sub-
network j utilizes as follows. Let the average rate for opening 
new sockets be λ, the average socket holding time be t  and 
the port range for each public IPv4 address be m. 

Then, equation (4) could be written as a function of the 
expected public IPv4 addresses utilization as follows: 
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where NIP,j is the expected public IPv4 address utilization for 
network j and K = λtPr,j. 

In addition, if number of connections would be made to the 
same server process according to equation (3), then equation 
(5) would be become: 
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In reality, the expected public IPv4 address utilization for 
sub-network j will be varied in-between the two equations (5) 
and (6). Thus, these equations provide the upper and lower 
bounds of the expected number of public IPv4 addresses that 
the network operator will assign to each RPX server to support 
mobile terminals in each sub-network. 

However, the sum of allocated public IPv4 addresses for 
each sub-network must be less than or equal to the total 
number of available public IPv4 addresses from the network 

domain pool IPoftotalN __ . Therefore, the sum of allocated 

public IPv4 addresses for m networks with IPN̂  addresses 

each is defined as: 
 

∑
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In the case when IPoftotalNIPN __
ˆ > , we also provide a 

negotiation method for solving the problem as follows: 
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where jIPN ,  is the new number of allocated public IPv4 

addresses that the network domain has allocated to sub-

network j when IPoftotalNIPN __∈  and 

IPoftotalNIPNexceedIPN __
ˆ

, −=  is the total number of 

allocated public IPv4 addresses exceeding the total number of 
available public IPv4 addresses within the network domain. 

For example, we assume that there are two sub-networks, 
sub-network 1 and sub-network 2. Assume that the total 
number of publicly available IPv4 addresses within the RS 
domain is 1000 and also that the result of the allocated public 
IPv4 addresses for sub-network 1 and sub-network 2, from 
equation (6), are 500 and 600 respectively. When the 
summation of these results of allocated public IPv4 addresses 
is greater than the total number of available public IPv4 
addresses from the domain, the operator has to re-allocate 
addresses according to equation (8). Therefore, the new 
resulting number of allocated public IPv4 addresses becomes 
450 and 550 for sub-network 1 and 2 respectively. This 
solution will slightly increase the call blocking probability for 
both sub-networks because of the decreasing number of 
requested public IPv4 addresses, as can be seen from equation 
(6). However, the negotiation method balances the blocking 
probability in both sub-networks in terms of address sharing 
and utilization, which is also dependent on the address 
assignment requests and the number of mobile terminals of 
each sub-network according to equation (5) and (6). In 
addition, the RS domain also has a sufficient number of public 
IPv4 addresses to allocate for both sub-networks. 

Moreover, the conclusion of the negotiation method above 
works well for the initialization phase of the sub-networks. 
Once, the public IPv4 address pool allocation process is 
complete, all sub-networks are able to operate with the 
allocated public IPv4 address pool from the RS domain. After 
this, if the RS domain still has a set of free public IPv4 
addresses. This set can be further allocated for the new sub-
networks by the RS domain. When the new sub-networks are 
created, the negotiation method will be applied only to the set 
of free public IPv4 addresses if these free addresses are not 
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enough to allocate for all new sub-networks. Thus, the 
operation of all existing sub-networks will remain un-affected. 
 
B. Simulation Results 
 

In order to obtain realistic input values to the mathematical 
model, we examined traffic using parameters from previous 
work [11]. The average number of sockets opened per second 
and the average socket holding time for a mobile terminal 
were 0.015 and 17 seconds respectively. In addition, the 
available number of ports for each IP address was 216 – 1024 as 
specified in [18]. 

Fig. 7 shows the number of utilized public IPv4 address 
(NIP,j) versus the number of mobile terminals (Nj) when using 
different probabilities of call blocking (PB,j). The probability 
of socket open requests from the number of terminals (Pr,j) 
was set to one in the network. The results show that the public 
IPv4 address utilized increases with the increasing number of 
mobile terminals that can be supported by RPX in the 
network, as expected. However, the address utilization can 
also be contained by varying the probability of the call 
blocking. This figure illustrates the utilization with a blocking 
probability of 0%, 5% and 10% respectively. 
 

 
Fig. 7. Public IPv4 address utilization and number of mobile 

terminals with 1, =jrP . 

 

Fig. 8 shows the public IPv4 addresses (NIP,j) utilization 
versus the number of mobile terminals (Nj) when the 
probability of socket open requests from the number of 
terminals (Pr,j) is varied. The call blocking probability was set 
to a constant of 5% in the simulation. The figure illustrates 
how the number of utilized public IPv4 addresses will be 
reduced as the probability of request decreases since the call 
blocking probability (PB,j) is dependent on the probability of 
socket open requests from the mobile terminals (Pr,j) with the 
condition PB,j α Pr,j. Furthermore, we can see that the number 
of terminals that the RPX server can support increases as the 
probability of socket open requests decreases with a fixed 
public IPv4 addresses utilization. 

 
Fig. 8. Public IPv4 addresses utilization and number of mobile 

terminals with %5=BP . 

 
In this section, the results from our simulations allow us to 

draw some conclusions regarding the number of public IPv4 
addresses utilized by the RPX scheme as follows: 

Firstly, the results in Fig. 7 and 8 were obtained with the 
assumption that all connections were opened up to the same 
server process in the public Internet as simplified in equation 
(6). Therefore, the results illustrate the maximum number of 
public IPv4 addresses utilized, while scaling the expected 
number of mobile terminals in the network from ten to one 
hundred million hosts under the assumed conditions of call 
blocking probability and number of sockets of each host. From 
the results above it can be seen that RPX can provide excellent 
scalability in terms of supporting a large number of private 
terminals, while only utilizing a small number of public IPv4 
addresses, meaning that cellular 3G operators may operate 
with a realistic value of 1000 IPv4 addresses available for 
allocation. 

Secondly, the formulas used in the simulations above enable 
us to give a good estimation of the number of IPv4 addresses 
utilized in order to achieve reasonable estimates of RPX in 
actual deployment, and indicate that the scalability of RPX is 
very promising. 
 

IV. ALGORITHM FOR DISTRIBUTING ADDRESSES AND PORT 

NUMBERS 
 

The RPX scheme was designed to use a round robin 
scheduling algorithm in the address assignment to IPv6 host 
according to REBEKAH-IP scheme [11]. In the 
implementation of the original round-robin algorithm to 
allocate public IPv4 addresses and port numbers we used a 
simple method by which the IPv4 addresses are arranged in a 
linked list and stepped through sequentially for address 
allocation. If there is no free port for a specific address, the 
next address in the list is selected instead. The address range is 
in a circular list. When the end of the address list is reached, 
the server starts assigning addresses from the beginning of the 
list. However, this method is susceptible to IPv4 address 
blocking or call blocking as described above. 
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To overcome this problem, we propose another algorithm, 
the Minimum-Oriented Priority Queue algorithm [19] for 
distributing IPv4 addresses and port numbers from the address 
pool. The priority queue tries to balance the port utilization of 
each IPv4 address by looking for the IPv4 address with the 
least number of occupied port numbers and assigning an IPv4 
address/port combination from this address. 

In this section, we perform extensive simulations to 
investigate the expected number of terminals a 3G network 
can support in the face of actual IP traffic for both round robin 
and priority queue algorithms, and also present simulation 
results of different traffic models to highlight their 
performance by given a range of available public IPv4 
addresses available to an operator. 
 
A.. Simulation Model and Results 
 

We have made a simulation study to investigate the call 
blocking probability of the two algorithms in large scale 
scenarios to determine their comparative performance as well 
as obtaining a good indication of the RPX scalability in real 
life cellular network scenarios. We have used the simulation 
model shown in Fig. 9. 
 

BP

SN

N

 
Fig. 9. Simulation model. 

 
In Fig. 9, the number of new mobile terminals is N, the 

number of existing mobile terminals in the system is NS and 
the call blocking probability is PB. In our simulations we have 
constructed three different traffic scenarios and investigated 
the scalability of both the round robin and priority queue 
algorithms. 
 
A.1 Input Parameters 
 

We have made a number of assumptions and based our 
simulation parameters on previous work [20] as follows. 
Assume a very large population of N mobile nodes in the 

system and a number of nodes SN  that the system can 

accommodate with the condition 1≤NS≤N. The new call rate is 
uniformly distributed over the mobile service area and the 
average call rate in the simulation is independent from the 
number of calls in progress and the number of new calls after a 
socket is closed. 

The call blocking probability will depend on the 
constitution of the traffic in terms of the channel holding 
times. Therefore, in our simulations, we used three traffic 
models, voice traffic, web traffic and long-lived connections in 
which the node keeps the socket open for one hour. We 
simulated three different scenarios with different traffic 
compositions as follows: 

• In the first scenario, we generated 10% voice traffic, 
80% web traffic with 4 sockets per session and 10% 
long-lived connections. 

• In the second scenario, we generated 10% voice traffic, 
80% web traffic with 1 socket per session and 10% 
long-lived connections. 

• In the third scenario, we generated 30% voice traffic, 
50% web traffic with 1 socket per session and 20% 
long-lived connections. 

We used the following parameters for our simulations: 
• The nodes randomly generated traffic proportional to 

the three cases above. 
• The time to open a socket was 1 second according to 

[20]. 
• The average socket holding time in a mobile node in 

the three different categories were: voice call 1 minute, 
web browser 17 seconds according to [11] and long-
lived connections 1 hour. 

• The average waiting time before a mobile terminal 
would make a new call after closing a socket was: voice 
call 1 hour, web browser 10 minutes and long-lived 
connection 3 hours. 

• The pool of public IPv4 addresses was set to 5 and the 
number of ports was 1000 per IPv4 address. 

 
A.2 Simulation Results 
 

Using the above input parameters, the simulations were 
conducted to compare the performance of the round robin 
algorithm and the priority queue algorithm with respect to the 
number of terminals the system could support (NS) before the 
first blocking occurred and also until the call blocking 
probability (PB) reached 1%, 2% and 3%. 

Fig. 10 and Fig. 11 illustrate the number of mobile 
terminals (NS) versus the total number of combinations of IPv4 
addresses and port numbers (the product of the number of 
IPv4 addresses and the number of ports per IPv4 address) 
from the different scenarios above. The figures show the 
number of terminals in the system that RPX can support and 
the number of successful addressing assignments before the 
first call block took place using both round robin and priority 
queue algorithms. 
 

 
Fig. 10. Number of terminals in the system using round robin 

algorithm, when the first call blocking occurs. 
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Fig. 11. Number of terminals in the system using priority queue 

algorithm, when the first call blocking occurs. 
 

The following conclusions can be made regarding the two 
algorithms. Firstly, the round robin algorithm implements a 
weaker balancing strategy, which results in a smaller number 
of assigned combinations of IPv4 addresses and port numbers 
before call blocking is experienced. Secondly, we can deduce 
that the round robin algorithm can support a smaller number 
of mobile terminals (NS) than the priority queue algorithm, 
which is intuitive since the priority queue algorithm performs 
better in terms of call blocking probability. 

Fig. 12 and Fig. 13 show the distribution of allocated ports 
for each IPv4 address in a pool when the first call blocking 
occurs. The figures clearly illustrate how the priority queue 
algorithm distributes the load between addresses better than 
the round robin algorithm thereby achieving a better address 
utilization. 
 

 
Fig. 12. Number of ports in use for each public IPv4 address using 

round robin algorithm. 
 

 
Fig. 13. Number of ports in use for each public IPv4 address using 

priority queue algorithm. 

Fig. 14 shows the number of mobile terminals (NS) that 
could be supported by the system while the call blocking 
probability (PB) was increased from 0% to 3%. The figure 
illustrates the performance of both the priority queue and 
round robin algorithms in terms of call blocking probability 
from the different scenarios above. The results show that the 
priority queue algorithm still outperforms the round robin 
algorithm. 
 

 
Fig. 14. Number of terminals in the system for both round robin and 
priority queue algorithms, when the call blocking reaches 1%, 2% 

and 3%. 
 

Fig. 15 shows the number of mobile terminals (NS) that the 
system can support as a function of the fraction of long-lived 
nodes using the two algorithms. The parameters used were 
derived from scenario 2 where the number of voice call nodes 
was kept at a constant 10% and the number of web traffic 
terminals and long-lived terminals were changed. The results 
illustrate the relative performance of the two algorithms over a 
broad range of traffic compositions. From the graph we can 
see that even though the priority queue algorithm is constantly 
better performing than the round robin algorithm, it too will be 
affected by the traffic composition. 
 

 
Fig. 15. Number of terminals in the system for both round robin and 
priority queue algorithms, when the long-lived nodes are increased. 

 
We also carried out a simulation study to verify that the 

behavior with a small number of IPv4 addresses that was 
indeed preserved within the context of a real cellular network. 
We therefore carried out a simulation with 10 million 
terminals using 1000 IPv4 addresses in the RPX address pool 
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and investigated the distribution of occupied ports over the 
IPv4 addresses. The results using the above mentioned 
scenarios can be seen in Fig. 16 and 17 for the round robin 
and the priority queue algorithms respectively. The figures 
reveal that the behavior is indeed similar and that the round 
robin scheme is somewhat more unbalanced than the priority 
queue scheme as in the previous results. It is also worth noting 
that given these traffic scenarios, we can derive an indication 
of the scalability of RPX and verify that it comes very close to 
the theoretical best behavior since the priority queue scheme 
performs very well in terms of load balancing. 
 

 
Fig. 16. Number of ports used for each IPv4 address using round 

robin algorithm, when there are 10 million terminals in the system. 
 

 
Fig. 17: Number of ports used for each IPv4 address using priority 
queue algorithm, when there are 10 million terminals in the system. 

 
In addition, in these scenarios, the network utilizes only 

3.5% or less of its theoretical lower bound capacity (all 
sockets opened to the same process in the public realm) which 
leads to the observation that 3G deployment with RPX would 
not be limited by a lack of IPv4 addresses. 
 
B. A Comparison Performance of Two Algorithms 
 

The selection of algorithm for assigning an address and port 
combination is not only dependent on maximum scalability. In 
our previous experiments, we have found that the main 
contribution to system delay comes from searches to assign 
and delete address mappings in the RPX gateway. Therefore, 

it is imperative that the complexity of the two algorithms is 
taken into account as well. 

There are two cases when a mobile terminal requests to be 
assigned an address and port combination for a 
communication end-point. 
I) The terminal has no previous assignments. We define 

this type of terminal as a new terminal to the RPX Server 
(RS). Therefore, this terminal accepts any IPv4 address 
allocated from the RS. 

II) The terminal has a previous open communication 
channel and thus it has already been assigned a public 
IPv4 address. We define this type of terminal as an in-
use terminal to the RS. Therefore, for such a terminal, 
the RS needs to search the corresponding IPv4 address 
and assign a new port from the pool belonging to this 
IPv4 address. 

In the following section, we analyse the complexities of the 
two algorithms in the average and worst case using Big-O 
notation. The assumption is that the address and port 
allocation process has been performed for considerable time 
so that there are no unused IPv4 addresses in the system and 
that the client may request more than one port. In the 
following analysis, n  represents the size of the IPv4 address 
pool and m represents the size of the port pool for each IPv4 
address. 

The difference between the priority queue algorithm and 
round robin algorithm is the key used when searching for the 
IPv4 address to use for the requesting terminal. The priority 
queue searches for the IPv4 address in the address pool that 
has the minimum number of used ports. The round robin 
algorithm searches for the next IPv4 address that has sufficient 
number of free ports to allocate to the requesting terminal. 

Priority queue: Min {key (the number of ports allocated in 
each IP address)} 

Round robin: Array {key (next IP address which has 
sufficient available ports)} 

This leads to the following complexity analysis for both 
round robin and priority queue algorithms: 
 
B.1 Priority Queue Algorithm 
 
B.1.1 An operation of RPX to assign an address/port to a 
mobile terminal 

In case I, the requesting terminal is a new terminal. The root 
of the priority queue is the IPv4 address that has the minimum 
number of allocated ports (m). Thus, we can simply assign an 
available port along with the IPv4 address at the root to the 
mobile terminal and then reorder the priority queue since the 
first terminal in the priority queue has the minimum number of 
ports in use. It is well known that the complexity of reordering 
one terminal in a priority queue is O(log n) [19]. Then the 
complexity becomes O(m + log n). 

In case II, for a mobile terminal that has previously been 
configured with a public IPv4 address. The IPv4 address of 
the mobile terminal is used as the index for searching an array. 
Therefore, the server only searches for an available port and 
then updates the priority queue. Therefore, the complexity 
becomes O(m + log n) as the same as case I 
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B.1.2 An operation of RPX to delete assigned address/port 
from a mobile terminal 

There are also two scenarios for a mobile terminal releasing 
assigned address and port combinations. In the first scenario, a 
mobile terminal releases one or more assigned ports but 
maintains some open connections. In the second scenario, the 
mobile terminal releases all assigned ports and the assigned 
IPv4 address. The priority queue algorithm has the same 
complexity in both cases since the operation is a simple queue 
update and the complexity becomes O(log n). 
 
B.1.3 An operation of RPX to detect blocking 

When blocking occurs, there are also two possible cases 
since blocking occurs only in the request scenario. For a new 
terminal, there is a constant time required since the root of the 
priority queue immediately reports the maximum number of 
ports that is available in the pool. For the in-use terminal, 
since its IPv4 address is the index of the address array, there is 
no searching operation required. Since the priority of the 
corresponding IPv4 address indicates the number of ports 
used, this can be used to detect blocking. 

In addition, in the priority queue algorithm there is always 
an update operation after an IPv4 address and port has been 
allocated or released which has the complexity of O(log n). In 
our implementations, the server also performs the update after 
the IP address or ports are allocated to the requesting node. 
Therefore, the requesting terminal is able to establish the 
communication at the same time as the server updates the 
priority queue. Thus, the total waiting time for the requesting 
node is reduced by O(log n). 
 
B.2 Round Robin Algorithm 
 
B.2.1 An operation of RPX to assign an address/port to a 
mobile terminal 

The operations when using the Round Robin algorithm are 
more complex than those of the priority queue algorithm. In 
case I, for an un-configured mobile terminal, the RPX gateway 
initially searches for an IPv4 address which has sufficient 
number of available ports for the request. This operation is of 
complexity O(n). The gateway then searches the port range for 
available ports which has complexity O(m). The 
implementations use a variable for each IPv4 address that 
indicates the number of ports that are used. Thus, the 
complexity for the round robin algorithm in this case becomes 
O(n + m). 

In case II, for an previously configured terminal, the 
operation becomes the same as the case above, since the 
server still terminals to find the correct IPv4 address entry in 
the table and then searches for the available port number. 
Therefore, the complexity becomes O(n + m) as the same as 
case I. 
 
B.2.2 An operation of RPX to delete assigned address/port 
from a mobile terminal 

For a mobile terminal releasing assigned address and port 
combinations, the operation follows the same rules above. 

Therefore, the release procedure is also O(n + m) of 
complexity. 
 
B.2.3 An operation of RPX to detect blocking 

When blocking occurs, as mentioned before, there are two 
cases, one is for a new terminal and another is for a previously 
configured terminal. For a new terminal, a search is required 
since the server does not have a global view of the status of 
the system. Thus, the server needs to search each IPv4 address 
to determine the available ports. Therefore, the operation of 
blocking detection is O(n). 
 
B.3 Discussion: performance of the two algorithms 
 

From the simulation results and the complexity analysis of 
the two algorithms we can draw the following conclusions 
regarding the two algorithms for address and port assignments 
in RPX and therefore conclude that the priority queue is 
evidently a better choice for providing this function: 

Firstly, the RPX server has a global view of the system and 
the root of the priority queue is always the IPv4 address that 
has the minimum number of used ports. Secondly, it provides 
a lower call blocking probability and therefore a better address 
utilization when addresses are scarce. Thirdly, the balancing 
between IPv4 addresses in terms of port utilization is better 
which leads to a much more predictable behavior from the 
system and also better confidence in the call blocking behavior 
for individual terminals. Fourthly, the complexity using the 
priority queue is lower than that of round robin both for 
assignment for the new terminals and the blocking detection. 
Thus, the load on the gateway is lower which increases the 
scalability of the gateway. 

Therefore, the comparison of the the complexities for both 
Round Robin and Priority Queue algorithms in terms of an 
operation of searching to assign/delete an address and port 
numbers combination and the blocking detection is shown as 
Table I. 
 

TABLE I 
A COMPARISON OF THE COMPLEXITIES OF THE TWO ALGORITHMS. 

 
An operation of RPX Round Robin 

Algorithm 
Priority Queue 

Algorithm 
A New Node O(m+n) O(m+log n) 
A Configured Node O(m+n) O(m+log n) 
Delete assigned IPv4 
addresss and port 

O(m+n) O(log n) 

IPv4 address and port 
blocking detection 

O(n) O(1) 

 

From Table I, a new node means that a terminal has no 
previous assignments for both a public IPv4 address and port. 
A configured node means that a terminal has already been 
assigned a public IPv4 address. In addition, n is the size of the 
public IPv4 address pool while m is the size of the port pool 
for each public IPv4 address. 

In this section, the results from our simulations allow us to 
conclude regarding for these reasons and their mapping to the 
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three main criteria namely, scalability, minimum call blocking 
probability and cost, the priority queue algorithm is 
preferable. 
 

V. CONCLUSION 
 

One of the main threats to successfully deploying 3G 
services and other new services is the limitation of available 
IPv4 addresses. Previous work has shown that IPv6 will not 
overcome this problem in the short to medium term and 
effective translation mechanisms are therefore necessary at 
least until IPv6 is mature enough to overtake IPv4. In previous 
work, REBEKAH-IP with port extension (RPX) was proposed 
as a candidate solution to this end. However, the scalability of 
RPX will depend on a set of number of publicly available 

IPv4 addresses ( IPN ) to the DNS. In this paper, we have 

presented a mathematical model that an operator can use to 
determine the expected IPv4 address utilization of an RPX 
system. In addition, we proposed a negotiation method to 
manage the balancing of address allocations between several 
sub-networks in a system. 

Furthermore, we have studied the performance of the round 
robin algorithm for assigning addresses and ports from the 
original proposal and found that it is not optimal. Next, we 
have proposed to use a priority queue algorithm and have 
shown that this algorithm is more suitable in that it has lower 
complexity, better predictability and exhibits better address 
utilization and lower call blocking probability than the round 
robin algorithm. In addition, our simulations give a good 
indication on the actual scalability RPX can achieve given an 
address and port range coupled with different traffic 
compositions. 
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