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In this study, a robust neuro-adaptive controller for cable-driven parallel robots is proposed. The robust neuro-
adaptive control system is comprised of a computation controller and a robust controller. The computation controller
containing a neural-network-estimator with radial basis function activator is the principal controller and the robust
controller is designed to achieve tracking performance. An on-line tuning method is derived to tune the parameters
of the neural network for estimating the controlled system dynamic function. To investigate the effectiveness of
the robust adaptive control, the design methodology is applied to control a cable-driven parallel robot. Simulation
results demonstrate that the proposed robust adaptive control system can achieve favorable tracking performances
for the robot.
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Dizajn robusnog neuro-adaptivnog regulatora za žično pogonjene paralelne robote. U ovome redu pred-
stavljen je neuro-adaptivni regulator za žično pogonjene paralelne robote. Robusni neuro-adaptivni regulator sastoji
se od regulatora zasnovanog na estimiranom modelu i robusnog regulatora. Prvi regulator sadrži estimator s neuron-
skom mrežom s radijalnom aktivacijskom funkcijom glavni je regulator u sustavu, a robusni je regulator dizajniran
za slijed̄enje. Izvedena je on-line metoda podešavanja parametara neuronske mreže za estimaciju dinamike sustava
upravljanja. Efikasnost sustava adaptivnog, robusnog regulatora testirana je na na žično pogonjenom paralelnom
robotu. Simulacijski rezultati pokazuju da se predloženim robusnim i adaptivnim regulatorom mogu dobiti zadovo-
ljavajuće performanse prilikom slijed̄enja.

Ključne riječi: robusno upravljanje, adaptivni upravljački zakon, neuronska mreža, žično pogonjeni paralelni ro-
bot

1 INTRODUCTION
In the recent decades, robots have been utilized in vast

area of industries. However, many parts of manufactu-
ring and engineering does not put upon robots, mainly due
to the weakness of conventional robots [1] [2]. For ins-
tance, in many applications workspace requirements and
load carrying capacity are so much higher than what the
conventional robots can provide while cost of the robot
should be considered [3] [4]. Toward resolving the lat-
ter issue, new class of parallel robots were introduced [5].
Cable-Driven Parallel Robots (CDPR) are structurally si-
milar to parallel actuated robots but with the fundamental
difference that cables can only pull the End-Effector (EE)
but not push it. Figure 1 represents schematically a CDPR
in a general arrangement. It consists of motor, winch sys-
tem and the EE. From a scientific stand point, feedback
control of CDPR is lot more challenging than their coun-
terpart parallel-actuated robots due to the cables behavior.
Several efforts had been exerted on modeling and control

of CDPR for real-time purposes [6, 7]. For all kinetostatic
model proposed for CDPR, there should be a static balan-
cing between external forces and tension of the cables [8].
With assumption of no mass and no elongation for cables,
most of the common control strategies used for conventi-
onal robots could be adapted for CDPRs. In case of cla-
ssic controller, PD controller is applied in [9] and the re-
sults present acceptable performance over desired task. As
modern control approaches, inverse control of cable-driven
parallel mechanism using ANFIS is the main contribution
in [10]. Nonlinear Sliding Mode Controller (SMC) and fe-
asible workspace analysis for a cable suspended robot with
input constraints is presented in [11].
All the above efforts for deriving kinematic and dynamic
equations tend to present a simple model of CDPR that
could works in an online manner with common control ap-
proaches while precision is not devastated [12, 13]. Many
researches illustrates effectiveness of the precise modeling
of the robot in the controlling procedure [14, 15], howe-
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Slika 1. Schematic representation of a CDPR with m ca-
bles.

ver controller capabilities may affect the tracking perfor-
mance [16, 17]. The main contribution of this paper, com-
pared to similar researches toward controlling of CDPR
is taking benefits of Robust Neuro-Adaptive Controller
(RNAC). The latter method allows the design of considera-
bly more precise, energy-efficient and compliant controls
for robots. It allows one to obtain a linear closed-loop equ-
ation in terms of the state variables [18, 19]. This fact has
no precedent in the study of the controllers. On the ot-
her hand, RNAC is characterized for being a dynamic con-
troller, that is, its complete control law includes additional
state variables. Moreover, as another contribution radial
basis function as an activator function is used in the struc-
ture of the neural network part of the adaptive law.
The organization of this paper is as follows. Section II
describes the kinematic, static and dynamic equations of
CDPR. The general forms of these equations are derived
for any structure of the CDPR. Section III and IV outline
a method for control based on RNAC which contains of
obtaining the control rule. Finally, the paper concludes by
presenting the simulation results and some hints for ongo-
ing works.

2 CABLE-DRIVEN PARALLEL ROBOTS MODEL

This section outlines the kinematic, static and dynamic
of the CDPR in general arrangement. The presented model
is based on [20].

2.1 Kinematic Equations

Figure 2 illustrates schematically a 6-DOF spatial
CDPR. In the latter figure, Ai denotes the attachment point
of each cable to the base and i = {1, · · · ,m} indicates the
number of cable. The parameter Bi stands for the attach-
ment point to the EE, eventually ai and bi are a constant
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Slika 2. kinematic modeling of a CDPR with m cables.

vectors in OG and OE coordinates respectively. Note that
OG is the global coordinate and OE is the attached coordi-
nates on the EE. Referring to Fig. 2, the following equation
is derived [20]:

c = ai + li−bi (1)

Equation (1) could be written in the OG coordinates as fol-
lows:

c = ai + li−R×bi (2)

which could be rearranged in the following form:

li = c−ai +R×bi (3)

where R is the transformation matrix from OE to OG
which could be written as follows:

R =




cψ cφ cψ s1sψ − cθ sψ cθ cψ sφ + sθ sψ
cψ sψ cθ cψ + sθ sφ sψ −cψ sθ + cθ sφ sψ
−sφ cφ sθ cφ cθ


 (4)

In Eq. (4), c stands for cos(·) and s indicates sin(·). Also
θ , φ and ψ are angle of rotation around x, y and z axis
respectively. By taking the first derivative of Eq. (3) the
following equation is obtained:

li l̇i = [c−ai +bi]
T [ċ− ȧi + ḃi] (5)

Note that ωiωiωi is the rotational velocity of EE in the OE coor-
dinate. Obviously, by considering ȧi = 0 and ḃi =ωiωiωi×bi,
Eq. (5) could be rewritten in the following form:

li l̇i = [c−ai +bi]
T [ċ−ωiωiωiḃi] (6)
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Rearranging Eq. (6), one could derive the following:

l̇i = Si
Tċ+(bi×Si

T)ωiωiωi (7)

where Si is the unit vector along ith cable and could be
written in the following form:

Si =
c−ai +bi√

[c−ai +bi]T[c−ai +bi]
(8)

Therefor the kinematic equation for the robot has the fol-
lowing form:

L̇ = Jt (9)

where t = [ċ ωiωiωi]
T is the twist vector, L̇ = [l̇1 l̇2 · · · l̇n]

T is
the vector of cables displacement and Jacobian matrix, J,
is defined as follows:

J =




S1 Rb1×S1
S2 Rb2×S2
· ·

Sm Rbm×Sm


 (10)

It is worth noticing that J has dimension of (m×6) in gene-
ral form. With the above consideration in kinematic equ-
ation the next part investigates dynamic modeling of the
CDPR.

2.2 Static Equations

As aforementioned, cables tension in CDPR should be
always larger than a specific value. Moreover, it should not
overtake the maximum permissible value due to the cable
properties. The following inequality states the latter fact:

fmin ≤ fi ≤ fmax (11)

where fi is the tension force in each cable. For the sake of
static equilibrium, the sum of the tension forces exerted by
the cables on the EE should be equal to the external force.
It is assumed that there are no external forces which leads
to the following equation for equilibrium of the forces and
moments [21]:

Kf = 0 (12)

Based on Eq. (12) and Jacobian matrix derived in Eq. (10),
one could derive a cable tension constraint for remaining
larger than a specific value. There are fewer equations than
which admits and there are infinite many solutions for its
unknown parameters. Due to the latter fact, the following
equation is derived [21]:

f = (I4×4K†K)Z (13)

where I4×4 indicates the identity matrix, Z denotes an ar-
bitrary n-vector and K† is defined as follows:

K† = KT (KKT )
−1

(14)

Slika 3. Dynamic modeling of a CDPR with m cables.

Indeed, Eq. (14) defines a (4 × 3) under constrained
Moore-Penrose pseudo inverse of K. The latter is the ho-
mogeneous solution that maps Z to the null space of K. Ba-
sed on [21] and noticing that the spatial CDPR with eight
cables has one degree of redundancy, Eq. (12) could be re-
formed as follows:

f = an (15)

where n = [n1 n2 n3 n4]
T . In order to guarantee that there

is a solution with positive cable tension, it is necessary
and sufficient to show that all kernel vector components
(ni, i = {1,2,3,4}) have the same sign, i.e., for a given po-
int to lie within the statics workspace, all arrays of n should
be negative or positive simultaneously. If the latter condi-
tion is satisfied, withdrawing any particular solution, there
is an scalar a in Eq. (15) which guarantees that all cables
tension are positive by adding or subtracting enough ho-
mogeneous solution [20]. It could be concluded that the
entire allowable kinematic workspace is also static works-
pace [20]. Thereupon, CDPRs have non-singular works-
pace, i.e., all proper workspace definitions of CDPR have
one common condition which states that inside the boun-
daries of workspace there are no singular point [21] [22].
This property of CDPR is the result of the cable elastic
behavior. Each cable link could be regarded as prisma-
tic link with one major benefit. The values of tension in
each cable could vary while EE does not have any displa-
cement. However the same condition for prismatic (rigid)
link will results in permanent deformation. In what follows
the dynamic equations for CDPR are derived in order to be
used in the proposed controller.
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2.3 Dynamic Equations

In order to make sure that positive values of tension in
each cable are derived, one should solve the inverse dyna-
mic. Ignoring the mass of cables comparing to EE and
motor winch masses while suggesting rigid string, based
on Fig. 3, the dynamic equation of a CDPR could be regar-
ded as follows [21] [22]:

τττ1S1 +τττ2S2 + · · ·+τττnSn +m




0
0
−g


= m




ẍc
ÿc
z̈c


 (16)

Moreover, the angular momentum of the EE around its
mass center could be regarded as follows:

Hc = Icωωω (17)

where Ic denotes the EE moment of inertia around its mass
center. By taking the first derivative of Eq. (17) the fol-
lowing equation is derived:

Ḣc =
∂Hc

∂ t
+ω̇ωω×Hc = İcωωω + Icω̇ωω +ωωωIcωωω = Icω̇ωω +ωωωIcωωω

(18)
By using Eq. (17) and Euler equation, one could derive the
following equation:

Icω̇ωω +ωωωIcωωω =
n

∑
i=1

bi×Siτττ i (19)

Note that ωωω for the point c is defined as follows:



ω1
ω2
ω3


= P




θ̇
φ̇
ψ̇


 (20)

where ωωωc = [θ̇ φ̇ ψ̇] is the angular velocity of the mass
center in EE and P is defined as follows:

P =




cφ cψ −sψ 0
cφ sψ cψ 0
−sφ 0 1


 (21)

Therefor the angular acceleration could be resolved from
the following equation:




α1
α2
α3


= Ṗω̇ωωc +Pω̈ωωc (22)

where αi, i = {1,2,3} denotes the ith components of an-
gular acceleration. Using Eqs. (16) to (22), the following
dynamic equation for the CDPR is derived:

−JT
(q)τττ = M(q)q̈+C(q,q̇)q̇+M(q)G (23)

Slika 4. Parameters of the under study CDPR with eight
cables.

where G = [0 0 9.81 0 0 0]T is the gravity vector, q is the
vector of position, M(q) denoted the mass matrix and is
defined as follows [20] [22]:

M(q) =

[
mI3×3 03×3
03×3 PT IPP

]
(24)

where
IP = RIRT (25)

In addition, C(q,q̇) the so-called coriolis terms and centri-
fugal forces and J(q) denoted the Jacobian matrix of the
CDPR illustrated in Fig. 4, which compromise eight ca-
bles, are defined as follows:

C(q,q̇) =




0
0
0

pIṖq̇+ Ṗq̇× IṖq̇


 (26)

J(q) =
[

I3×3 03×3
03×3 P

]
(27)

The following equation represents the dynamic of the pul-
ley [22]:

Nzθ̈+Cθ̇ = τττ (28)

where Nz is the matrix of pulley inertia with respect to
z− axis, θ is angel of each pulley and C is rotational vis-
cous damping matrix which are defined due to the charac-
teristics of the motor and system of winch and could be
expressed as follows:

J =




J1 0 0 0
0 J2 0 0
0 0 J3 0
0 0 0 J4


 , C =




C1 0 0 0
0 C2 0 0
0 0 C3 0
0 0 0 C4




(29)
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Based on the kinematic, static and dynamic equations de-
rived here, the following part investigates the proposed
controller for the eight cables CDPR. Next part provides
the neural network estimator for the dynamic model with
Taylor linearization method.

3 RADIAL BASIS FUNCTION NEURAL
NETWORK

One of the promising estimators that could operates in
real-time simulations are neural network with radial basis
functions as the activation functions. They are highly accu-
rate estimator and they could simulate any model including
nonlinearities. A simple RBF neural network maps can be
written according to the following equation [25]:

y =
l

∑
k=1

wkΦk(|xi−mik| ,δik) (30)

where xi, i = 1,2, ..,n and y contain the input variables and
the output variable of the RBF neural network, respecti-
vely; wk represents the connective weight between the hid-
den layer and the output layer; Φk represents the firing we-
ight of the k-th neuron in the hidden layer; and mik and δik
are the center and width of the activation function, respec-
tively. The firing weight can be represented as:

Φk = e−netk (31)

where

netk =
n

∑
i=1

s2
ik[xi−mik]

2 (32)

in which sik = 1
/

δik is the inverse radius of the radial basis
function. Toward simplification, the vectors m and s col-
lecting all parameters of the hidden layer are defined as:

m = [m11 · · · mn1 m12 · · · mn2 · · · · · · m1l · · · mnl ]
T (33)

s = [s11 · · · sn1 s12 · · · sn2 · · · · · · s1l · · · snl ]
T . (34)

Then, the output of the RBF neural network can be repre-
sented in a vector form as follows [26] and [27]:

y(x,m,s,w) = wTΦ(x,m,s) (35)

where x = [x1 x2 ... xn]
T , w = [w1 w2 ... wl ]

T and Φ =
[Φ1 Φ2 ...Φl ]

T . It has been proven that there exists an
RBF approximator of Eq.(35) such that it can uniformly
approximate a nonlinear and even time-varying function
Θ . Using the universal approximation theorem [28], there
exists an optimal RBF approximator y∗ such that [29]:

Θ = y∗(x,m∗,s∗,w∗)+∆

= w∗T Φ∗(x,m∗,s∗)+∆ (36)

where ∆ denotes an approximation error, w∗ and Φ∗ are
the optimal parameter vectors of w and Φ, respectively,
and m∗ and s∗ are the optimal parameter vectors of m and
s, respectively. The optimal weighting vectors w∗, m∗ and
s∗ which are needed to best approximate a given nonlinear
function Θ are difficult to determine. An estimated RBF
approximator is defined as the following form [29]:

ŷ = ŵT Φ̂(x,m̂, ŝ) (37)

where ŵ and Φ̂ are the estimated vectors of w∗ and Φ∗,
respectively, and m̂ and ŝ are the estimated vectors of m∗
and s∗, respectively. The estimated error ỹ is defined as:

ỹ =Θ − ŷ = y∗− ŷ+∆

= w̃T Φ̂+ ŵT Φ̃+ w̃T Φ̃+∆ (38)

where w̃ = w∗ − ŵ and Φ̃ = Φ∗ − Φ̂. In the following,
some tuning laws will be developed to on-line tune the pa-
rameters of the RBF approximator to achieve favorable es-
timation. The Taylor expansion linearization technique is
employed to transform the nonlinear function into a parti-
ally linear form [27]:

Φ̃=




Φ̃1
Φ̃2
...

Φ̃l


=




∂Φ1
∂m

∂Φ2
∂m
...

∂Φl
∂m



|m=m̂m̃+




∂Φ1
∂ s

∂Φ2
∂ s
...

∂Φl
∂ s



|s=ŝs̃+H

(39)
or

Φ̃= AT m̃+BT s̃+H (40)

where m̃ = m∗ − m̂, s̃ = s∗ − ŝ, H is a vector of
higher-order terms, A =

[
∂Φ1
∂m

∂Φ2
∂m · · ·

∂Φl
∂m

]
|m=m̂, B =

[
∂Φ1
∂ s

∂Φ2
∂ s · · ·

∂Φl
∂ s

]
|s=ŝ,

∂Φk
∂m and ∂Φk

∂ s are defined as:

[
∂Φk

∂m

]T

=

[
0 · · ·0
(k−1)×l

∂Φk

∂m1k
· · · ∂Φk

∂mnk
0 · · ·0
(l−k)×l

]
(41)

[
∂Φk

∂ s

]T

=

[
0 · · ·0
(k−1)×l

∂Φk

∂ s1k
· · · ∂Φk

∂ snk
0 · · ·0
(l−k)×l

]
. (42)

Substituting Eq. (40) into Eq. (38), leads to:

ỹ = w̃T Φ̂+ ŵT (AT m̃+BT s̃+H)+ w̃T Φ̃+∆

= w̃T Φ̂+ m̃T Aŵ+ s̃T Bŵ+ε (43)

where ŵT AT m̃ = m̃T Aŵ and ŵT BT s̃ = s̃T Bŵ , the sum of
matching error ε ≡ ŵT H+ w̃T Φ̃+∆. According to what
was brought, in the early stages of the robot motion the ob-
tained inaccurate model in Eq. (23) was used. The proce-
dure of approximating the exact model by neural network
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Slika 5. Block diagram for the proposed robust adaptive
controller.

with RBF and its implementation is shown briefly in Algo-
rithm 1, based on the input and output of ADAMAS MSC.
The first line of the algorithm initials the formation of the
neural network parameters according to Eqs. (30) to (33).
Then, in the second line, the network weights in the range
of one to minus one are defined. According to Taylor esti-
mation method, the optimal values of the parameters of ne-
ural network based on the output of neural network training
and model error is calculated. After that from the fifth to
the last lines, the final neural network model is achieved
based on the optimal error. Finally, the new model repla-
ces with the model obtained in Eq. (23). It is worth noti-
cing that this transmission should occur in an appropriate
time with a change rate. This mainly depends on adaptive
laws, rate of learning for the RBF and optimal coefficients
of the designed neural network. The effectiveness of the
adaptive control is to respond to changes in the system and
modeling errors. The difference between adaptive control
and robust control is the in the adaptive controller there is
no need of knowing the range of the parameter or the er-
rors. In other words, robust control leads to system stabi-
lity in a certain range without having to change the rules of
control, but with adaptive control method can be adapted
to changing circumstances control rules so that the system
remains stable. Adaptive controllers are divided into two
categories, Direct and indirect methods. Nowadays, most
of the articles like this article focuses on the direct adap-
tive control. Adaptive laws are experimentally determined
according to the model of the robot. Usually, the exact mo-
del is obtained after five stages of identification based on
inputs and outputs of the model. In the next section, robust
adaptive control law is determined.

4 ROBUST ADAPTIVE CONTROL

Modern control theory is based on analysis of the dif-
ferential equations in different systems. However, the sta-
bility of this type of system is sensitive to errors caused by

Algorithm 1 Procedure of obtaining exact model using
RBF neural network.
Input: Φk, k, mik , δik and ,error
Output: Exact model

1. Initialize weight to small random values [−1,1]
2. Findŵ and Φ̂ using Taylor approximation.
3. while error> desired error
4. For each epoch (e)
5. For each input vector/pattern (p)
6. Calculate obtain (y) using Eq. (35)
7. Calculate weigths using Eq. (41)
8. Calculate optimal parameters of the network
9. Update network parameters using Eqs. (42) to

(44).
10. Update model based on RBF mik and k
11. End For
12. End For
13. End while

the diffrences between the real system and its model. To
solve the latter problem robust controller is used in most of
the cases. In this type of controller, errors are considered
from the beginning of the control procedure. Errors may
occur and if they are in the expected range the system will
remains in stable margins. Thus, the controller can handle
the uncertainty in the model. This uncertainty can exist in
both model and the measured values. This section outlines
the robust adaptive controller law. The control problem can
be equivalent to find a control law in such a way that the
output φ can track the command trajectory, φm, where the
tracking error vector is defined as [30]:

e = [ e(t) ė (t)]T = [ φm−φ φ̇m− φ̇ ]T (44)

Toward representing some insights into the control proce-
dure, the block diagram of the controller is illustrated in
Fig. 5. Assume that the parameters of the under study
CDPR in Eq. (44) are well defined, thus there exits an ideal
controller as [31]:

uid =− f (φ , φ̇)+ φ̈m + k2ė+ k1e (45)

Substituting Eq. (45) into Eq. (44), gives the following
[31]:

ë+ k2ė+ k1e = 0 (46)

If k1 and k2 are chosen to correspond to the coefficients of
a Hurwitz polynomial, it implies that lim

t→∞
e(t) = 0. Howe-

ver, the system dynamic function f (φ , φ̇) in Eq. (45) is a
nonlinear time-varying function and it cannot be exactly
obtained, thus uid cannot be implemented. An RBF ap-
proximator will be used to observe the unknown system
dynamic function f (φ , φ̇). By the universal approximation
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theorem, there exists an optimal RBF neural network such
that [28]:

f (φ ,φ) = f ∗(`∗, t)+ ε (47)

where θ∗ = [w∗ m∗ s∗]T is the optimal weight vector of
the RBF neural network and ε denotes the approximation
error. However, the optimal weight vector is difficult to
determine. Define the weight estimated error vector ˜̀ as:

θ̃ = θ∗− θ̂ (48)

where θ̂ = [ŵ m̂ ŝ ]T is the estimated vector of the optimal
vector θ∗. While ε appears, the following H∞ tracking
performance is requested [32]:
∫ T

0
eT Qedt ≤ eT (0)Pe(0)+

1
κ
θ̃T (0)θ̃(0)+ρ2

∫ T

0
ε2dt

(49)
where T ∈ [0,∞] and ε ∈ L2[0,T ]. The Q =QT and P= PT

are given positive weighting matrices, κ is a design gain,
and ρ is a prescribed attenuation level. If the system starts
with initial conditions e(0) = 0 and θ̃(0) = 0, then the H∞

performance in Eq. (49) can be rewritten as [33, 34]:

sup
ε∈L2[0,T ]

∫ T
0 eT Qe dt
∫ T

0 ”2 dt
≤ ρ (50)

where the L2-gain from ε to the tracking error e should
be equal or less than ρ . In order to achieving a favorable
tracking performance and an arbitrarily small attenuation
level simultaneously, a block diagram for robust adaptive
controller is shown in Fig. 5.

uRF = uCP +uR (51)

in which the computation controller is chosen as [35]:

uCP =− f̂NN + φ̈m + k2ė+ k1e (52)

with the dynamic approximator chosen as [36]:

f̂NN(e,m̂, ŝ, ŵ) = ŵT Φ̂(e,m̂, ŝ). (53)

The estimated vectors ŵ, m̂ and ŝ are the optimal vectors of
w∗, m∗ and s∗, respectively. By substituting Eq. (51) into
Eq. (44) and using Eq. (45), the tracking error dynamic
equation can be obtained as follows [33]:

ė = Ame−Bm( f − f̂NN +uR) (54)

where Am =

[
0 1
−k1 −k2

]
, and Bm =

[
0 1

]T . Using

Eq. (43), Eq. (54) can be rewritten as:

ė = Ame−Bm(w̃T Φ̂+ m̃T Aŵ+ s̃T Bŵ+ε+uR) (55)

Consider the proposed motion equations which are repre-
sented by Eq. (23) and (43). If the robust adaptive fuzzy

control system is designed as Eq. (51), in which the adapta-
tion laws of the system dynamic function approximator are
designed as in Eq. (56) and Eq. (58), and the robust con-
troller is designed as in Eq. (59). Henceforth, the stability
of the system can be guaranteed [32]. The latter statement
could be regarded as follows:

ŵ =− ˙̃w =−η1eT PBmΦ̂ (56)

m̂ =− ˙̃m =−η2eT PBmAŵ (57)

ŝ =−˙̃s =−η3eT PBmBŵ (58)

uR =
1
κ

BT
mPe (59)

where η1, η2 and η3 are the learning rates with positive
constants, κ is a positive weighting factor, and positive
matrix P = PT is the solution of the following Riccati-like
equation:

PAm +AT
mP+Q− 2

κ
PBmBT

mP+
1

ρ2 PBmBT
mP = 0 (60)

if and only if 2
κ − 1

ρ2 ≥ 0 or 2ρ2≥ κ [35-37]. Therefore, for
a prescribed ρ in H∞ tracking control, in order to guaran-
tee the solvability of H∞ tracking performance, the weight
κ on control law uR of Eq. (59) should satisfy the above
inequality. Then, the H∞ tracking performance in Eq. (49)
can be achieved for a prescribed attenuation level ρ . Afo-
rementioned, the robust neuro-adaptive controller includes
three different controlling efforts. These include the efforts
to create stability by Lyapunov criterion, zero error and ap-
proximation of the system uncertainties. Robust controller
approximate the uncertainties of the model while they are
also decreased using RBF estimator. The robust adaptive
controller design procedure is shown in algorithm 2 in ge-
neral. In the first line, constants of neural network and
robust controller are determined. Next, in the second line,
the desired signal and its derivative are obtained. The third
line consist of computing the new models based on the in-
put and output of the model. Based on defined error control
process begins. In lines 5 to 8, if five steps of identifying
new model is past, the new model will be used to imple-
ment the controller; otherwise, the previous model is used.
In the ninth line, the error vector of the identification is
determined and based on this vector; future estimation for
more accurate model is obtained. In the line ten, error of
the controller signal is determined based Herwitz equation.
The thirteenth line determines the controller output errors.
The P matrix is determined for the next step. This pro-
cedure continues until achievement of the desired control.
The parameters bi for the dynamic coefficients in Eq. (44)
are given in [32]. Solving the Riccati-like equation repre-
sented in Eq. (60) with ρ2 = κ , one has:

Q =

[
−1 0
0 −1

]
(61)
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Algorithm 2 The designed robust adaptive controller
Input: ε (desirederror), s, η1, η2, η3 and ρ
Output: Control signal f or tracking desired path

1. Take Input signal (φm, φ̇m).
2. Find f̂NN using RBF (New model ) by η1, η2, η3
3. while error> ε
4. If s < 5
5. Use the old model, s = s+1
6. Else Use the New model f̂NN
7. End If
8. Define θ error of the weight vector of RBF Eq. 41
9. Define model based on RBF mik and k

10. Define signal errors with Hurwitz Eqs. (45) and (51).
11. Define performance using ε and ρ with Eq. (52).
12. Define Obtain uRF ,uCP and with Eqs. (53) and (54).
13. Compute errors with Eq. (55) to (60)
14. Calculate P for the next input.
15. End while

and

P =

[
1.8 0.8
0.8 0.8

]
(62)

It should be emphasized that the derivation of controller
equations does not need to use the dynamic parameters and
the structure of the dynamic functions. The system para-
meters are used only for simulations. In order to inves-
tigate the effectiveness of the developed control system,
initial conditions are simulated. The RBF neural network
with seven neurons in hidden layer is utilized to approach
the under study two-CDPR dynamics. The learning rates
are selected as:

k1 = 0.6, k2 = 1.6, η1 = η2 = η3 = 20 (63)

In order to attenuate to a small level via H∞ tracking design
technique, the simulation results of the controller with κ =
0.1 are derived.

5 SIMULATION RESULTS

In this section, the proposed controller is implemen-
ted on the obtained plant. Figures 6 to 11 represents the
operation of the robot in six degrees of freedom accordin-
gly, which shows acceptable performance. The trajectory
tracking for displacements are shown in Figs. 6, 7 and 8
in x, y and z directions accordingly. Moreover, Rotations
around x, y and z axises are illustrated in Figs. 9, 10 and
11 respectively. The associated cables tensions are shown
in Figs. 13. From these simulation results, it can be seen
that robust tracking with high performance can be achieved
without any knowledge of system dynamic functions. Mo-
reover, obtained model verifies the trend of effort values

Slika 6. Desired and operated path for displacement in
x-direction.

Slika 7. Desired and operated path for displacement in
y-direction.

obtained in Matlab and frequency response of the designed
controller in constrained motion are represented in Fig. 12
which reveals acceptable range.

6 CONCLUSIONS
This paper developed a robust adaptive control system

to attenuate the effects of the dynamic function approxima-
tion error on the tracking performance using H∞ tracking
technique. The robust adaptive control system is compri-
sed of a computation controller and a robust controller.
The computation controller including a neural-network-
estimator is used to the system dynamic function and the
robust controller is used to attenuate the effects of the ap-
proximation error. Furthermore, the proposed controller is
entirely independent on the physical specifications of the
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Slika 8. Step response for displacement in z-direction.

Slika 9. Step response for rotation around x-direction (θ ).

robot. In addition, the stability of the proposed controller
was verified. Simulation results have shown effectiveness
of this controller. Finally, the developed robust Neuro-
adaptive control system was applied to control a CDPR,
which demonstrates suitable performance. Ongoing works
includes implementation of the proposed controller for real
robot using vision procedure.
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