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This paper deals with force-reflecting control design for teleoperation of bilateral robots under unknown constant
time delay. The proposed impedance teleoperator control is based on integral sliding mode approaches, avoiding
undesirable chattering effect. With the aim of implementing the proposed controller and taking into account that
only position measurement is available, a Nonlinear Observer based on Super Twisting Algorithm is proposed
to estimate velocity and acceleration in the slave side of the teleoperation system. Furthermore, owing to the
finite-time convergence properties of the observer, the proposed control scheme guarantees robust tracking under
unknown constant time delay. Experimental results illustrate the effectiveness of the proposed scheme.
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Integralno upravljanje u kliznom režimu zasnovano na observeru za bilateralnu teleoperaciju s nepozna-
tim kašnjenjem. Ovaj rad bavi se upravljanjem zasnovanim na reflektiranju sile za teleoperaciju bilateralnih robota
s nepoznatnim konstantnim kašnjenjem. Predloženo upravljanje impedancijom zasnovano je na cjelovitom pristupu
kliznom režimu uz izbjegavanje efekta "chatteringa". S ciljem implementacije predloženog upravljanja i uzimajući
u obzir da je dostupno samo mjerenje pozicije, za estimaciju brzine i akceleracije na "slave" strani teleoperacijskog
sustava koristi se nelinearni observer zasnovan na "Super Twisting" algoritmu. Nadalje, zbog konačnog vremena
konvergencije observera, predloženo upravljanje garantira robusno praćenje uz nepoznato konstantno kašnjenje.
Eksperimentalni rezultati ilustriraju učinkovitost predloženog rješenja.

Ključne riječi: teleoperacija, upravljanje u kliznom režimu, observeri

Teleoperation system stability is mainly affected by
communication time delays [1], even if the dynamics of
the system are known and the states are available. In bi-
lateral teleoperation, five interconnected elements are dis-
tinguished: the human operator driving the master robot
in order to generate the position, velocity and force com-
mands; these commands are sent as desired references
through the communication channel to the slave robot, as
shown in Figure 1. On the other hand, when the slave robot
interacts with the environment, it reflects the contact force
through the master robot to the human operator, which re-
acts to generate next command. The fidelity of such force
displayed defines how human user perceives the interac-
tion.

The main purpose in teleoperation is to achieve trans-
parency, which is measured in terms of trajectory tracking
during free, holding stability under any operating condi-
tions and for any possible environment. Transparency has
been considered as a requirement for critical applications
(see [2, 3]). Furthermore, transparency is better assessed

in terms of the matching degree between the impedance
perceived by the operator and the environment impedance.

Several schemes have been proposed to deal with the
bilateral teleoperation problem under time delay intro-
duced by communication channels. In [4, 5], a scattering-
based approach PD-like, under the assumption that hu-
man operator force and the contact environment are de-
fined passives, position tracking is ensured. An adap-
tive scheme based on passivity is considered in [6], where
unknown parameters are estimated to guarantee position
tracking. On the other hand, a different approach considers
the impedance control in teleoperated systems [7]. Sliding
mode control techniques represent an interesting approach,
where robust tracking is achieved even under parametric
uncertainties (see [9,10]). In [11], sliding modes have been
proposed for teleoperation, including desired impedance
scheme with a linear observer. Velocity measurement im-
proves performance in teleoperation as the velocity of mas-
ter is considered as a reference for slave system. Moreover,
this characteristic aware the user in case of the slave devi-
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Fig. 1: A block diagram of bilateral teleoperation

ates from target.
Impedance control requires velocity and acceleration

measurements in order to implement a desired impedance
[8]. However, in order to avoid expensive and bulky sen-
sors which may add noise to the system, the use of ob-
servers represents an interesting solution. For example,
observer-based controls for a class of triangular nonlinear
systems are presented in [16, 17], wherein stabilization is
guaranteed despite the size of delay. Nonetheless, conver-
gence of the estimation errors of these observers is asymp-
totical. Super Twisting Observers represent an attractive
methodology [18,20,21], due to its robustness and further-
more its finite-time convergence property, the separation
principle is accomplished and thus controller and observer
can be designed separately.

Contribution. In this paper, an integral second order
sliding mode impedance control for the slave system is de-
signed to track position, velocity and contact force trajec-
tories of master system, subject to unknown constant time
delay in communication system. Moreover, in order to
implement the proposed controller, velocity and acceler-
ation are provided by means of a Super Twisting Observer,
which is robust in presence of unknown constant time de-
lays. Furthermore, the closed-loop system guarantees time
delay transparency. Experimental results illustrate the fea-
sibility and performance of the proposed scheme in pres-
ence of measurement noise, for different constant time de-
lays.

Paper structure. This paper is organized as follows:
In Section 2, the dynamical model of a bilateral teleoper-
ated system is introduced. Section 3 addresses the design
of a second order sliding mode impedance control for the
slave system to track the master trajectories. Moreover, a
Super Twisting Observer for estimating velocity and ac-
celeration of the slave system is designed in order to im-
plement the proposed controller, in Section 4. Experimen-
tal results for validating the proposed control scheme are
given in Section 5. Finally, conclusions of this work are
drawn.

1 DYNAMIC TELEOPERATION MODEL AND
THE CONTROL PROBLEM

Now, the mathematical models describing the dynam-
ical behavior of master and slave system are introduced.
With this aim, consider the dynamics of a master/slave sys-
tem modeled with the Euler-Lagrange formalism are given
by

Mm(qm)q̈m + Cm(qm, q̇m)q̇m + gm(qm) = τh + um,
(1)

Ms(qs)q̈s + Cs(qs, q̇s)q̇s + gs(qs) = us − τe, (2)

where qi, q̇i, q̈i ∈ Rn are the joint generalized positions,
velocities and acceleration vectors, respectively; Mi(qi) ∈
Rn×n stands for the inertia matrices; Ci(qi, q̇i) ∈ Rn×n
represent the Coriolis and centrifugal effects, arising from
the Christoffel symbols of the first kind; gi(qi) ∈ Rn de-
notes the gravity force; and ui ∈ Rn stands for the control
signals. Subscript i stands for either m or s denoting the
master or slave, respectively. Torques τh = J(qm)T fh and
τe = J(qs)

T fe, are smooth bounded torque inputs of the
human operator on the master side and the environmen-
tal contact in the slave side, respectively. These torques
arise as consequence of the human force fh applied at mas-
ter side and environmental force fe applied at slave side,
where J(·) is assumed a well-posed Jacobian.

Signals for each system are sent through the commu-
nication channel having a time delay, represented here by
the superscript-d, are given as follows, qds(t) := qm(t −
T1), q̇ds(t) := q̇m(t−T1), q̈ds(t) := q̈m(t−T1), fdh(t) :=
fh(t − T1) and fde(t) := fe(t − T2), where T1 > 0 and
T2 > 0 stand for bounded constant and unknown time de-
lays induced by the communication channel. These sig-
nals are scaled by constant factors or transformed to han-
dle kinematic and workspace dissimilarities. In this paper,
we assume without loss of generality that scaling factors
Kp,Kf are diagonal positive definite constant matrices for
position and force variables, respectively, and T1 = T2.

Notice that, the time delay is assumed to be unknown
and constant. Furthermore, position is available by mea-
surement. Then the control objective can be established.

Control Objective. To design an impedance control
law ui, i = m, s; such that the trajectories converge to de-
sired impedance manifold for the master and slave robot
systems. Furthermore, the desired position in the slave
robot is reached when no environmental force is presented.

2 IMPEDANCE CONTROL DESIGN

In this section, an impedance controller and a sliding
mode based impedance controller are designed for master
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and slave systems, respectively. These controllers are de-
signed based on position-force teleoperation.

The master robot operator typically involves a haptic
interface designed to display force and read precisely the
commanded position with high-end robots, whose dynam-
ical models and their nominal parameters are assumed to
be known. However, this is not the case for slave robots,
where an experimental or industrial robot is in place. In
order to establish a dynamic relationship between position
and force, impedance sliding surfaces for master and slave
robots are defined. With this aim, a torque controller for
master system and a passivity-based sliding mode control
for slave are designed.

2.1 Impedance control for master system

In order to expand the number of applications of robots,
besides controlling the motion, it is also necessary to con-
trol the forces of interaction between the manipulator and
the environment. A distinction between impedance con-
trol and conventional approaches to bilateral teleoperation
systems is that the impedance control attempts to imple-
ment a dynamical relation between robot variables such as
end-point position and force rather than just control these
variables.

Now, consider the following controller

um = Cm(qm, q̇m)q̇m + g(qm)− JT (qm)fh
+M∗m{JT (qm)∆fh − C̄mq̇m − K̄mqm},

(3)
where ∆fh = fh − fhd stands for the force tracking error
on master system, and fhd = Kf fde are the scaled desired
force for the user, M∗m = Mm(qm)M̄−1

m , and M̄m, C̄m,
K̄m > 0 are the desired inertia, damping, and stiffness,
respectively, of a desired impedance. We now have the
following result.

Proposition 2.1. Consider the master system (1) in
closed-loop with the control (3). Then, closed-loop tra-
jectories are all bounded, with exponential convergence of
the impedance master invariant manifold

Ih = M̄m(qm)q̈m+ C̄mq̇m+ K̄mqm−JT (qm)∆fh ≡ 0,
(4)

where feedback gains are properly chosen.
Proof. Substituting (3) into (1) we obtain the impedance
master invariant manifold (4), which can be rewritten as
follows

M̄(qm)q̈m + C̄mq̇m + K̄mqm = JT (qm)∆fh, (5)

having a linear time-invariant second order homogeneous
differential equation with forced input ∆fh. In free motion

case, ∆fh = 0 then (5) attains a unique global equilibrium
at (qm, q̇m) = (0, 0). On the other hand, in case of
contact, a torque proportional to a force fhd is displayed
on the master system (i.e. at the hand of the human user).
Notice that (5) attains to a Bounded Input-Bounded Output
(BIBO) stability for bounded input ∆fh ∈ L∞. Moreover,
(5) is obtained without measuring the time delay T1 > 0,
although under the assumption of Ṫ1 = 0. QED

Remark 1. Controller (3) imposes a desired impedance
dynamics in the master teleoperator by canceling the phys-
ical dynamic from the master system and replacing it by a
desired one, whose parameters are selected according to
the physical properties of the teleoperator master robot.
Furthermore, when M̄m = M̄m(qm) = Mm(qm), then
fh is no longer needed, implying that impedance is domi-
nated by the real inertial matrix of the slave, which may be
convenient in some tasks to increase the awareness of the
user.

2.2 Sliding mode based impedance controller for the
slave robot

2.2.1 Nominal parameters case

Using a similar rationale to design the master con-
troller, an integral second order sliding mode approach is
considered for the slave robot in order to drive a desired
impedance behavior modulated by the environmental con-
tact forces on the slave side. Furthermore, the proposed
controller must be robust in presence of unknown time de-
lay [11]. To this end, consider the desired slave impedance

M̄s
¨̃qs + C̄s ˙̃qs + K̄sq̃s = −JT (qs)fe, (6)

where M̄s, C̄s, K̄s > 0 are the desired inertia, damp-
ing, and stiffness for the slave robot, respectively; and
q̃s := qs −Kpqdm, ˙̃qs := q̇s −Kpq̇dm, ¨̃qs := q̈s −Kpq̈dm,
are the slave tracking errors for position, velocity and ac-
celeration, respectively. Thus, the controller must be able
to drive a closed-loop equilibrium at Ie = 0, from (6),

Ie = M̄s
¨̃qs + C̄s ˙̃qs + K̄sq̃s + JT (qs)fe. (7)

Now, with the purpose of reaching the invariant manifold
(7) in closed loop, consider the following controller

us = Ms(qs)KpM̄−1
m Ψ−Ms(qs)M̄−1

s Υ + gs(qs)
+Cs(qs, q̇s)q̇s + JT (qs)fe −KgΩ,

(8)
where

Ψ = −C̄mq̇dm − K̄mqdm − JT (qm)Kf fdde , (9)

Υ = C̄s ˙̃qs + K̄sq̃s + JT (qs)fe + Ki

∫ t
0
sign(Ie(τ))dτ,

(10)
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Ω =
∫ t

0
Ie(τ)dτ + Ki

∫ t
0

∫ σ
0
sign(Ie(τ))dτdσ, (11)

for Ki > 0 a diagonal matrix, fdde = fe(t − 2T1) the mea-
surement of the environmental force after two readings,
whatever the unknown time delay T1 is; Kg > 0, and
sign(·) is the discontinuous signum function.

Proposition 2.2. Consider the slave system (2) in
closed-loop with the control (8). Then, closed-loop trajec-
tories are all bounded, with exponential convergence to-
ward Ω = 0, thus an integral second order sliding mode
at Ie = 0, consequently there arises in finite-time the de-
sired impedance (7) as the unique global invariant equi-
librium manifold. Hence, under proper tuning of desired
impedance gains M̄s, C̄s, K̄s, impedance tracking is as-
sured.
Proof. Consider system (2) in closed-loop with (8), then it
follows that

Ms(qs)q̈s = −Ms(qs)KpM̄−1
m

{
C̄mq̇dm + JT (qm)Kf fdde

+K̄mqdm
}
−Ms(qs)M̄−1

s

{
C̄s ˙̃qs + K̄sq̃s

+Ki

∫ t
0
sign(Ie(τ))dτ + JT (qs)fe

}
−KgΩ.

(12)
By considering the equation (4) delayed, it follows that

M̄mq̈dm ≡ −C̄mq̇dm − K̄mqdm + JT (qm)∆fdh,

where ∆fdh = −Kf fdde . Taking into account the slave
tracking errors for position, velocity and acceleration:
q̃s := qs −Kpqdm, ˙̃qs := q̇s −Kpq̇dm, ¨̃qs := q̈s −Kpq̈dm;
and furthermore multiplying by M̄sM−1

s equation (12) can
be rewritten as

M̄s
¨̃qs + C̄s ˙̃qs + K̄sq̃s + JT (qs)fe

+Ki

∫ t
0
sign(Ie(τ))dτ + M̄sM−1

s KgΩ ≡ 0.
(13)

Moreover, from (7), equation (13) is expressed as

Ie + Ki

∫ t

0

sign(Ie(τ))dτ = −M̄sM−1
s KgΩ. (14)

Furthermore, by taking the time derivative of (11), from
equation (14) it follows that

Ω̇ = −M̄sM−1
s KgΩ. (15)

Now, let us define the following Lyapunov function

V1(Ω) = 1
2ΩTΩ. (16)

Then, its time derivative is given by

V̇1(Ω) = −ΩT Ω̇,

= −ΩT M̄sM−1
s KgΩ,

≤ −µV1(Ω), (17)

where µ = 2λmin{MsKg}. It follows that

1
2 ‖Ω(t)‖2 = V1(Ω(t)) ≤ V1(Ω(t0))e−2µ(t−t0),

= 1
2 ‖Ω(t0)‖2 e−2µ(t−t0),

which exhibits exponential convergence to Ω = 0, with
exponentially vanishing functions (Ω̇, Ω̈) = (0, 0).

Defining the following Lyapunov function V1(Ie) =
1
2 ITe Ie, and taking the time derivative, it follows that

V̇1(Ie) = ITe İe < −ν ‖ Ie ‖, (18)

where
İe = −Kisign(Ie) + Ω̈, (19)

is obtained from (14)-(15). ν = λmin(Ki)− c0, for c0 the
upper bound of Ω̈. Thus, if λmin(Ki) > c0, then ν > 0.
Next, equation (18) can be rewritten as

V̇1(Ie) ≤ −ν ‖ Ie ‖, (20)

V̇1(Ie) ≤ −ν
√
V (Ie). (21)

Integrating (21), we have
√
V1(t, Ie) ≤

√
V1(t0, Ie)−

ν

2
t. (22)

Let
√
V1(t0, Ie)− ν

2 tF = 0, then the convergence time tF
is given by

tF =
2
√
V1(t0, Ie)
ν

. (23)

Therefore, for t > tF we have V1(Ie(t)) = 0. QED

2.2.2 Uncertain parameters case

In real-world systems, parameters of the plant are not
exactly known, even if measured, they can deviate from
their nominal values. With the aim of overcoming para-
metric uncertainties a robust controller that ensures stabil-
ity properties of Proposition 2.2 is derived. Thus, consider
the following controller for the slave robot

us = M̂s(qs)KpM̄−1
m Ψ− M̂s(qs)M̄−1

s (qs)Υ
+Ĉsq̇s + gs(qs) + JT (qs)fe −KgΩ,

(24)
where (̂·) denotes nominal value of (·). Then, following
proposition can be established.

Proposition 2.3. Consider the slave system (2) in
closed-loop with the control (24). Thus, closed-loop tra-
jectories are all bounded, with boundedness of Ω and
its derivatives, such that an integral second order sliding
mode arises at Ie = 0, achieving in finite-time the desired
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impedance (7) as the unique global invariant equilibrium
manifold.

Proof. Consider system (2) in closed-loop with the con-
troller (24), then it follows that

Ms(qs)q̈s + Cs(qs, q̇s)q̇s + gs(qs) =

M̂sKpq̈dm −KgΩ + Ĉsq̇s − M̂sM̄
−1
s

{
C̄s ˙̃qs + K̄sq̃s

+JT (qs)fe + Ki

∫ t
0
sign(Ie(τ))dτ

}
+ ĝs

(25)
thus, by adding and subtracting the term M̄s

¨̃qs and rear-
ranging terms, it follows that

Msq̈s + (Cs − Ĉs)q̇s + (gs − ĝs) =

−M̂sM̄
−1
s

{
Ie + Ki

∫ t
0
sign(Ie(τ))dτ

}
− M̂s(qs)Kpq̈dm

−M̂s(q̈s −Kpq̈dm)−KgΩ,
(26)

After simplification

(Ms − M̂s)q̈s + (Cs − Ĉs)q̇s + (gs − ĝs) =

−M̂sM̄
−1
s

{
Ie + Ki

∫ t
0
sign(Ie(τ))dτ

}
−KgΩ,

(27)
The mismatch due to the parametric uncertainty can be
modeled by the linearly parameterizable form

(Ms−M̂s)q̈s+(Cs−Ĉs)q̇s+(gs−ĝs) = Ȳ (q̈s, q̇s,qs)Θ̃,
(28)

where Ȳ (q̈s, q̇s,qs) denote the regressor and Θ̃ is the er-
ror vector between the inertia parameters Θ (such as link
masses, moments of inertia, etc.) and their estimated val-
ues Θ̂. Thus, equation (27) can be expressed as

Ȳ Θ̃ = −M̂sM̄
−1
s

{
Ie + Ki

∫ t

0

sign(Ie(τ))dτ

}
−KgΩ,

(29)
By adding and subtracting term M̄sM−1

s KgΩ into equation
(29), it follows that

Ȳ Θ̃ = −M̂sM̄
−1
s

{
Ie + Ki

∫ t
0
sign(Ie(τ))dτ

+M̄sM−1
s KgΩ− M̄sM−1

s KgΩ
}
−KgΩ,

(30)
From equation (14), it is clear that Ie +

Ki

∫ t
0
sign(Ie(τ))dτ + M̄sM−1

s KgΩ = 0, Then,
from equations (30) and (14), we obtain

Ȳ Θ̃ = −M̂sM̄
−1
s

{
−M̄sM−1

s KgΩ
}
−KgΩ,

= M̂sM−1
s KgΩ−KgΩ,

(31)

By including the term ±M̄sM−1
s KgΩ into equation (31),

it follows that

Ȳ Θ̃ = (M̂s−M̄s)M−1
s KgΩ+M̄sM−1

s KgΩ−KgΩ, (32)

where the expression (M̂s−M̄s)M−1
s KgΩ can be included

into the linearly parameterizable form as follows

Y Θ̃ = Ȳ Θ̃− (M̂s − M̄s)M−1
s KgΩ. (33)

Then, from equation (32) and taking into account equation
(15), it is clear that

Ω̇ = −KgΩ− Y Θ̃. (34)

Using the gradient update law

˙̃Θ = Γ−1Y Ω, (35)

together with the following Lyapunov function

V2(Ω, Θ̃) = 1
2ΩTΩ + 1

2 Θ̃TΓΘ̃, (36)

by computing V̇2(Ω, Θ̃) along the trajectories of system
(34) and substituting (35), it follows that

V̇2(Ω, Θ̃) = ΩT (−KgΩ− Y Θ̃) + Θ̃TΓ(Γ−1Y Ω),

= −ΩTKgΩ− ΩTY Θ̃ + Θ̃TY Ω,

V̇2(Ω, Θ̃) = −ΩTKgΩ < 0. (37)

Integrating both sides of (37) gives

V2(t)− V2(0) = −
∫ t

0

ΩTKgΩdσ <∞. (38)

As a consequence V2 is a so-called square integrable func-
tion. Furthermore, Ω is square integrable and its derivative
has been shown to be bounded. Then, from Lemma A1
given in appendix 1, Ω → 0 as t → ∞. This shows that
the controller (24) drives the tracking errors towards the
impedance slave invariant manifold Ie = 0. QED

2.3 Analysis of transparency

In a bilateral teleoperation scheme the human operator
and the remote environment are considered to be passive
systems. Communication block between master and
slave system can be analyzed as a 2-port system which
transfer articular positions (ẋm, ẋs) and forces (fh, fe),
this relation is given by a hybrid matrix given by

[
fh(s)
ẋs(s)

]
=

[
h11(s) h12(s)
h21(s) h22(s)

] [
ẋm(s)
−fe(s)

]
,

where

h11 = fh(s)
ẋm(s)

∣∣∣
fe=0

= M̄ms + C̄m + K̄m
s ,

h12 = fh(s)
fe(s)

∣∣∣
ẋm=0

= −kfe−sT ,

h21 = ẋs(s)
ẋm(s)

∣∣∣
fe=0

= kpe
−sT ,

h22 = ẋs(s)
fe(s)

∣∣∣
ẋm=0

= s
M̄ss2+C̄ss+K̄s

.
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This 2-port system satisfy the Llewellyn stability criterion
for absolute stability if the following condition holds

[cos(2wT )− 1]kpkf +
2C̄mC̄sw

2

(K̄s − M̄sw2)2 + (C̄sw)2
≥ 0.

(39)
If gains parameters satisfy the equation (39), then the

teleoperation system is absolute stable for any fh and fe.

3 SUPER TWISTING OBSERVER DESIGN

In this section, in order to estimate unmeasurable states
of the slave system (2), the design of an observer based
on sliding mode approach [18] is addressed; considering
that only the position and the force applied at the slave
system by the environment are available. With this aim, let
us consider a nonlinear system in triangular form

Σ :





ẋj = xj+1, j = 1, ..., n− 1.
ẋn = α(x) + β(x)u,
y = x1

(40)

where x = [x1, . . . , xn]
T ∈ Rn is the state vector, y ∈ R

is the output vector, u ∈ R is the unknown input, and
α(x) and β(x) are bounded smooth scalar functions. Now
assume that the state of the system is uniformly bounded,
i.e. ∀t > 0, |xi(t)| < di, and ∀t > 0. Thus, the state and
its derivatives are bounded.

Then, the following systemO is an observer for system
(40)

O :





˙̂x1 = x̃2 + λ1 |e1|
1
2 sign(e1),

˙̃x2 = α1sign(e1),
˙̂x2 = E1

[
x̃3 + λ2 |e2|

1
2 sign(e2)

]
,

...
˙̃xn−1 = En−3αn−2sign(en−2),
˙̂xn−1 = En−2

[
x̃n + λn−1 |en−1|

1
2 sign(en−1)

]
,

˙̃xn = En−2αn−1sign(en−1),
˙̂xn = En−1

[
θ̃ + λn |en|

1
2 sign(en)

]
,

˙̃
θ = En−1αnsign(en),

(41)
where ei = x̃i − x̂i for i = 1, . . . , n; with x̃1 = x1 and[
x̃, θ̃
]T

=
[
x̃1, x̃2, . . . , x̃n, θ̃

]T
is the output of the ob-

server. For i = 1, . . . , n − 1; the scalar functions Ei are
defined as

Ei = 1 if |ej | = |x̃j − x̂j | ≤ εi,∀j ≤ i; else Ei = 0,
(42)

where εi is a small positive constant, while λi > 0 and
αi > 0 are the observer gains. The convergence of the

estimation error is obtained in (n − 1) steps in finite time
[18], through a recursive scheme (41) used to reconstruct
the non-measurable variables as exact differentiation with
finite-time convergence [19]. With this purpose, a change
of coordinates for the slave system (2) is defined as Xs1 =
qs; Xs2 = q̇s. Then, (2) can be rewritten in the following
state space representation

Σs :





Ẋs1 = Xs2,
Ẋs2 = M−1

s (Xs1) {−Cs(Xs1,Xs2)Xs2
−gs(Xs1) + us − fh} ,

(43)
which can be rewritten in the canonical form similar to (40)
as follows,

Σs :

{
Ẋs1 = Xs2,
Ẋs2 = F(Xs1,Xs2, fh) + ∆,

(44)

where ∆ = M−1
s {us} and F(Xs1,Xs2, fh) =

−M−1
s {Cs(Xs1,Xs2)Xs2 − gs(Xs1) + fh}.

Suppose that the system states are bounded, then
there exists a constant f such that the inequality
‖F(x1, x2, fh)‖ < f holds for any state. Furthermore, ∆
is considered as an uncertain term depending on the time
delayed signals which are assumed uniformly bounded in
a compact set, i.e. ‖∆‖ ≤ α, and thus the slave system is
observable.

Then, the proposed super twisting observer has the fol-
lowing form

Õ :





˙̂Xs1 = X̃s2 + Λ1|X̃s1 − X̂s1|
1
2 sign(X̃s1 − X̂s1),

˙̃Xs2 = α1sign(X̃s1 − X̂s1),
˙̂Xs2 = E1[Θ̃1 + Λ2|X̃s2 − X̂s2|

1
2 sign(X̃s2 − X̂s2)],

˙̃Θ1 = E2α2sign(X̃s2 − X̂s2),
˙̂Xs3 = E2[Θ̃2 + Λ3|X̃s3 − X̂s3|

1
2 sign(X̃s3 − X̂s3)],

˙̃Θ2 = E3α3sign(X̃s3 − X̂s3),
(45)

where X̂s1 and X̂s2 are the state estimations of the
state vectors Xs1 and Xs2, Λ1 = diag{λ1,1, ..., λn,1},
Λ2 = diag{λ1,2, ..., λn,2}, α1 = diag{α1,1, ..., αn,1}
and α2 = diag{α1,2, ..., αn,2} are the gains
of the observer; X̃s1 = Xs1, |X̃s1 − X̂s1|

1
2 =

diag
{
|x̃s1,1 − x̂s1,1|

1
2 , ..., |x̃s1,n − x̂s1,n|

1
2

}
, sign(X̃s1−

X̂s1) = diag {sign(x̃s1,1 − x̂s1,1), ..., sign(x̃s1,n − x̂s1,n)}.
Observer Õ estimates velocity ẋs and acceleration ẍs

of the slave system, using only information of position xs
and environment force fe. Notice that, the time delayed
signals appear in the system in such a way that it can be
concentrated in a term which can be bounded by a constant.
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Proposition 4.1. Consider slave system (43), and sup-
pose that only position Xs1 and environment force fe are
available. Under the assumption that the time delayed sig-
nals are bounded and the time delay is constant but un-
known, the system (45) is an observer for system (43).
Moreover, the states of the observer converge in finite-time
to the states of the system (43).
Proof. The convergence in finite-time of the observer can
be straightforward proved following the same procedure
given in [18]. QED

The following theorem ensures the stability of the closed-
loop system using the proposed control scheme.

Theorem 1 Consider the slave system (43) in closed-loop
with the impedance control (8), using the estimated states
given by the super twisting observer (45), under time de-
layed signals of master-slave. Then, the closed-loop slave
system is exponentially stable. Furthermore, slave system
tracks the time delayed trajectories of master system.

Proof. Due to the finite-time convergence property of the
observer, the separation principle is accomplished. Then,
observer and control systems can be designed separately.
Since the slave control has been designed to stabilize the
slave system, the stability of the closed-loop system is
proved. QED

4 EXPERIMENTAL RESULTS

In this section, experimental results obtained by the im-
plementation of the proposed control scheme in a teleoper-
ation platform are presented. Due to hardware limitations,
two experimental cases were considered: For the first case,
a platform composed of two physical robots of 1-DOF is
considered (see Figure 2). For the second case, a virtual
master and a physical 2-DOF slave robot are considered
(see Figure 7). Manipulators are connected to a PC through
a NI 6033E acquisition card. LabView software is used to
handle signals and to process controller and observer algo-
rithms in a real time environment, with real time threads
to enforce constant bandwidth and monitor all latencies to
guarantee a hard real time environment. The sample time
was fixed to Ts = 0.001 seconds. A couple of servopacks
SGDH-02BE Yaskawa 100V AC, together with two ser-
vomotors embedded encoders SGMAH-02F41 and a JR3-
67M25A force and torque sensor. Position information is
provided by encoders fitted on each motor.

4.1 First case - 1-DOF robots

The parameters used for the 1-DOF experiment are pre-
sented in Table 1. Impedance desired parameters were cho-
sen heuristically similar to those measured for the robot.

Fig. 2: Teleoperation platform for first experimental case.

Control parameters are selected as kp = 1, ki = 1, kg =
0.001. The observer gains are chosen as λ1 = 30, λ2 = 75,
λ3 = 130, α1 = 250, α2 = 150 and α3 = 200. Moreover,
E1 is selected according to condition (42), ε1 = 0.01 and
ε2 = 0.05.

The proposed scheme is implemented with the aim of
tracking a desired reference generated by fh, which is ap-
plied manually to the master robot.

The dynamics of the complete scheme are plotted in
Figure 3. As can be seen, position, velocity and acceler-
ation of the slave system track the reference generated by
the master, without time delay. Slave control uses esti-
mates of velocity and acceleration having a stable behav-
ior. Sensors are used for comparison, as can be seen ob-
server estimates overcome noisy measurements which are
very critical in practical implementations. Furthermore,
the complete scheme is stable when its applied an exter-
nal fe force.

On the other hand, in Figure 4 can be seen the per-
formance of the complete scheme under time delay T1 =
T2 = Td = 2. Further experiments have shown that time
delay is especially important when an environmental force
fe appears, i.e. a huge time delay may decrease the per-
formance of this scheme. In both cases, experiments have

Master parameters
mm = 0.0006kg c̄m = 0.2N · s/m
m̄m = 0.0005kg ·m2 k̄m = 0.9N/m
cm = 0.0658N · s/m kf = 0.1N ·m

Slave parameters
ms = 0.0006kg c̄s = 0.15N · s/m
m̄s = 0.0005kg ·m2 k̄s = 1.5N/m
cs = 0.0658N · s/m

Table 1: System parameters for first case.
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Fig. 3: 1st case: Dynamics of master (blue), slave (red)
and estimated (green) without time delay and in presence
of an external force fe.

been done considering an arbitrary reference fh given by
the human operator. A force cell was implemented to mea-
sure this signal. In Figure 5, master and slave controls are
plotted using a time delay Td = 2s.

Finally, in Figure 6, the estimated errors for velocity
and acceleration are shown.

4.2 Second case - 2-DOF robots

The parameters used for the 2-DOF experiment are pre-
sented in Table 2.

Impedance desired parameters were chosen according
to Llewellyn criterion (39). Observer gains were chosen
as follows α1 = 385I, α2 = 650I, α3 = 900I,Λ1 =
25I,Λ2 = 40I,Λ3 = 90I. Moreover E1, E2 and E3

were selected according to condition (42) and choosing
ε1 = 0.01, ε2 = 0.05 and ε2 = 0.01.

The proposed scheme is implemented for tracking a de-
sired reference generated by fh, which is applied at the
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Fig. 4: 1st case: Dynamics of master (blue), slave (red)
and estimated (green) with a time delay of Td = 2s.

master robot. In the Figure 8 is shown the position of
the master and slave robots and furthermore the environ-
ment force fe, where the high-end sensor measures be-
tween slave system and the environment. Moreover, the
remote force fe affects the trajectory of the master from
149s to 154s, which is sent to the operator.

From experiments can be seen that when a high contact
force fe is applied, a bouncing appears on master side if
the operator is not applying any force when fe is received.
This becomes critical under large time delays.

In Figure 9 can be appreciated how velocity of the slave
system tracks the reference generated by the master, for a
constant time delay of Td = 2s. Notice that the proposed
controller only uses information provided by the sliding

Master parameters
M̄m = diag ( 0.7 , 0.87 ) kg
C̄m = diag ( 1.2 , 1.0 ) N· s / m
K̄m = diag ( 1.1 , 1.02 ) N / m

Slave parameters
M̄s =diag( 0.02 , 0.06 )kg K̄p = I
C̄s =diag( 0.9 , 0.9 )N· s / m K̄i =diag( 10.0 , 35.0 )
K̄s =diag( 2.5 , 2.5 )N / m K̄g =diag( 0.01 , 0.001 )

Table 2: System parameters for second case.
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Fig. 5: 1st case: Control signal for master (top) and slave
(bottom) system with a time delay Td = 2s.

mode observer, while velocity and acceleration sensors are
just used for comparison. Figure 10 shows the accelera-
tion of master, slave and its estimation; while on bottom,
a zoomed view of the observer estimation of acceleration
can be appreciated. In the Figure 11, master and slave con-
trol signals are plotted. Oscillations on slave control signal
mainly come from measurement noise and delayed signals
from master. In the second experimental case, since a vir-
tual master has been used the master signals do not contain
measurement noise. Then, the slave control signal is sig-
nificantly smoother than first experimental case where an
important component of noise in master signal is present.

Furthermore, the performance of the super twisting ob-
server is shown in Figure 12, where position and velocity
errors are plotted. As can be seen, estimates of the position
and velocity show less peaking phenomena.

Now, for the second experimental case, the following
inputs have been considered:

• Input 1: A human operator applies a sinusoidal force
fh to the system with a time-delay of Td = 250ms
(see Figure 13).

• Input 2: An arbitrary reference given by the human
operator is given with a time delay of Td = 500ms
(see Figure 14).

5 CONCLUSIONS

In this work, a nonlinear control scheme for bilateral
teleoperated system based on sliding mode techniques in
presence of unknown and constant time delays in the com-
munication channel has been presented. An impedance
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Fig. 6: 1st case: Velocity (top) and acceleration (bottom)
estimation errors, with a time delay Td = 2s.

Fig. 7: Teleoperation platform for second experimental
case.

controller combined with a second order sliding mode ob-
server has been applied to a slave system in order to track
the position, velocity and contact force delayed signals sent
by a master system. An analysis of the stability of the sys-
tem has been given, where sufficient conditions have been
obtained to guarantee the stability of the closed loop. Ex-
perimental results have been obtained to illustrate the per-
formance of the proposed approach under parametric un-
certainties and measurement noise.
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