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Traditionally, supervised machine learning methods are the first choice for tasks involving classification of data.
This study provides a non-conventional hybrid alternative technique (pEAC) that blends the Possibilistic Fuzzy C-
Means (PFCM) as base cluster generating algorithm into the ‘standard’ Evidence Accumulation Clustering (EAC)
clustering method. The PFCM coalesces the separate properties of the Possibilistic C-Means (PCM) and Fuzzy
C-Means (FCM) algorithms into a sophisticated clustering algorithm. Notwithstanding the tremendous capabili-
ties offered by this hybrid technique, in terms of structure, it resembles the hEAC and fEAC ensemble clustering
techniques that are realised by integrating the K-Means and FCM clustering algorithms into the EAC technique.
To validate the new technique’s effectiveness, its performance on both synthetic and real medical datasets was
evaluated alongside individual runs of well-known clustering methods, other unsupervised ensemble clustering
techniques and some supervised machine learning methods. Our results show that the proposed pEAC technique
outperformed the individual runs of the clustering methods and other unsupervised ensemble techniques in terms
accuracy for the diagnosis of hepatitis, cardiovascular, breast cancer, and diabetes ailments that were used in the
experiments. Remarkably, compared alongside selected supervised machine learning classification models, our pro-
posed pEAC ensemble technique exhibits better diagnosing accuracy for the two breast cancer datasets that were
used, which suggests that even at the cost of none labelling of data, the proposed technique offers efficient medical
data classification.

Key words: Evidence accumulation clustering, K-means, fuzzy C-means, possibilitic fuzzy C-means, hybrid in-
telligent systems, health informatics, medical data classification, disease diagnosis.

Grupiranje zasnovano na skupljanju dokaza s vjerojatnosno-neizrazitim C-means pristupom za dijag-
nozu bolesti. Tradicionalno, metode nadziranog strojnog učenja predstavljaju prvi izbor za zadatke koji uključuju
klasifikaciju podataka. Ovo istraživanje prikazuje nekonvencionalnu hibridnu alternativnu (pEAC) tehniku koja
kombinira vjerojatnosno-neizraziti C-Means (PFCM) kao osnovni algoritam grupiranja u standardno grupiranje ko-
rištenjem grupiranja zasnovanog na skupljanju dokaza (EAC). PFCM objedinjuje zasebna svojstva vjerojatnosnog
C-Means (PCM) i neizrazitog C-Means (FCM) algoritama u sofisticirani algoritam grupiranja. Usprkos ogromnim
mogućnostima koje nudi ova tehnika, u smislu strukture, ona je nalik cjelovitim hEAC i fEAC tehnikama grupiranja
realiziranim integracijom K-Means i FCM algoritama grupiranja u EAC tehniku. Kako bi se validirala učinkovi-
tost, njeno ponašanje je ispitano na sintetičkim i stvarnim medicinskim podacima te su provedene usporedbe s
pojedinačnim široko rasprostranjenim metodama, drugim nenadziranim tehnikama grupiranja i nekim nadziranim
metodama učenja. Rezultat prikazuje kako predložena pEAC tehnika nadmašuje pojedine metode grupiranja i
druge tehnike nenadziranog učenja u smislu točnosti u dijagnozi hepatitisa, kadiovaskularnih bolesti, raka dojke
i dijabetesa, korištenih u eksperimentu. Značajno, u usporedbi s odabranim nadziranim modelima klasifikacije,
predložena pEAC tehnika pokazuje bolju točnost dijagnoze na dvama korištenim bazama podataka za rak dojke,
što ukazuje na to da čak i bez označenih podataka predložena tehnika nudi efikasnu klasifikaciju medicinskih po-
dataka.

Ključne riječi: grupiranje zasnovano na skupljanju dokaza, K-means, neizraziti C-means, vjerojatnosno-neizraziti
C-means, hibridni inteligentni sustav, medicinska informatika, klasifikacija medicinskih podataka,
dijagnoza bolesti.

1 INTRODUCTION

The growth of information technology (IT) has accelerated
the development of research in medical data classification

and disease diagnosis, thus making the process an inter-
esting academic pursuit with numerous challenges for re-
searchers. The disease diagnoses procedures involve the
use of data from of a variety of sources within the health
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care records, such as the health condition notes, results of
laboratory, radiological and pathological tests and exam-
inations, as well as results from numerous other sources
[1]. These health records of patients are collated into a
dataset that is later used to make initial diagnosis of new
patients. This use of medical datasets for disease diagno-
sis based on available training/examples data from health
records of patients is called a medical data classification
task [1]. Medical data classification tasks are executed us-
ing different varieties of data types including text, signal,
image, DNA, voice, etc. [1-10]. Some of the available lit-
erature [1-6] focus on medical data classification tasks for
ailments such as diabetes, heart disease, hepatitis, Parkin-
son, liver, and cancer. Similarly, EEG and ECG signals are
usually used in diagnosing other diseases such as epileptic
seizure, schizophrenia, Alzheimer, asthma, and arrhythmia
[7-11].

Traditionally, supervised learning methods are used for
data classification and evidence from available literature
has proven that they are efficient in most tasks, includ-
ing classification of medical data and diagnosing diseases.
However, in order to realise good results, these supervised
methods are known to use many parameters such as learn-
ing rate, epoch, kernel and activation parameters for tuning
[2]. Therefore, it takes time to obtain the best combination
of parameter values needed to achieve the best accuracy
in diagnosing diseases. In addition, each dataset has dif-
ferent optimal parameters according to the pattern of data
[3]. To further determine the optimal parameters for su-
pervised methods, some hybrid approaches that combine
different optimisation algorithms with supervised classifi-
cation methods have been proposed [11].

In contrast, the unsupervised methods commonly have
less parameters, which could be either the number of clus-
ters or some threshold, that are available for use in medical
data classification. Motivated by this, some literature em-
ployed unsupervised clustering methods to solve classifi-
cation problems. For example, [12] compares several clus-
tering algorithms to predict final marks based on student
participation in some forums. The objective of that study
was to examine whether clustering methods could be used
to replicate the success recorded via traditional classifica-
tion algorithms. Similarly, in [13], the OWA-weight based
clustering was used to solve some classification problems
using dataset from the UCI Machine Learning Repository
[14]. Also, the work in [15] used the discriminative sub-
space clustering method to classify video fragment for-
mats, while [16] presented the use of the fuzzy C-Means
(FCM) method for handwriting recognition of numbers.
[17] presented a survey on the use of several clustering
methods to solve classification problems. Among others,
outcomes obtained from that work suggested that cluster-
ing methods could be used as good alternatives to solving

various classification tasks,emphasizing the need for care
in the selection of an appropriate clustering method and
necessary tradeoffs, so that the best results are obtained.

Clustering of data entails discerning the pattern of
available data in order to determine groups of data points
and their relationship. Such relationships include whether
those data points are similar (or related) to one another
or different from (or unrelated to) the data points in other
groups. An ensemble clustering method combines multi-
ple partitions generated by different clustering algorithms
for improved robustness, stability, and accuracy in com-
parison with the single clustering methods [18]. However,
finding a consensus cluster from multiple partitions is still
a difficult problem that has been approached from different
angles including those that are graph-based, combinatorial
or statistical in nature [19-21]. The Evidence Accumula-
tion Clustering (EAC) method, proposed by Fred and Jain
[22-23], employs a Hard C-Means (HCM) method (no-
tably, the K-Means algorithm) to map the individual data
partitions in a clustering ensemble into a new similarity
measure between patterns [23]. A typical EAC ensemble
method based on HCM base clustering (or simply hEAC
ensemble technique) is executed in three stages: namely,
the splitting, combination, and merging processes or steps
[22-23]. However, with its tight and well-defined bound-
aries, the hEAC clustering technique suffers from lack
of flexibility in terms of membership of clusters and the
impact resulting therefrom on achieving the convergence
needed to produce a stable combined clustering outcomes
[24]. Consequently, the EAC ensemble method employ-
ing FCM algorithm as base cluster generator (or simply
fEAC ensemble techniques) [25] was proposed to com-
pensate for these shortcomings. Moreover, a comparison
between hEAC and fEAC found that besides faster conver-
gence than the hEAC technique, the fEAC technique of-
fers improved accuracy for lower number of clusters than
the hEAC technique [24]. While still very successful in
many applications, the fEAC technique suffers from sen-
sitivity to initialisation and its inability to accurately cor-
relate cluster membership with degree of belonging to a
data class, which arises because estimation of centroids is
influenced by noise in the data [25].

The Possibilistic FCM (PFCM) clustering approach,
which is a hybrid unsupervised method that combines the
FCM algorithm with the Possibilistic C-Means (PCM) al-
gorithm, is obtained by relaxing the partitioning constraint
of the FCM algorithm so that a ‘possibilistic’ type of mem-
bership is realised [26, 27]. Furthermore, by integrating a
penalty term into the PCM, the relative values of degrees
of membership that are needed for enhanced parameter es-
timation [26] are guaranteed. The resulting PFCM cluster-
ing algorithm combines the intuitionistic degrees of mem-
bership of FCM with the possibilistic typicality of PCM
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in order to avoid noise sensitivity and to overcome coin-
cident clusters, while maintaining the usual cluster centres
for each cluster.

In addition to such uses, clustering approaches have the
ability to recognise the distribution of the data and its pat-
tern in order to ameliorate the detection of noise and other
outliers that can increase the misclassification of data.

Motivated by the aforementioned capabilities of the
PFCM algorithm and other unsupervised clustering ap-
proaches, in this study, we explore the integration of the
of the PFCM clustering method as the base cluster gen-
erating algorithm for the EAC ensemble technique. Fur-
thermore, the resulting pEAC technique is tailored towards
use in data classification. Similar to existing unsupervised
clustering methods (i.e. the hEAC and fEAC ensemble
techniques), the PFCM algorithm is embedded into the
splitting step of the proposed pEAC ensemble clustering
technique. While the focus is on profiting from the com-
bined advantages of the PCM and FCM (which coalesce
into the PFCM algorithm), unlike in [24], in this study,
preference is given to using the Active Link (AL) hierar-
chical agglomerative linkage in the merging step. In addi-
tion to evaluation of the proposed pEAC ensemble cluster-
ing technique using synthetic data, its performance is val-
idated using real medical datasets used in the diagnosis of
hepatitis, heart, diabetes, and breast cancer ailments. Addi-
tionally, the results are compared alongside those obtained
for individual runs of well-known clustering methods, as
well as other unsupervised ensemble techniques and some
supervised learning methods.

The remainder of the paper is outlined thus: Section
2 presents a brief overview of the EAC as an ensemble
or consensus clustering method. The layout and require-
ments for using the proposed pEAC ensemble clustering
technique in medical data classification are presented in
Section 3. The experimental results validating the use of
the proposed method for disease diagnosis are presented
and discussed in Section 4.

2 REVIEW OF THE EVIDENCE ACCUMULA-
TION CLUSTERING (EAC) ENSEMBLE TECH-
NIQUE AND UNSUPERVISED BASE CLUSTER-
ING METHODS

The Evidence Accumulation Clustering (EAC) [21-23] is
an ensemble clustering method for combining multiple
clustering approaches in order to achieve better perfor-
mance than is obtainable using single clustering methods.
Ensemble clustering uses a consensus of several cluster-
ing solutions and merges them into a single consensus so-
lution, so that improved robustness and stability can be
achieved in comparison with the single clustering method
[18, 19]. There are several approaches to accumulate evi-
dence of clustering methods: the first involves combining

Table 1. Pseudo-code for the hEAC-AL ensemble tech-
nique [21,22]

Input:
n: d-dimensional patterns;
k_min: minimum initial number of clusters;
k_max: maximum initial number of clusters;
N: number of ensemble clusterings.
Output:
Data partitioning.
Initialisation:Set co_assoc to a null n x n matrix.
1. Do N times:
1.1. Randomly select k in the interval [k_min; k_max].
1.2. Randomly select k cluster centers.
1.3. Run the K-means algorithm with the above k and
initialisation, and produce a partition P.
1.4. Update the co-association matrix: for each
pattern pair, (i, j), in the same cluster in P, set
co_assoc(i, j) = co_assoc(i, j) + 1

N
2. Detect consistent clusters in the co-association ma-
trix using the AL technique: compute the AL dendro-
gram and identify the final clusters as the ones with the
highest lifetime.

the results of different clustering algorithms; the second re-
quires resampling the data using different techniques, such
as bagging and boosting, so that different results are cre-
ated; and the third applies a clustering algorithm many
times, each with different initialisation [21-23]. The EAC
ensemble method, as proposed by Fred and Jain in [21-
23], uses the third approach by applying HCM algorithms,
such as K-Means algorithm, which will henceforth be re-
ferred to simply as the hEAC technique, as the underlying
clustering algorithm to produce clustering ensembles, as
explained in the sequel.

2.1 Unsupervised ensemble clustering techniques

The hEAC ensemble clustering method is executed in three
broad steps or processes, namely: the splitting, combina-
tion, and merging processes [21-23]. In the first step, the
data is split into a large number of clusters and different
partitions are obtained by random initialisations of the K-
means algorithm. Following this, in the combination pro-
cess, a voting mechanism is used to combine the cluster-
ing results through a co-association matrix. This matrix is
built using outcomes of multiple random runs of the HCM
algorithm with specified number of clusters. Next, in order
to recover natural clusters, the Single Link (SL) or Aver-
age Link (AL) hierarchical agglomerative set is applied in
the merging process so that the recovery of the final par-
tition is facilitated [23]. Table 1 presents a pseudo-code
for the hEAC with AL link set (i.e. hEAC-AL ensemble
technique).
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As explained in [21, 23] and extracted in Table 1, the
input parameters for the hEAC ensemble clustering tech-
nique are the minimum initial number of clusters (k_min),
maximum number of clusters (k_max), and number of en-
semble or consensus clusters (N). The value of k_min is
preset to start from 2 while the value of k_max is set using
a rule of thumb, i.e. k_max =

√
n, where n is the number

of input patterns. A brief description of each part of the
three steps of the hEAC ensemble technique is presented
in the following subsections.

2.2 EAC with HCM as base cluster generator (hEAC
ensemble clustering technique)

As presented in earlier parts of this section, by viewing
each clustering result as an independent evidence of data
organisation, the idea of EAC was proposed to combine
the result of multiple clusters into one partition. Since the
original EAC uses the HCM algorithm to generate its base
clustering, this class of ensemble techniques is simply re-
ferred to as the hEAC clustering technique.

Detailed descriptions of the three steps of the hEAC
clustering ensemble technique mentioned earlier are pre-
sented in the remainder of this sub-section.

2.2.1 Splitting Step: Producing Clustering Ensemble

In the splitting step of the hEAC technique, an input dataset
is decomposed into k number of clusters using a HCM
clustering method, such as the K-means algorithm, with
various clustering results obtained via random initialisa-
tions of the algorithm. The K-Means algorithm is a sim-
ple clustering method that has low computational require-
ments (time) for clustering the data points into k clusters
[21] where the value of k is determined prior to running
the algorithm after which it is then used to generate the k
initial centroid clusters. Each cluster is associated with a
centroid (center point) and each data point is assigned to
the cluster with the closest centroid [21]. Finally, after all
data points are assigned to a centroid, which is (typically)
the mean of the data points in the cluster [21], they are up-
dated. These processes are run iteratively until the centroid
of clusters are somewhat unchanged, thereby producing k
partitions of the dataset [21].

2.2.2 Evidence combination Step: Generating the Co-
Association Matrix

In order to produce partitions with different number of
clusters, a voting mechanism is used to combine the clus-
tering results so that a new measure of similarity is created
between patterns [22]. The underlying assumption is that
patterns belonging to a “natural” cluster are very likely to

be co-located (i.e. in proximity) within the same cluster
[21]. Taking the co-occurrences of pairs of patterns in the
same cluster as votes for their association, the data parti-
tions produced by multiple runs of the K-means algorithm
are mapped into an n×n co-association matrix [22] using
equation (1).

co_assoc (i, j) =
nij
N

(1)

where N is the number of clusters and nij is the number of
times the pattern pair (i, j) is assigned to the same cluster
among the N clusters.

2.2.3 Merging Step: Recovering Natural Clusters

The hEAC ensemble clustering technique uses Single Link
(SL) or Average Link (AL) linkage set to merge clusters
based on the outcome of the co-association matrix that was
presented in the preceding step. The SLand ALare exam-
ples of hierarchical clustering methods that produce a set
of nested clusters organised as a hierarchical tree or a den-
drogram [22, 23]. Any desired number of clusters can be
obtained by ‘cutting’ the dendrogram at the proper level. In
order to recover natural clusters, the SL or AL set cuts the
dendrogram over a similarity matrix at some threshold (t),
thus merging the clusters produced in the splitting process.
There are two main types of hierarchical clustering tech-
niques, i.e. agglomerative and divisive techniques [23].
The agglomerative approach starts with the data points as
individual clusters and then the closest pair of clusters at
each step are merged until only one cluster (orkclusters)
is/are left [23]. The divisive approach starts with one clus-
ter that is split at each step until each cluster contains a data
point (or there are k clusters) [23].

In the merging step, the hEAC techniques uses the ag-
glomerative approach to merge the clusters using one of
several methods, i.e. including single link (SL), complete
link (CL), average link (AL), etc. [23]. The SL set merges
two clusters based on the two most similar (closest) data
points in the different clusters, while the CL merges two
clusters based on the two least similar (most distant) data
points in the different clusters. Finally, the AL merges
two clusters based on the average of pairwise similarity
between data points in the two clusters [23].

One drawback of the hEAC technique arises during the
merging process because, like ether methods that use co-
association matrices, it requires a large number of base
clustering in order to achieve reliable results. Addition-
ally, the hEAC ensemble techniques have poor conver-
gence, which ultimately affects the accuracy of the results
obtained.
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2.3 EAC with FCM as base cluster generator (fEAC
ensembleclustering technique)

With its tight and well-defined boundaries, the hEAC en-
semble technique that was presented earlier in this section
lacks intuitionistic flexibility in terms of membership of
its clusters [25]. By reducing the variances from clusters,
FCM yields to more compact clusters, as well as providing
additional information about the spatial distribution of data
that is obtained via fuzzy partitioning. These are some of
the qualities that motivated the integration of FCM as base
cluster generator for EAC ensemble clustering technique
(i.e. fEAC ensemble clustering technique), which has con-
tributed towards improvement in the speed of convergence
as a factor of the number of runs of the base clustering
generator, which is crucial in producing a stable system.

2.4 Drawbacks of hEAC and fEAC ensemble cluster-
ing techniques

A few of the problems associated with the hEAC tech-
nique, such as the large size of base clustering in the merg-
ing step and poor convergence, were highlighted earlier as
motivations for proposing the fEAC technique. While, the
fEAC ensemble technique offers better performance than
in the hEAC technique, the FCM that is at its nexus ex-
poses the fEAC technique to increased susceptibility to
noise, sensitivity to initialisation and poor handling of co-
incident clusters all of which impact on the performance
of the fEAC technique. Additionally, in FCM, the mem-
bership of a given cluster of two points that are equidistant
from the prototype of the cluster can be significantly differ-
ent, whereas membership of two points in a given cluster
can be equal even though the two points are arbitrarily far
away [28]. This enunciates the shortcomings of the FCM
(and the resulting fEAC ensemble technique) in terms of
detection of noise and outlier points.

As an unsupervised approach, the fEAC ensemble tech-
nique is further affected by the inability of the FCM base
cluster generator to accurately correlate cluster member-
ship with degree of belonging to a data class [22], which
arises because estimation of centroids is influenced by
noise in the data.

The fragility inherent to both the hEAC and fEAC tech-
niques as highlighted in this section provide further the
motivation for the need to integrate a more robust and ef-
fective base cluster generating algorithm into the EAC en-
semble technique, which, among others, is one of the main
objectives of this study. Therefore, the base cluster genera-
tor envisioned in our proposed technique should be able to
compensate for the identified lapses by ensuring that con-
vergence is accelerated, so that accuracy is improved and
effects of noise points are suppressed.

In the next section, we highlight a few properties of
the Possibilistic Fuzzy C-Means (PFCM) [26] clustering

algorithm and discuss its integration as base cluster gener-
ating algorithm of our proposed EAC ensemble technique,
which, for uniformity, we shall refer to as the pEAC en-
semble technique. Moreover, since it has been shown that
the performance of both the hEAC and fEAC ensemble
techniques varies with type of data [27] our new ensemble
clustering technique should offer a wider range of utility.

Before then, we should emphasise that, structurally, our
proposed pEAC ensemble clustering technique resembles
the standard unsupervised ensemble techniques (i.e. the
hEAC and fEAC techniques) differing mainly in terms of
its replacement of the HCM and FCM base cluster gener-
ators with the more efficient PFCM clustering algorithm.
In this manner, performance-wise, we expect a more ro-
bust and effective ensemble clustering, which we envisage
would make it more useful for our applications in medical
dataset classification.

3 METHODOLOGY FOR THE PROPOSED
PFCM-BASED ENSEMBLE CLUSTERING
TECHNIQUE

This section highlights our proposed blending of the Pos-
sibilitic Fuzzy C-Means (PFCM) as base cluster generator
of the Evidence Accumulation Clustering (EAC) ensem-
ble method (henceforth simply referred to as pEAC ensem-
ble clustering technique) for the purpose of efficient use of
medical datasets for diagnosis of diseases.

3.1 Possibilistic Fuzzy C-Means Clustering Method

Earlier in Section 2, we highlighted the structure of the
unsupervised ensemble clustering methods (hEAC and
fEAC) and disclosed a few of their shortcomings. Here, we
present an introduction of the PFCM clustering algorithm
and advance arguments supporting its integration into the
EAC ensemble method for later use in classification of
medical datasets.

The PFCM was proposed to compensate for individual
deficiencies in the Fuzzy C-Means (FCM) and Possibilis-
tic C-Means (PCM) clustering [29] algorithms, making it
a good candidate to use as EAC base clustering genera-
tor, which forms the core of our proposed pEAC ensemble
clustering technique.

Conceived as a hybrid clustering algorithm, the PFCM
combines the intuitionistic degree of membership inherent
to FCM algorithms with the possibilistic typicality found
in PCM algorithms. To accomplish this, the partitioning
constraint in the FCM algorithm is relaxed, yielding a ‘pos-
sibilistic’ type of membership, which, together with the
penalty term imposed on the PCM algorithm, guarantees
the realisation of relative values for degrees of member-
ship as needed to enhance parameter estimates [26, 30].
Additionally, the PFCM clustering algorithm is useful in
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overcoming sensitivity to noise and in avoiding coincident
clusters, while still being able to produce the usual point
prototypes or cluster centres for each cluster [26, 30].

Mathematically, the objective function of the PFCM is
in the form presented in equation (2).

J (U, T, V ;X) =

n∑

k=1

c∑

i=1

(aumik + btηik) ×

‖xk − vi‖2A +

c∑

i=1

γi

n∑

k=1

(1− tik)η (2)

Equation (2) is subject to the following constraints
[26]:

c∑

i=1

uik = 1, ∀ k (3)

0 ≤ uik, tik ≤ 1 (4)

where the variables a and b are membership and typical-
ity values of the objective functions; the parameter γi is
a constant value greater than zero; a and b are constants
whose values must also be greater than zero. In order to
assign the same weight of membership (uik) and typical-
ity (tik)), the values of a and b are preset as 1. Similarly,
m and η are constants whose values must be greater than 1
and like in the FCM algorithm (for the degree of fuzziness)
their values are preset to 2 [26]; the membership (uik) and
typicality (tik) values have similar definitions to those in
the standard FCM and PCM algorithms [25]; and xk is the
data value. Equations (5) through (7) are used to calculate
the membership value (uik), the typicality value (tik), and
the cluster center (vi) [26].

uik =




c∑

j

(
DikA

DjkA

) 2
m−1




−1

; 1 ≤ i ≤ c; 1 ≤ k ≤ n

(5)

tik =
1

1 + ( bγiD
2
ikA)

1
η−1

; 1 ≤ i ≤ c; 1 ≤ k ≤ n (6)

vi =

∑n
k=1(au

m
ik + btηik)xk∑n

k=1(au
m
ik + btηik)

; 1 ≤ i ≤ c (7)

where DikA is distance between data (xk and the cluster
center (vi) [26].

In fuzzy clustering, a data point belongs to every clus-
ter with some weight usually between 0 and 1, but with
the additional constraint that the weights must add up to
1. Therefore, unlike in HCM clustering methods, there is
no empty cluster in PFCM-based clustering because each
data point should be assigned into one or more clusters.
Similar to the FCM algorithm, the PFCM determines the
initialisation of c centroid clusters randomly and then the
new centroid clusters are updated iteratively. To determine
the final cluster, each data point belongs to the cluster that
has maximum level value of membership function.

3.2 EAC with PFCM as base cluster generator (pEAC
ensemble clustering technique)

The system architecture depicting our proposed EAC en-
semble clustering method with PFCM algorithm as base
cluster generator (i.e. the pEAC ensemble clustering tech-
nique) is presented in Figure 1.

As seen from the figure, similar to the use of HCM
and FCM as base cluster generators (i.e. in hEAC and
fEAC ensemble clustering techniques), in the splitting step
of the proposed technique, data is divided into a large
(say, c) pool of smaller clusters that are mapped into n×n
co-association matrices using the evidence accumulation
technique in the combination step. The final clusters are
obtained by applying the AL hierarchical link set, thus
merging the hitherto smaller clusters obtained in the ear-
lier splitting step.

Based on the foregoing, the final data partition is cho-
sen as the one with highest lifetime based on which the op-
timal centroid clusters are determined. Depending on the
dataset, the Euclidean distance measure (in equation 6) is
used to suggest an inference regarding the final diagnosis
of an ailment.

d(x, c) =

√√√√
N∑

i=1

(xi − ci)2 (8)

where xi is ith data point and ci is ith centroid of clusters.
A well-known shortcoming of the SL linkage set is its

quadratic space and time complexities,which are related
to the requirements for processing an n×n co-association
matrix, especially for large values of n [30]. To circumvent
this kind of effect, the AL hierarchical linkage set is pre-
ferred in this study, hence its use as shown in the merging
step of the proposed pEAC ensemble clustering technique
(i.e. in Figure 1).

Since clustering assumes that there is no a priori knowl-
edge of samples of known classes, then hierarchical clus-
tering could be considered as an example of unsupervised
classification where all patterns in the data are classified
using the top-down or bottom-up approach [28]. There-
fore, it is acceptable to conclude that unsupervised classi-
fication offers the advantages of reduced need for a priori
knowledge, less human error, better recognition of classes,
etc. Moreover, it has been shown that, for certain trade-
offs, the clustering approach to classification is very effec-
tive [27, 28].

Motivated by this and in order to exploit the per-
formance improvements offered by the PFCM clustering
method over HCM and FCM clustering approaches, this
study utilises the pEAC ensemble technique presented in
this section for medical datasets classification tasks and ap-
plications in disease diagnosis.
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Fig. 1. System architecture for the proposed EAC the pEAC ensemble clustering technique (pEAC) for disease diagnosis.

Our proposed pEAC ensemble clustering approach of-
fers accelerated convergence, which would lead to im-
proved accuracy, as well as better tolerance to noise and
outliers than the hEAC and fEAC unsupervised ensemble
clustering techniques, which we validate via a series of ex-
periments in the next section.

4 EXPERIMENTAL VALIDATION OF PROPOSED
SYSTEM

To evaluate the performance capabilities of our proposed
pEAC ensemble clustering technique, two experimental
scenarios were used. In the first scenario, similar to [24],
we utilise synthetic datasets consisting of the Half ring
and Spiral datasets. Using real clinical datasets, our sec-
ond performance evaluation scenario is further divided into
two segments: the first evaluates the performance of the
proposed pEAC ensemble technique alongside other unsu-
pervised clustering methods, whereas the performance of
the proposed technique is compared alongside some super-
vised (machine learning) models in the second segment.

Unless stated otherwise, throughout the experiments
that are reported in this section, our input variables are
the number of clusters (N), minimum number of clusters
(k_min), and maximum number of clusters (k_max). Ad-
ditionally, throughout the experiments reported in this sec-
tion, we used variables: N = 100, k_min = 2, and k_max =√
n (where n is size of the dataset).

Brief descriptions of the synthetic and real clinical
datasets for the two experimental scenarios and discussions

on the results obtained are presented in the remainder of
this section.

4.1 Evaluation of proposed technique using synthetic
datasets

Our first experimental validation is based on two types of
synthetic datasets, i.e. the half rings and spiral datasets,
which are generated and utilised to assess the performance
of the proposed pEAC clustering approach.

The Half rings dataset, shown in Figure 2, consists of
two clusters with uneven sparseness that is made up of 100
data points in the upper cluster and 300 data points in the
lower cluster.

Similarly, as shown in Figure 3, the Spiral dataset con-
sists of two spiral-shaped clusters comprising of 200 data
points.

4.1.1 Experimental results based on Synthetic datasets

The experimental results for the Half ring dataset with vari-
ations in parameter pair values, i.e. the threshold (t) and
number of cluster (k) as presented in Table 3. As seen
therein, these results indicate that the best accuracy in final
cluster results for this dataset is obtained with parameter
value pairings of t = 0.2 and k = 10; t = 0.1–0.3 and k =
15; t = 0.1 – 0.2 and k = 20 with the optimal values shown
highlighted in the table.

The results suggest that the satisfactory solution would
be the identification of two clusters that produce the best
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Fig. 2. Half ring dataset.

Fig. 3. Spiral dataset.

accuracy in the clustering results. Figure 4 presents a visu-
alisation of the clustering outcome for optimal parameter
pair values k = 15 and t = 0.2.

Similar to the case of the Half ring dataset, the experi-
mental result for the Spiral dataset with variation in param-
eter pair values for threshold (t) and number of cluster (k)
is presented in Table 4. These results indicate that the best
accuracy of final cluster results for this dataset are obtained
for pairing of parameter values t = 0.6 and k = 20; t = 0.7
and k = 15 and k = 20.

These optimal parameter values produce the best accu-
racy in clustering results (shown highlighted in the table),
whereas Figure 5 presents the clustering outcome for op-
timal parameter pair values k = 15 and t = 0.7. Mean-
while, the visualisation of the clustering outcome for a

Table 2. Results for Half ring synthetic dataset for varia-
tions in parameter values t and k

Threshold

The number of clusters (k) as
input in PFCM algorithm
3 5 10 15 20
The final result of number of
clusters in AL link set

0.1 1 1 1 2 2
0.2 1 1 2 2 2
0.3 1 1 3 2 4
0.4 1 1 5 4 4
0.5 1 2 7 4 5
0.6 5 5 7 6 8
0.7 5 6 7 7 12
0.8 5 7 10 25 36
0.9 5 11 25 48 92

Fig. 4. Clustering outcome for Half ring synthetic dataset
for optimal parameter pair values k = 15 and t = 0.2.

non-optimal clustering results for parameter pair values k
= 3 and t= 0.9 is presented in Figure 6.

Motivated by the visual accuracy of the clustering out-
comes (Figures 4, 5 and 6) and the impact of choices in
parameter pair values (t and k) on the clustering outcome,
we present, in the next subsection, results of our second
experimental scenario wherein similar evaluations of the
result of applying the proposed pEAC technique on real
clinical datasets will be discussed.

4.2 Evaluation of the proposed technique using real
clinical datasets

To further establish the efficacy of our proposed ensemble
clustering technique, we employed clinical datasets that
are commonly used in diagnosing a range of liver, cardio-
vascular, cancer and metabolic ailments. With this dataset,
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Table 3. Results for Spiral synthetic dataset for variations
in parameter values t and k

Threshold

The number of clusters (k) as
input in PFCM algorithm
3 5 10 15 20
The final result of number of
clusters in AL link set

0.1 1 1 1 1 1
0.2 1 1 1 1 1
0.3 1 1 1 1 1
0.4 1 1 1 1 1
0.5 1 1 1 1 1
0.6 1 1 1 1 2
0.7 1 1 1 2 2
0.8 1 1 4 17 28
0.9 2 32 77 124 150

Fig. 5. Clustering outcome for Spiral synthetic dataset for
optimal parameter pair values k = 15 and t = 0.7.

we further assessed the effectiveness of our proposed tech-
nique along two scenarios – i.e. performance evaluation
alongside comparisons with unsupervised (standard) clus-
tering methods and also with supervised (machine learn-
ing) models. The outcomes are presented in this and the
next subsections.

The dataset used in our evaluation were sourced via the
UCI Machine Learning Repository [14] and it consists of
the Hepatitis dataset, which contains 19 attributes from 155
individuals out of which 32 indicate ‘dead’ and 123 indi-
cate ‘alive’ classes; the heart-stat log dataset is used for
the cardiovascular ailments and it consists of 13 attributes
from 270 individuals out of which 120 indicate ‘presence’
of a heart disease, while 150 indicate ‘absence’ of heart
disease, i.e. healthy subjects; two sets of data are used
for breast cancer. The first, the Breast cancer dataset is
made up of 9 attributes from 286 individuals out of which

Fig. 6. Clustering outcome for Spiral synthetic dataset for
non-optimal parameter pair values k = 3 and t = 0.9.

Table 4. Description of medical datasets
Dataset
Name

Data
size

Number of
Attributes

Class labels

Hepatitis 155 19 Dead
Alive

Heart-statlog 270 13 Absent
Present

Breast cancer 286 9 No occurrence
Occurrence

Wisconsin 699 9 Benign
Breast cancer Malignant

Diabetes 768 8 Negative
Positive

201 indicate ‘no-recurrence’ and 85 indicate ‘recurrence’
of cancer, while the second breast cancer dataset, the Wis-
consin Breast-cancer dataset, comprises of 699 data points
represented by 9 attributes, with two class labels indicating
the tissue type, i.e. ‘benign’ (458) and ‘malignant’ (241);
and finally, the Diabetes dataset, which has 768 data points
represented by 8 attributes out of which 500 indicate ‘nega-
tive’ presence (i.e. absence) of diabetes and 268 are labeled
as ‘positive’ to indicate the presence of diabetes. This in-
formation about the composition of the clinical datasets is
further summarised in Table 4.

As mentioned earlier, the second experimental scenario
for benchmarking the performance of our proposed pEAC
ensemble clustering technique consists of two segments
that are undertaken by comparing results from our pro-
posed technique with those from other unsupervised learn-
ing techniques (first segment) and those from supervised
machine learning models (second segment).

In the latter case, we used the “arff” data format of the
Weka application
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(http://repository.seasr.org/Datasets/UCI/arff/) for the
Naive Bayes (NB), J48 (i.e. Decision trees with C4.5
algorithm in the Weka Application) and the Support Vector
Machine with Sequential Minimal Optimisation (SMO)
machine learning models. The Hepatitis, Breast cancer,
and Wisconsin Breast cancer dataset had a few missing
values, which were compensated for using the in-built
mean or modus operation from the imputation process of
the Weka application employed in our experiments. We
used this feature to obtain the missing values prior to using
of the proposed pEAC ensemble clustering technique.

Results of evaluations from the two experimental sce-
narios are presented and discussed in the remainder of this
section.

4.3 Experimental results assessing the proposed
pEAC Ensemble Clustering Technique versus Un-
supervised Learning Methods

We used the 10-folds cross-validations to ascertain the per-
formance of our proposed system alongside other unsuper-
vised clustering methods in terms of (1) the number of cor-
rect diagnosis relative to existing labels in the datasets, for
which we obtain the centroid of clusters, and (2) in terms
of predictions of the unknown labels.

Table 5 presents the results obtained when our pro-
posed ensemble clustering technique is compared along-
side single (individual) runs of three unsupervised cluster-
ing algorithms (i.e. KM, FCM and PFCM) and the two
standard unsupervised ensemble methods (i.e. hEAC and
fEAC techniques)) for the five types of medical datasets.
As seen from the table, our pEAC ensemble technique
is more robust (better results) than individual runs of the
clustering methods and the other unsupervised ensemble
clustering algorithms for all the medical datasets that were
used.

Additionally, as presented in Table 6, the speed up of-
fered by our proposed pEAC ensemble clustering tech-
nique is seen to match that offered by the other unsuper-
vised ensemble clustering methods that were employed in
the experiment.

4.4 Experimental results assessing the proposed
pEAC Ensemble Clustering Technique versus Su-
pervised Machine Learning Models

Tables 7, 8, and 9 summarise the results of the performance
of our proposed pEAC ensemble technique in comparison
with the supervised learning methods in terms of accuracy
of disease diagnosis and requirements in terms computa-
tional resources (speed and memory). In this experiment,
for the J48 and SMO we used the default parameter set-
tings in the Weka application. The parameter setting used
for J48 (Decision Tree C4.5) method specifies a confidence

Fig. 7. Boxplot showing outlier detection in Wisconsin
breast cancer dataset.

threshold for pruning set at the default value of 0.25, min-
imum number of instances per leaf set at default 2, using
of binary splits only. The parameter settings used for SOM
(SVM) method specifies C at default 1, the tolerance at de-
fault value of 1.0e-3, epsilon at default value of 1.0e-12,
and setting the kernel is set as polynomial.

The results reported in Table 7 show that the supervised
machine learning models (NB, J48, SMO) outperformed
our proposed pEAC ensemble clustering approach in terms
of diagnosing accuracy for the Hepatitis, Heart-statlog, and
Diabetes clinical datasets. Remarkably, however, in the
case of the two breast cancer datasets (i.e. the Breast can-
cer and Wisconsin Breast cancer) our proposed approach
offers better disease diagnosing accuracy than the all the
supervised learning techniques (results shown in bold) that
were employed in the experiment.

A Box plot, which is a simple method used to graph-
ically illustrate grouping in numerical data through their
quartiles (by plotting outliers as individual points) is used
to detect outliers in the Wisconsin breast cancer dataset. As
seen in Figure 7, the Wisconsin breast cancer dataset has
two outliers in the fourth column, three outliers in the fifth
column, one outlier in the sixth column, and two outliers
in the last column. The column (horizontal axis) repre-
sents the number of attributes (or features), while the ver-
tical axis plots values of the attributes. However, as pre-
sented in Tables 8 and 9, the gains recorded in diagnosing
accuracy by using the proposed pEAC ensemble cluster-
ing technique (for the two breast cancer datasets in Table
7) were realised at the expense of other computational re-
sources that were used, particularly, speed (Table 8) and
memory (Table 9).

It was shown in [31] and [32] that the respective mem-
ory requirements for the Naive Bayes and Decision Tree
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Table 5. Comparison of accuracy rate in disease diagnosis (for training set) between the proposed pEAC ensemble clus-
tering technique, individual clustering methods (KM, FCM, PFCM) and the standard unsupervised ensemble techniques
(hEAC and fEAC) with 10-folds cross-validations

Dataset Diagnosing Accuracy (%)
Name KM FCM PFCM hEAC fEAC pEAC
Hepatitis 73.55 76.78 79.36 76.78 83.87 84.51
Heart-statlog 59.26 64.75 64.75 72.66 76.66 76.66
Breast cancer 74.48 74.48 75.52 75.52 77.79 78.68
Wisconsin
Breast cancer

95.71 96.14 96.99 95.90 96.99 98.39

Diabetes 66.80 65.24 66.93 76.3 73.82 77.34

Table 6. Comparison of running time between the proposed pEAC ensemble clustering technique, individual clustering
methods (KM, FCM, PFCM) and the standard unsupervised ensemble techniques (hEAC and fEAC)

Dataset Running time (s)
Name KM FCM PFCM hEAC fEAC pEAC
Hepatitis 0.03 0.03 0.03 0.87 0.87 0.87
Heart-statlog 0.03 0.03 0.03 0.90 0.90 0.90
Breast cancer 0.03 0.03 0.05 0.91 0.91 0.92
Wisconsin
Breast cancer

0.04 0.04 0.07 1.50 1.50 1.51

Diabetes 0.08 0.08 0.15 1.90 1.90 1.95

Table 7. Comparison of accuracy rate in disease diagnosis between the proposed pEAC ensemble clustering technique
and supervised machine learning models with 10-folds cross-validations (best results highlighted in bold)

Dataset Diagnosing Accuracy (%)
Name pEAC Naive

Bayes
J48 SMO

Hepatitis 84.51 84.51 83.87 85.16
Heart-statlog 76.66 83.70 76.66 84.07
Breast cancer 78.68 71.67 75.52 69.58
Wisconsin
Breast cancer

98.39 95.99 94.56 96.99

Diabetes 77.34 76.30 73.82 77.34

Table 8. Comparison of running time between the proposed pEAC and supervised machine learning models
Dataset Running Time (s)
Name Data size pEAC Naive

Bayes
J48 SMO

Hepatitis 155 0.87 0.01 0.02 0.03
Heart-statlog 270 0.90 0.01 0.02 0.03
Breast cancer 286 0.92 0.01 0.03 0.03
Wisconsin
Breast cancer

699 1.51 0.01 0.04 0.04

Diabetes 768 1.95 0.01 0.07 0.08
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Table 9. Comparison of space requirements between the proposed pEAC and supervised machine learning models
Medical
Dataset Name

Data size No. of Attributes Space complexity (bytes)

hEAC Naive
Bayes

J48 SMO

Hepatitis 155 19 19,460 38 38 19,460
Heart-statlog 270 13 59,049 26 26 59,049
Breast cancer 286 9 66,254 18 18 66,254
Wisconsin
Breast cancer

699 9 395,766 18 18 395,766

Diabetes 768 8 477,757 16 16 477,757

(C.45) methods is O(fv) for systems containing f attributes
(features) and v feature values. Similarly, the space (mem-
ory) complexity for the Support Vector Machine (SVM)
was shown to be is O(n2) in [33], where n is number of
training set size. Our results presented in Table 9 suggest
that a similar quadratic space (of O(n2)) is required to ex-
ecute our proposed pEAC ensemble clustering technique
for a training set of size n.

5 CONCLUDING REMARKS
Most of the available literature utilise supervised meth-
ods to diagnose diseases from a wide range of medical
datasets. While these supervised methods are acceptable
and in many instances effective, they have been associ-
ated with the high demands in terms of parameters such
as learning rate, epoch, kernel and activation parameters
for tuning in order to achieve best results [25]. These
claims suggest that more resources are needed to obtain
the optimal outcomes from different combinations of pa-
rameter values. Furthermore, supervised machine learning
methods suffer from primacy associated with having one or
two parameters for tuning. To overcome these shortcom-
ings, we proposed a system that utilises an unsupervised
learning method to make inferences regarding different ail-
ments.

Our study proposed an Evidence Accumulation Clus-
tering (EAC) technique that integrates the Possibilistic
Fuzzy C-Means (PFCM) algorithm as its base cluster gen-
erator (pEAC) for the purpose of combining clustering par-
titions as needed to classify clinical data for disease diag-
nosis. Executed in three stages, in the first step of pEAC
ensemble technique, the PFCM algorithm is used to split
the dataset into smaller clusters. In the second step, rel-
evant information in these clusters are co-associated and
accumulated, so that the smaller clusters are combined. In
the third step, the Active Link hierarchical agglomerative
set is used to merge the smaller clusters that were obtained
in earlier steps.

Two experimental scenarios were presented to validate
the proposed ensemble clustering technique based on the

use of the synthetic and real clinical datasets. The per-
formance of the proposed technique was evaluated based
on comparisons alongside two sets of unsupervised learn-
ing approaches: individual runs of well-known clustering
algorithms (K-Means, FCM and PFCM) and other stan-
dard unsupervised ensemble clustering methods (hEAC
and fEAC) as well as one set of selected supervised (ma-
chine learning) models (consisting up of the Naive Bayes,
Decision Tree (J48), and Support Vector Machine (SVM)
with Sequential Minimal Optimisation (SMO) methods).

Our results show that the proposed pEAC ensemble
clustering technique outperforms the individual runs of
the KM, FCM and PFCM algorithms as well as the stan-
dard (hEAC and fEAC) unsupervised ensemble techniques
in terms of diagnosing accuracy and computational time
(speed) for both the synthetic and real medical datasets that
were used.

Remarkably, the comparison between our proposed
pEAC ensemble technique and the selected supervised
learning models revealed that, for tradeoffs in computa-
tional resources, the proposed technique offered gains in
terms of better diagnosing accuracy for the two breast can-
cer datasets that were used in the experiments, thereby sug-
gesting that the proposed ensemble clustering technique
could offer efficient disease diagnosis for certain data
types. Similarly, the computational requirements (speed
and memory) to execute the proposed ensemble technique
were able to match those offered by some of the supervised
learning models that were used in the experiments.

The outcomes suggest that even at the cost of none la-
belling of data, for certain tradeoffs, our proposed uncon-
ventional technique could offer efficient medical data clas-
sification, thus indicating its potential applications in more
advanced disease diagnosis.
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