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Turbo Codes Performance Optimization over Block
Fading Channels

Fulvio Babich, Guido Montorsi, and Francesca Vatta

Abstract— In this paper, the best achievable performance of
a turbo coded system on a block fading channel is obtained,
assuming binary antipodal modulation. A rate 1/3 turbo code
is considered, obtained by concatenating, through a random
interleaver, an 8-states rate 1/2 and a rate 1 convolutional
codes (CC). The block fading channel model is motivated by
the fact that in many wireless systems the coherence time of
the channel is much longer than one symbol interval, resulting
in adjacent symbols being affected by the same fading value.
The fading blocks will experience independent fades, assuming
a sufficient separation in time, in frequency, or both in time and
in frequency. This channel model is suitable for analyzing, for
instance, wireless communication systems employing techniques
such as slow frequency-hopping, as is done in the Global System
for Mobile communications (GSM).

In such systems, coded information is transmitted over a small
number of fading channels in order to achieve diversity. The
best coded information allocations over a certain number of
fading channels are evaluated, using the Eades-McKay algorithm
to generate distinct permutations of a multiset. Bounds on
the achievable performance due to coding are derived using
information-theoretic techniques. In particular, in the paper
an analytical method is proposed, based on the sphere-packing
bounding technique, to assess the achievable performance. More-
over, simulation results are obtained and compared with the
theoretical ones.

I. INTRODUCTION

The block fading channel model [1] is motivated by the
fact that in many wireless systems the coherence time of the
channel is much longer than one symbol interval, resulting in
adjacent symbols being affected by the same fading value. The
fading blocks will experience independent fades, assuming a
sufficient separation in time, in frequency, or both in time
and in frequency. An example of separation in frequency
can be a frequency-hopped multiple access (FHMA) system
that operates in a mobile satellite environment characterized
by frequency-nonselective slow Rician fading, provided that
the spacing between carriers is larger than the coherence
bandwidth, resulting in basically uncorrelated blocks [2]. An
example of separation in time is a satellite-based time-division
multiple access (TDMA) communication system, provided that
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the TDMA frame guarantees a sufficient separation between
the time-slots allocated to a single user [3]. An example of
separation both in time and in frequency is slow frequency-
hopping as is done in the Global System for Mobile commu-
nications (GSM) [4], where there are four (half-rate) or eight
(full-rate) carriers, whose spacing is larger than the coherence
bandwidth, resulting in virtually uncorrelated blocks. Another
example is the IS-54 standard [5], where there are two time
division multiple access (TDMA) blocks separated in time.

The performance of turbo codes over fading channels is
commonly evaluated using the union bounding technique and
assuming ideal interleaving (see, e.g., [6]). However, if a block
fading channel model is assumed, i.e., the fading process is
assumed to be constant over a block of N channel symbols and
it is statistically independent between the blocks, also coding
across different channel realizations provides a certain amount
of diversity, counteracting the effects of multipath fading. The
most important advantage of such a system is that the amount
of diversity is independent from the channel variation rate,
since it is a result of exploiting frequency selectivity. In this
work, the best coded information allocations across different
channels realizations are evaluated using information-theoretic
techniques. In particular, in the paper an analytical method
is proposed, based on the sphere-packing bounding technique
[7], to assess the achievable performance of a turbo coded
system over block fading channels, assuming binary antipodal
modulation. A rate 1/3 turbo code is considered, obtained by
concatenating, through a random interleaver, an 8-states rate
1/2 and a rate 1 convolutional codes (CC). The method does
not apply to a specific block encoding technique, and does
not require any information about the exact code structure. It
relies, instead, on some basic code characteristics, such as the
block length and the code rate. This approach is justified by the
observation that turbo codes adopting the best interleavers have
been shown to perform within less than 1 dB from the sphere-
packing bound (see [7]). Theoretical bounds on the achievable
performance due to coding and simulation results are obtained
and compared to assess the validity of the optimal allocation
design procedure.

The paper is organized as follows. Section II provides a
definition of the system model. Section III presents some
observations on how to design the optimum interleaver to
spread code symbols over the uncorrelated blocks. Section IV
reports bound results on the achievable performance, derived
using information-theoretic techniques, together with simula-
tion results. Finally, Section V summarizes the main results
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Fig. 1. Block diagram of the transmitter with the turbo encoder.

and the conclusions.

II. SYSTEM MODEL

The model of the turbo encoded transmission system with
diversity is shown in Fig. 1.

The information bits are encoded by a binary turbo code,
consisting in the parallel concatenation of two equal rate-k/n
systematic convolutional encoders and an interleaver. The k
information sequences are transmitted together with the (n−k)
check sequences of the first encoder. The same k information
sequences are interleaved and enter the second encoder; the
(n− k) check sequences generated by the second encoder are
also transmitted. The rate of the turbo code is then Rc =
k/(2n− k).

Information bits are coded by the parallel concatenated code
into L blocks of length N symbols, being L the number of
subchannels (or bursts in a TDMA system). These are denoted
as:

x = (x1,1 · · · x1,Nx2,1 · · · xL,N ) . (1)

Refer to these NL-dimensional codewords as frames. The
coded symbols x formed by the turbo code are passed to an
interleaver for practical reasons, the design of which will be
discussed in the following section. In the analysis, assume
antipodal modulation, i.e., xi,j = ±1, ∀i, ∀j.

The complex envelope of the transmitted channel waveform
s(t) for coded antipodal modulation can be expressed in the
form:

g (t) =
√

2Es

∑

i

xig0 (t− iTS) . (2)

Here, Es represents the energy per channel symbol, {xi}
is the binary sequence appearing at the output of a binary
encoder and g0 (t) is the complex envelope of the transmitted
channel signal with duration Ts and unit energy. When s(t) is
transmitted over the channel characterised by Rician fading,
in the hypothesis of multiplicative fading, a random amplitude
a(t) and phase Φ(t) are imposed onto s(t). The received
signal contains a stable specular (direct) component and a
random diffuse (multipath) component.

The received energy per channel symbol is the sum of the
corresponding specular and diffuse energy. For convenience
assume the following normalisation:

E
[
a2

]
= α2 + 2σ2 = 1, (3)

so that the received energy per channel symbol is Es. Note
that α2 and 2σ2 are the normalised energy (with respect to
Es) of the specular and diffuse components, respectively. The
channel parameter defined by K = α2

2σ2 represents the ratio
of specular to diffuse energy (Rician factor). In terms of α
and σ2, the distribution of the amplitude process a(t) can be
expressed as:

f (a) =
a

σ2
exp

{
−a2 + α2

2σ2

}
I0

(aα

σ2

)
, (4)

where I0 (·) is the modified Bessel function of the first kind
and zero order. The distribution f(a) is sufficiently general,
since for Rayleigh fading K = 0, while if K approaches
infinity the Rician channel reduces to the non-fading Gaussian
channel (AWGN channel) with a = 1.

Assume that the a(t) process varies slowly relative to an
elementary signalling interval of Ts seconds duration so that
it can be considered constant over any such interval. The re-
ceived signal is coherently demodulated under the assumption
of perfect timing recovery and exact carrier phase tracking.
The normalised matched filter output yi,j corresponding to
the symbol xi,j transmitted on subchannel i at time j is given
by [8]:

yi,j =
√

2Es

N0
ai,jxi,j + Ni,j , i = 1, ..., L; j = 1, ..., N. (5)

Here, {Ni,j} is an independent identically distributed (IID)
sequence of Gaussian variates with zero mean and unit vari-
ance. Moreover, the fading envelopes ai,j of the L subchannels
involved in each decoding process are assumed to be inde-
pendent of each other, identically distributed, and constant
over the subchannel. Namely, it is assumed that ai,j = ai

(i = 1, 2, ....L), ∀j, i.e., on subchannel i the fading amplitude
is assumed constant at the value ai throughout the block
sequence of length N .

In addition to the decision variables y = {yi,j}, the decoder
is supplied with a = {ai,j}, the channel amplitude estimates,
from a channel estimator, i.e., perfect channel state information
is assumed.

III. OPTIMAL INTERLEAVER DESIGN

The criterion for optimal interleaver design can be based
on the minimization of an upper bound to the frame error
probability (FER) found following the method proposed in [9].
Owing to the code linearity, assume that the all-zero message
is transmitted.

Define the fading envelopes vector:

a = (a1, a2, ..., aL) , (6)

where ai (i = 1, 2, ....L) represents the value of the envelope
process on the i-th subchannel.

Assuming perfect phase tracking of the phase perturbation
process and channel-state information at the receiver, the
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conditional pairwise error probability for an incorrect sequence
with distance vector d = (d1, d2, ..., dL) from the all-zero
codeword is:

Pe1 (d) |a= 1
2
erfc




√√√√Es

N0

L∑

i=1

dia2
i


 , (7)

where di is the Hamming distance between the portions of
two codewords residing in block (subchannel) i. The average
error event probability can then be determined by averaging
over the random L-vector a with the result:

Pe1 (d) =
1
2
Ea



erfc




√√√√Es

N0

L∑

i=1

dia2
i






 , (8)

where the expectation operator Ea {·} represents joint expec-
tation with respect to the components of a.

Following the method used in [9], (8) can be upper bounded
as:

Pe1 (d) ≤ 1
2

L∏

i=1

1
1 + di

Es

N0(K+1)

exp

[
−

di
EsK

N0(K+1)

1 + di
Es

N0(K+1)

]
.

(9)

In order to find the best code symbol allocation on the
different L subchannels, the design is based on the uniform
interleaver approach, as proposed in [10], where the authors
suggested replacing the actual interleaver with the average in-
terleaver. Define the coloured input-output weight enumerating
function (CIOWEF) of the code as:

AC(W,Z)
4
=

∑

w,d

Aw,dWw
L∏

l=1

Zdl

l , (10)

where Aw,d denotes the number of codewords generated by an
input information sequence of Hamming weight w and having
an output weight given by the vector d (i.e., an output weight
d1 on the first channel, d2 on the second channel, ..., dL on
the L-th channel).

Thus, the union bound to the block error probability PB

(for a block of NLRc decoded bits) can be calculated as:

PB ≤
∞∑

d=df

∑
w

Aw,dPe1 (d) , (11)

where the lower summation limits, df = (d1f , d2f , ..., dLf ),
are the free component distances associated with each sub-
channel.

Since the CIOWEF defined in (10) is related to the code
symbol allocation on the different channels performed by the
interleaver at the turbo encoder output (see Fig. 1), to find the
best code symbol allocation over the different channels, i.e.,
the optimal interleaver configuration, the union upper bound
on the block error probability PB defined in (11) has to be
minimized over all possible distinct code symbol allocations.

Generating distinct symbol allocations, i.e., permutations,
becomes more difficult for a multiset, a set of elements which

are not necessarily distinct, as in the case addressed here. In a
multiset of k distinct elements of multiplicity ni, 1 ≤ i ≤ k,
the number of distinct permutations is:

(∑k
i=1 ni

)
!

∏k
i=1 ni!

, (12)

a quantity which is known as the multinomial coefficient
of n1, ..., nk. Permutations of a multiset are often listed
in lexicographic order as in regular permutations. Another
common order is Gray code order, in which each consecutive
permutation differs from the permutations before and after it
by only two elements. The Eades-McKay algorithm used in
this paper to generate distinct permutations of a multiset is
described in [11] and generates all distinct permutations of a
multiset in Gray code order.

A. Example with L = 3

Consider a rate 1/3 turbo code obtained by concatenating,
through a random interleaver, an 8-states rate 1/2 and a rate
1 convolutional codes (CC), as specified in [12] as far as
the adopted constituent codes and termination scheme are
concerned. With the method described above, the best code
symbols allocation on the different L subchannels, i.e., the
best interleaver, can be found ∀L. For instance, with L = 3
and N = 300, the results reported in Table IV are obtained
applying the bound (11) for the three code symbol allocations
reported, as example, in Tables I, II and III, respectively.

TABLE I
ALLOCATION #1

Bit type Subchannel number
Information bits 1 1 1 1 1 1 1 1 1 · · ·

First constituent check bits 2 2 2 2 2 2 2 2 2 · · ·
Second constituent check bits 3 3 3 3 3 3 3 3 3 · · ·

TABLE II
ALLOCATION #2

Bit type Subchannel number
Information bits 1 2 3 1 2 3 1 2 3 · · ·

First constituent check bits 2 3 1 2 3 1 2 3 1 · · ·
Second constituent check bits 3 1 2 3 1 2 3 1 2 · · ·

TABLE III
ALLOCATION #3

Bit type Subchannel number
Information bits 2 1 2 2 1 2 2 1 2 · · ·

First constituent check bits 2 1 1 2 1 1 2 1 1 · · ·
Second constituent check bits 3 3 3 3 3 3 3 3 3 · · ·

As it results from Table IV, and as it will be confirmed,
in the following, by bounds and simulation results, Allocation
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TABLE IV
ALLOCATION COMPARISON FOR L = 3 WITH K = 0 (RAYLEIGH FADING)

AND N = 300. PB IS OBTAINED APPLYING THE BOUND (11)

Allocation # Eb/N0 [dB] PB

1 10 1.18E-05
2 10 5.06E-06
3 10 7.58E-06

#2 is better than Allocations #1 and #3, in the sense that it
presents a lower block error probability PB (given by (11)).

The reason for this better performance is due to the fact
that this allocation is characterized by a maximal spreading
of code symbols of a certain type all over the channels:
i.e., the information bits, the first constituent and the second
constituent check bits are uniformly distributed all over the
channels with period P equal to the channels number L (i.e.,
P = 3), which is the minimum period guaranteeing a uniform
distribution all over the channels. This minimum period is
adopted to minimize the complexity of the problem, i.e., to
make this problem mathematically tractable, since the number
of distinct permutations given by (12) increases dramatically
with the size of the period P . Namely, with period P = 3,
the number of distinct permutations (1680) is obtained from
(12) with k = 3 and ni = 3, ∀i. A longer period implies
higher multiplicities ni of each of the k = 3 distinct elements
(i.e., channels) considered in this example: for instance, with
period P = 6 the number of distinct permutations (1.71E+07)
is obtained from (12) with k = 3 and ni = 6, ∀i, resulting in
an intractable number of cases to be analyzed.

In Fig. 2, are reported the block error probabilities PB

(given by (11)) for each of the 1680 distinct permutations that
can be obtained at Eb/N0 = 10 dB, with K = 0 (Rayleigh
fading), N = 300 and P = L = 3 (this number can be
obtained from (12) with k = 3 and ni = 3, ∀i). As it can be
observed from the figure, there are 6 worst cases. These are
obtained using Allocation #1 and all the possible allocations
of this type: namely, the information bits, the first constituent
and the second constituent check bits are sent always over
one channel. Being L = 3, this can be done in L! = 6 ways.
Moreover, some intermediate performances can be obtained
applying for instance Allocation #3 given in Table III, where
only one bit type is sent always over one channel. The best
allocations (with lower block error probability PB) are those
guaranteeing a maximal spreading of code symbols of a certain
type all over the channels, as done for instance by Allocation
#2 (reported in Table II).

IV. RESULTS

A. Theoretical approach

Since a narrowband multiplicative fading process is as-
sumed, the fading channel gain at time t can be denoted by
a2(t), with E

[
a2

]
given by (3). Assume that the signal-to-

noise ratio (SNR) is given by Γ(t) = a2(t)Γav, where Γav
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Fig. 2. Block error probability PB (given by (11)) at Eb/N0 = 10 dB,
with K = 0 (Rayleigh fading) and N = 300, for each of the 1680 distinct
permutations that can be obtained with L = 3.

is the average SNR due to additive white Gaussian Noise
(AWGN) present on the channel.

The approach followed in this work is to quantize the SNR
range into Q + 1 intervals. The discrete-valued short-scale
fading process {ck} is, in this case, a memoryless process
where the fading state βk and the channel level ck are the
same [13].

As said previously, the interleaved code symbols are sent
on the L uncorrelated subchannels in blocks of length N .

It has been shown in [7] that the block error probability PB

of any binary code is lower bounded by:

PB > 2−N [Esp(R,s)+o(N)], (13)

where N is the block length, R is the code rate, s =
√

Es/N0,
being Γ = s2 the signal-to-noise ratio, and

Esp (R, s) = max
ρ≥0

[E0 −Rρ] , (14)

being

E0(ρ) = − log2

∫

z

1√
π

e−(z2+s2)
[
cosh

(
2sz

1 + ρ

)]1+ρ

dz.

(15)
The block error probability PB of the best binary code is

upper bounded by:

PB < 2−NE(R,s), (16)

where
E (R, s) = max

0≤ρ≤1
[E0 −Rρ] . (17)

Observe that, as long as the maximizing value of ρ is less
or equal than 1, condition that holds in all the cases examined
in the paper, the two bounds are asymptotically equivalent
and can be used to evaluate the best performance of a block
code. More precisely, the sphere-packing bound (13) expresses
a relationship among the code rate, the SNR, Γ, the block
length and the block error probability, that is valid for the
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best codes1. Thus, if one assigns a given value to three of
these parameters, the bound can be used to determine the
fourth. In this paper, the infinitesimal term o (N) is neglected.
A comprehensive discussion about the role of the infinitesimal
terms in the bound can be found in [14].

On slow fading channels, it may be shown that the best per-
formance (minimum average block error probability, E [PB ])
of a block code can be determined by:

E [PB ] =
∫ ∞

0

PB (Γ) fΓ (Γ) dΓ ≈
∫ Γ0

0

fΓ (Γ) dΓ, (18)

where fΓ (Γ) is the SNR probability density function, and
Γ0, is chosen so that PB (Γ0) = 0.5. Thus, the average
best performance may be obtained by approximating the
sphere-packing-bound with a step function (the transmission
is assumed to be error free if the signal to noise ratio satisfies
the inequality Γ > Γ0, and is assumed to be wrong otherwise).

Define the relevant code rate of the i-th block, Ri

(i = 1, 2, ....L), the rate that is obtained from (13) and (16) ∀i
as the rate needed to achieve the target block error probability
PB = PB (Γ0), assuming N = NL. Each Ri represents the
ratio between the number of information bits transmitted on
subchannel i and total bits NL. Observe that the used block
length value corresponds to the full block length NL, not to
the segment size N . To determine if the total transmission of
the NL-dimensional codeword (i.e., frame) can be assumed to
be successful or not, given a certain SNR distribution s over
the L subchannels, the average value of the relevant code rates,
corresponding to the transmissions of the different blocks,
needs to be defined: call this average value the sustainable
rate, Rs.

The sustainable rate Rs, defined as the average value of
rates that correspond to the different blocks, is calculated as:

Rs =
∑L

i=1 Ri

L
. (19)

The total transmission of the NL-dimensional codeword
(i.e., frame) is assumed to be successful if the inequality
Rs > Rc is satisfied, i.e., if the rate of the code actually
used is lower than the sustainable rate, and is assumed to
be unsuccessful otherwise. The residual FER at the decoder
output, conditioned on a fixed SNR distribution s over the L
subchannels (a2

s1
Γav, a

2
s2

Γav, ..., a
2
sL

Γav), can thus be deter-
mined as:

FER(Γav, a
2
s1

, a2
s2

, ..., a2
sL

) =
Pr[Rs < Rc|a2

s1
Γav, a

2
s2

Γav, ..., a
2
sL

Γav)
. (20)

The number of possible SNR distributions is D = QL being Q
the possible fading states βk. Thus, the average FER is given
by:

FER(Γav) =
∑D

s=1 FER(Γav, a
2
s1

, a2
s2

, ..., a2
sL

)·
·Pr[a2 = (a2

s1
, a2

s2
, ..., a2

sL
)]

, (21)

1The best codes present a performance which is within less than 1 dB from
the bound (also for short block-lengths) especially in the waterfall region.
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Fig. 3. Residual FER values at the decoder output versus Es/N0 for different
values of L with NL = 2700. A Rayleigh fading is assumed (K = 0).
Theoretical results (solid curves) are compared with simulation results (dotted
curves with ’o’ and dashed curve with ’*’). The curves with the label “block”
are obtained with L = 1. For all L values, the dotted curves with ’o’ are
obtained using the optimal code symbol allocation. For L = 3, the dashed
curve with ’*’ is obtained with the allocation of Table I (worst case), whereas
the dotted curve with ’o’ is obtained with the optimal allocation of Table II
(best case).

being

Pr[a2 = (a2
s1

, a2
s2

, ..., a2
sL

)] =
L∏

i=1

Pr[a2
i = a2

si
]. (22)

In Fig. 3 the theoretical FER values (solid curves) are re-
ported versus the average signal-to-noise ratio Γav for different
values of the number of subchannels L with NL = 2700. A
Rayleigh fading is assumed (K = 0). The curve with the
label “block” is obtained with L = 1, i.e., for an ideal slow
multipath fading channel: in this case, the mobile terminal
is assumed to move so slowly that the fading amplitude is
constant within the whole frame.

For small values of L (i.e., L ≤ 3) (21) can be evaluated
directly, whereas for greater L (i.e., L ≥ 4) one can resort to
Monte Carlo simulation.

Fig. 4 compares the results obtained with the bound pro-
posed in this paper with the union bound results, evaluated
with the methods presented in [9] and [15], respectively2,
with NL = 2700. In particular, the union bound to the block
error probability PB derived in [9] (dash-dotted curves) can
be obtained substituting (9) in (11). Moreover, following the
method used in [15], (8) can be upper bounded as:

Pe1 (d) <
1
2

(
N0

χ2(d)Es

)dL
H

exp
(
− K

K + 1
dL

H

)
, (23)

2The methods presented in [9] and [15] are used in the sense that the union
bound to the FER is calculated by averaging first the conditional pairwise
error probability over the fading vector, and then performing the union bound
summation (i.e., with the method that E. Malkamäki and H. Leib call “average
before sum”). Observe that, for determining a tighter union bound, an L-fold
integration must be performed.
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Fig. 4. Residual FER values at the decoder output versus Eb/N0 for L = 2.
Rc = 1/3 and NL = 2700. A block Rayleigh fading channel is assumed.
Sphere-packing bound results (solid curve) are compared with simulation
results (dotted curve with ’o’), and the union bound results obtained applying
the methods presented in [9] (dash-dotted curves) and in [15] (dotted curves),
respectively.

TABLE V
OPTIMAL ALLOCATION WITH L = 2

Bit type Subchannel number
Information bits 1 2 1 2 1 2 1 2 1 · · ·

First constituent check bits 2 1 2 1 2 1 2 1 2 · · ·
Second constituent check bits 1 2 1 2 1 2 1 2 1 · · ·

where

χ2(d) =




dL
H∏

i=0

di




1/dL
H

, (24)

and dL
H is the number of nonzero di. Thus, the union bound to

the block error probability PB derived in [15] (dotted curves)
can be calculated as:

PB ≤
∑

dL
H ,
QdL

H
i=0 di

M


dL

H ,

dL
H∏

i=0

di


 Pe1 (d) , (25)

where M
(
dL

H ,
∏dL

H
i=0 di

)
is the average multiplicity (i.e.,

number) of the subset of codewords having the same couple
of values dL

H and
(∏dL

H
i=0 di

)
.

In the figure, as done in [9], the union bound summation,
giving the FER, is truncated such that only the error events
having total distance d = d1 + ... + dL ≤ dmax are taken
into account, where di is the Hamming distance between the
portions of two codewords residing in block (subchannel) i.
Observe that the union bound accuracy may be acceptable
at high SNRs only. The figure considers L = 2, as example,
assuming the symbol allocation reported in Table V. As shown
in the figure, the union bound may be used for determining
the asymptotic FER slope.

TABLE VI
OPTIMAL ALLOCATION WITH L = 4

Bit type Subchannel number
Information bits 1 4 3 2 1 4 3 2 1 · · ·

First constituent check bits 2 1 4 3 2 1 4 3 2 · · ·
Second constituent check bits 3 2 1 4 3 2 1 4 3 · · ·
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Fig. 5. Residual BER values at the decoder output versus Es/N0 for different
values of L with NL = 2700. A Rayleigh fading is assumed (K = 0).
Simulation results are reported. The curve with the label “block” is obtained
with L = 1. For all L values, the optimal code symbol allocation is used.

B. Simulation results

In Fig. 3, are also reported the residual FER values versus
Es/N0 obtained by simulation (dotted and dashed curves). For
each value of L, the dotted curves are obtained having assumed
to use the best interleaver, following the design rules described
in Section III. In Tables V and VI are reported the optimal code
symbol allocations for L = 2 and L = 4, respectively.

For L = 3, the dashed curve reports the simulation values
obtained with the code symbol allocation reported in Table I
(worst case), whereas the dotted curve reports the simulation
values obtained with the optimal code symbol allocation
reported in Table II (best case).

In Fig. 5, are reported also the residual BER values versus
Es/N0 obtained by simulation. For each value of L, the
curves are obtained having assumed to use the best interleaver,
following the design rules described in Section III.

V. CONCLUSIONS

In this paper, the achievable performance of a turbo coded
system adapted to a block fading channel model has been
evaluated. Namely, the fading process has been assumed
constant over a block of channel symbols and statistically
independent between blocks.

Coding across different channel realizations provides a cer-
tain amount of diversity, counteracting the effects of multipath
fading, provided that the best coded information allocations
across the different subchannels are used. In this paper,
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these best allocations have been evaluated using information-
theoretic techniques. Namely, the best coded information
allocations over a certain number of fading channels have
been evaluated, using the Eades-McKay algorithm to generate
distinct permutations of a multiset. The best allocation method
has been assessed looking for a minimum of the block error
probability PB , calculated using the union bounding tech-
nique. In the paper it has been shown that the best allocation
method aims at maximizing the spreading of code symbols
of a certain type all over the channels: i.e., the information
bits, the first constituent and the second constituent check bits
have to be uniformly distributed all over the channels with
period P equal to the channels number L, since this is the
minimum period guaranteeing a uniform distribution all over
the channels.

Moreover, to assess the validity of the optimal allocation
design procedure, theoretical bounds on the achievable per-
formance due to coding have been found and compared to
simulation results.
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