
252 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 2, NO. 3, SEPTEMBER 2006

High throughput implementation of an adaptive
serial concatenation turbo decoder

Maurizio Martina, Andrea Molino, Fabrizio Vacca, Guido Masera, and Guido Montorsi

Abstract— The complete design of a new high throughput
adaptive turbo decoder is described. The developed system is
programmable in terms of block length, code rate and modulation
scheme, which can be dinamically changed from frame to frame,
according to varied channel conditions or user requirements. A
parallel architecture with 16 concurrent SISOs has been adopted
to achieve a decoding throughput as high as 35 Mbit/s with 10
iterations, while error correcting performance are within 1dB
from the capacity limit. The whole system, including the iterative
decoder itself, de-mapping and de-puncturing units, as well as the
input double buffer, has been mapped to a single FPGA device,
running at 80 MHz, with a percentage occupation of 54%.

Index Terms— turbo codes, channel decoders, parallel archi-
tectures, VLSI implementation

I. INTRODUCTION

AFTER the pioneering work published in 1993 [1] on
turbo codes, a large amount of efforts has been spent

on the design, evaluation and implementation of concatenated
convolutional codes with iterative decoding. Nevertheless
turbo codes are still a major subject of interest in the scientific
literature and a growing effort is currently being dedicated to
the implementation issue.

The availability of deeply scaled CMOS technologies today
enables the low cost implementation of high complexity de-
coding algorithms, such as the BCJR [2] commonly adopted
for turbo codes; however two main important requirements of
modern and future channel decoders still make the hardware
implementation of turbo codes a difficult challenge:
• the quest for extremely high data rates
• the need of incorporating elements of flexibility in the

decoder.
The first requirement directely results in the adoption of

parallel decoding architectures that significantly impact on
the implementation cost and pose additional constraints in
the design of the code and especially of the interleaver,
as reviewed in section II. The characteristic of flexibility
is referred at least to the capability of supporting different
block lengths and code rates; this is often coupled to
the need of supporting multiple modulation schemes, so
demanding flexibility also in the demapping section of the
receiver. Versatility always affects hardware cost and energy

Manuscript received March 30, 2006; revised August 25, 2006. This
research was supported in part by Italian Ministry of Science and Technology
(MIUR) under FIRB PRIMO project, in 2004-2006.

Authors are with Department of Electronics, Politecnico di Torino,
Italy (e-mail: {maurizio.martina, andrea.molino, fabrizio.vacca, guido.masera,
guido.montorsi}@polito.it).

consumption and as a consequence it must be incorporated
with carefulness, in order not to depress the energy efficiency.
So new efficient architectures are needed to achieve in
turbo decoders both characteristics of high throughput and
flexibility.
Particularly, the implementation of high throughput turbo
decoders has been addressed in several applicative contexts,
including wireless communications [3] [4], satellite
applications [5] [6], optical communications [7] and data
storage [8]; however it still represents a major challenge to
electronic system designers and today the domain of efficient
and flexible implementation solutions is deeply investigated
by researchers. On the other hand, a few works have been
published on the implementation of versatile turbo decoders
(see for example [9] [10]).

In this work, the complete design of a new high throughput
versatile turbo decoder is described. The addressed code makes
use of a serial concatenation scheme; the system flexibility is
referred to block length, code rate and modulation scheme. In
order to achieve high decoding throughput, a parallel architec-
ture has been designed with 16 SISO units; the implemented
system also includes inner and outer de–puncturing sections,
a flexible de-mapper and an input double buffer to decouple
decoder frequency from the rate of incoming symbols. The
whole system has been mapped and tested on a single ad-
vanced FPGA device, achieving a 35 Mbit/s throughput with
a clock frequency of 80 MHz.
The rest of the paper is organized as followed: after a review
of parallel architectures for turbo decoders in section II, the
addressed adaptive communication scheme is described in sec-
tion III, while sections IV and V report implementation details
and synthesis results respectively; finally some conclusions are
drawn in section VI.

II. PARALLEL ARCHITECTURES FOR TURBO DECODERS

Different forms of parallelism can be introduced in a
turbo decoder. First of all, given a decoding unit capable
of iteratively processing one block at the time, one could
think to simply organize multiple decoding units in a parallel
architecture that simultaneously works on a number of data
blocks. Despite the fact that this straightforward approach
provides a throughput speed-up proportional to the number of
allocated processors with no increase in the decoding latency,
it has not been adopted for practical implementations, mainly
due to the unacceptable growth of complexity and particularly

1845-6421/06/5193 c© 2006 CCIS

FESB
Typewritten Text
Original scientific paper

MAURIZIO et al.: HIGH THROUGHPUT IMPLEMENTATION OF AN ADAPTIVE SERIAL CONCATENATION TURBO DECODER 253

in the required memory for buffering of data and interleaving.
Alternatively, multiple decoders can be allocated to operate
in a pipelined fashion on consecutive data blocks: this form
of iteration level parallelism achieves high throughput at the
cost of additional storage for the multiple blocks that are
simultaneously processed.
A more efficient strategy is to exploit potential parallelism
at different levels in the decoding algorithm, rather than
allocating multiple complete decoders. Of course, parallelism
is routinely introduced in the implementation of the Add-
Compare-Select modules that implement the basic equations
for the forward and backward metric recursion [1].

Block level parallelism is also very often exploited
in high performance decoders by independently
processing consecutive sub-blocks. The sliding window
approximation [11] [12] [13] of the original decoding
algorithm is routinely adopted for dividing the data block
into a number of windows (length NW) to be sequentially
processed; in order to achieve high processing throughputs,
identified windows can alternatively be decoded in parallel,
provided that proper initialization metrics are available at
the window borders. Two possibilities have been proposed
to obtain these initialization metrics in a form that makes
negligible the approximation effects on the code performance.
In the first method (see as an example [14]), windows
are extended in the forward and backward directions, so
obtaining overlaps by a trellis length NS with the two adjacent
windows; these two windows extensions imply a processing
overhead but NS can be sized long enough (typically a few
times the constraint length of the convolutional code [15]) to
provide reliable initialization metrics for the non-overlapped
part of the window, which is the only one actually decoded
at each step.
The second method to initialize border metrics has been
proposed in [16] and makes use of the trellis metrics
evaluated at the bounds of the window in the previous
decoding iteration. Also this approach has been proved to
generate negligible performance losses and additionally it has
no throughput and latency penalty because there is no overlap
in the window processing.
A different, reduced complexity approach to exploit window
level parallelism in turbo decoders has been proposed in [17]
(multiple slice turbo encoding), where authors avoid sub-block
overlapping by independently encoding each sub-block at the
transmitter side.

Block level parallelism is more efficient than the allocation
of multiple decoders, however it demands architectures where
a number of separated SISO units operate concurrently on
different windows and this implies that also interleaving mem-
ories are accessed concurrently. While the implementation of
interleavers and de-interleavers in serial architectures typically
requires the use of a unique memory with proper addressing, in
the parallel case multiple memories must be organized to serve
in parallel allocated SISO units, with the constraint that all
simultaneous accesses from or to different SISOs are referred
to different memories.
Of course, one can think to simply stall the decoder when a

collision in the memory access occurs: this means that when
two SISOs need to read a data from the same memory, two
subsequent access operations are scheduled and the decoding
process is slowed down. However it has been proved that
random interleavers frequently generate collisions on parallel
architectures and as a consequence more efficient solutions
to this problem are required. Known approaches from the
literature are usually classified in two categories:

1) either the code itself, and particularly the interleaving
law, can be designed with the collision constraint in
mind, so making it able to support a given degree of
parallelism,

2) or decoding architectures may be conceived with a
collision-free structure that enables them to completely
avoid, or at least attenuate, decoding stalls

Several efficient methods to design collision-free inter-
leavers have been proposed by many authors (see for example
[18] [14] [19] [20] [21] [22] [17]): in most cases, suitable
combinations of spatial and temporal permutations are adopted
together with specific optimization constraints aimed at obtain-
ing high spreads on single error events.
A smaller number of works have been published on the
subject of collision-free architectures. The most relevant pro-
posed solutions are related to specific rescheduling architec-
tures that manage the memory conflicts by suitably buffering
data [23] [24] [25] [26], and to an high complexity routing
network made of crossbar switches coupled with interleaving
memories that have been shown to support arbitrary permuta-
tion laws for any degree of parallelism [27] [28].

Rate ½
4-state

Interleaver

Interl.
Rate ½
4-state

Punc.
sys

Punc.
parity

Fix
Punct.

11
10

u

m= 1,2,3 bits

u c1

c2

16QAM

S

P

S

S

P

N

N+2

N+2

2/3N-2 P 64QAM

4 QAM

Fig. 1. Block diagram of the encoding scheme

III. A HIGH SPEED ADAPTIVE SCHEME

A versatile pragmatic encoder to be used in conjunction with
high order modulation schemes has been proposed in [9]. A
slight variation of it is reported in Figure 1: the addressed
system exploits a versatile physical layer with OFDM modu-
lation that adapts to both the mobile channel conditions and
the changing user throughput; the embedded encoding scheme,
given in Figure 1, is characterized by the following features:

1) Variable information block size K that depends on the
throughput of the user, as the radio frame is assumed to
be fixed at 10 ms

2) Variable code rate K/N and modulation scheme, to cope
with variable channel conditions

254 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 2, NO. 3, SEPTEMBER 2006

3) Since water filling techniques [29] are used to fully
exploit the channel capacity, multiple modulations may
be associated to the same codeword

4) Simple and fast decoder
5) Performance close to the capacity and low error floor

The encoder is build around a serial concatenation of two
simple rate 1/2 4-state systematic encoders. The outer encoder
is always punctured to a rate 2/3 encoder using fix puncturing
pattern [1, 1, 1, 0]. As a consequence, the interleaver size N is
always equal to 3/2K + 3, independently of the SCCC code
rate.

The variable codeword size N is obtained by puncturing
the inner encoder. Different puncturing is applied to the
N + 2 systematic and parity check bits generated by the
inner encoder. Systematic bits (S in the figure) are punctured
according to an optimized and incremental pattern of length
512. Parity check bits are instead punctured according to a
rate-matching similar to that used in the UMTS standard.

The amount of puncturing on the two branches depends on
the desired rate. Proper puncturing allows to achieve rates very
close to one without performance losses. The minimum rate
achievable is K/(3K+10). If lower rate are desired, repetition
is applied to the parity check bits only. The generated bits are
then mapped to the different modulation symbols associated
to the codeword through an interleaver and Gray mapping
as shown in Figure 1. Most reliable bits of modulations are
associated to systematic bits.

The set of interleaver sizes has been chosen to be N = 768n
with n = 1, . . . , 21 , so that K = 512n− 2. The interleavers
have been designed to allow simple parallel implementation of
the decoder with 16 parallel SISO (see Figure 2). The simple

MemoryN
=

(nx48)x16

16ParallelSISOProcessors
01
15

01
15Cyclic shift

macrodata48xnn=1,22
Fig. 2. The designed interleaver with simplified parallel access.

structure also allows to represent them with a more compact
data structure, as detailed in section IV-B

Performance of the scheme are reported in Figure 3. In the
figure we report the loss with respect to the unconstrained
capacity of the scheme as a function of the spectral efficiency,
measured in bits per dimension. The interleaver size is 10, 000
while modulations ranges from 4QAM up to 4096QAM. The
FER where the signal-to-noise ratio was measured is 10−3.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Spectral efficiency (bits/dimension)

L
o

ss
 f

ro
m

 c
ap

ac
it

y

64-QAM 256-QAM 1024-QAM16-QAM4-QAM

Pragmatic
capacities

1024QAM
capacity

Unconstrained
capacity

Fig. 3. Loss from capacity of proposed scheme and pragmatic capacities vs
the spectral efficiency.

On the same plot we report for reference the capacity of
the 1024QAM and the capacities of the various scheme when
using the pragmatic (BICM) approach. Note that the pragmatic
capacities cross each other and this justify to switch from one
modulation scheme to another when increasing the spectral
efficiency. The scheme shows, up to 64QAM, a constant loss
from correspondent capacity of roughly 1dB, independently
of the modulation and spectral efficiency. Above 64QAM the
losses seems to slightly increase.

In Figure 4 we report the performances of the quantized
decoder for three different cases, namely 4QAM with spectral
efficiency η 1 bit/s/Hz, 16QAM with spectral efficiency 3
bit/s/Hz and 64QAM with spectral efficiency 5 bit/s/Hz. Solid
lines are the performances of the ideal floating point decoder.
Short dashed lines are the performance of a decoder that uses 5
bits for the LLR representation and 7 bits for the representation
of extrinsic information (loop variables). In the representation
of both LLR and extrinsic information, two bits are kept to
the right of the point and this imply the use of a LUT of 9
elements for the max∗ operation (see eq. 11 in the following
Section). Finally, long dashed lines are the performance of a
decoder that uses 6 bits for the LLR representation and 7 bits
for the representation of extrinsic information (loop variables),

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12

E b /N 0 [dB]

B
E

R

Ideal (5.2)-(7.2) (6.2)-(7.2)

η =1
4QAM

η =3
16QAM

η =5
64QAM

Fig. 4. Performance of quantized decoder for three different spectral
efficiency.

MAURIZIO et al.: HIGH THROUGHPUT IMPLEMENTATION OF AN ADAPTIVE SERIAL CONCATENATION TURBO DECODER 255

16
16

1616

16

DOUBLE

BUFFER

I−DEP
LLR

inner half−iteration

outer half−iteration

16

O−PUNCTO−DEP

siso 0

siso 1

siso 15

BUF 0

BUF 1

BUF 15

BUFFER

DELAY
ADDRESS

INTERLDE−INTERL
CFG
MEM

Decoding loop

XBAR

16x16

S
IS

O
−

16

ESTIMATION

CHANNEL

DE−MAPPERDEMOD.
OFDM

RECEIVER
FRONT−END

Fig. 5. Decoder block scheme.

with the same precision. From the curves it is evident that this
last solution offers performances almost identical to the ideal
case. A larger dynamic for the LLR should be chosen if larger
constellation (e.g 256 or 1024 QAM) are used.

IV. IMPLEMENTATION

The overall high level scheme of the implemented system
is shown in Figure 5. The OFDM demodulator gets symbols
from the receiver front–end and provides samples to the de–
mapper that generates logarithmic likelihood ratios (LLR) to
the decoder, according to selected modulation and obtained
channel estimation. De–mapper and channel decoding units
have been implemented in hardware, while dashed blocks in
Figure 5 are not described in this work. I–DEP block inverts
the inner puncturing procedure applied at the encoding side, so
adapting the global rate at the input of the decoding loop that
basically implements the iterative MAP algorithm by means
of a parallel structure. In order to support high data–rates,
a double memory buffer has been instantiated between the
inner depuncturer and the decoding loop. This double buffer
guaranties that the non iterative part of the decoder (namely
de–mapper and de–puncturer) and the decoding loop work
simultaneously on consecutive data blocks.
The decoding loop in Figure 5 is organized to handle both
inner and outer half–iterations and it is made of the following
main units. SISO–16 includes sixteen SISO processors that
concurrently operate on different windows along the trellis and
synchronize exchanged data through FIFO (First In First Out)
memories; DE–INTERL and INTERL blocks implement the
required metric permutations by generating proper addresses
for the data memory that is mapped to the BUFFER unit, con-
sisting of sixteen parallel memories; XBAR is a 16×16 cross-
bar switch network allowing for proper memory to processor
mappings with no collisions, for all supported interleaver sizes;
finally O–PUNCT simply applies the outer puncturing pattern,
while O–DEP performs the opposite operation.

Two paths are distinguished in the decoder scheme, related
to inner (dashed lines) and outer (dotted lines) half-iterations;
both paths connect processing or storage units that are inter-
nally organized as parallel architectures, thus each connection
carries 16 metrics at the same time.

A. Parallel SISO architecture

The proposed parallel SISO architecture is based on 16
processors working in parallel (see Fig. 6).

SISO1

SISO15

SISO0
λc1

in(k)

λu0
out(k + n)

λc0
out(k + n)

λc1
out(k + n)

λu0
out(k + 15n)

λc0
out(k + 15n)

λc1
out(k + 15n)

λu0
out(k)

λc0
out(k)

λc1
out(k)

αout

αout

αin

αin

αin

βinit

αinit

βin

βin

βin

βout

βout

λu0
in (k + 15n)

λc0
in(k + 15n)

λc1
in(k + 15n)

λu0
in (k + n)

λc0
in(k + n)

λc1
in(k + n)

λu0
in (k)

λc0
in(k)

Fig. 6. Parallel SISO architecture

The single SISO, depicted in Fig. 7, works on consecutive
windows of logarithmic likelihood ratios (LLRs) provided by
the demapper and indicated as λin(k). The considered code
leads to a 4 states SISO that receives 3 LLRs at each clock
cycle

λu0
in (k) λc0

in(k) λc1
in(k) (1)

(related to encoder input and output symbols u0, c0 and c1
respectively) and combines them to produce the branch metrics

256 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 2, NO. 3, SEPTEMBER 2006

(BMs)

γi(k) = λu0
in (k)

γo1(k) = λc0
in(k) + λu0

in (k) γo2(k) = λc1
in(k) (2)

This operation is combinatorially performed by the branch
metric unit (BMU) that also generates the addresses and the
write enable signals to store BMs into the BM memories (BM-
mem0 and BM-mem1).
Since each SISO elaborates in pipeline two windows, the
BMs, produced by the BMU, are immediately used by the
α processor (α-proc) to compute the α recursion. At the
same time these BMs and their α values ought to be stored
into the BM memories and into the α memories (α-mem0
and α-mem1) in order to later perform the β recursion.
This task is accomplished by the β processor (β-proc); in
addition this processor generates proper addresses and read
enables to read BMs and α values from respective memories.
In fact the BMs ought to be delayed and combined with
properly aligned α and β values to produce the output LLRs
(λu0

out(k), λc0
out(k), λc1

out(k)).
The correct metric computation into the α and β processors

is granted by the metric wrapping arithmetic [30]. The two
metric processors compute the state equations defined by the
4 states trellis:

α̂0(k + 1) =
∗

max(α̂0(k),
γo1(k) + γo2(k) + α̂2(k)) (3)

α̂1(k + 1) =
∗

max(α̂2(k),
γo1(k) + γo2(k) + α̂0(k)) (4)

α̂2(k + 1) =
∗

max(γo2(k) + α̂3(k),
γo1(k) + α̂1(k)) (5)

α̂3(k + 1) =
∗

max(γo2(k) + α̂1(k),
γo1(k) + α̂3(k)) (6)

and

β̂0(k − 1) =
∗

max(β̂0(k),
γo1(k) + γo2(k) + β̂1(k)) (7)

β̂1(k − 1) =
∗

max(γo2(k) + β̂3(k),
γo1(k) + β̂2(k)) (8)

β̂2(k − 1) =
∗

max(β̂1(k),
γo1(k) + γo2(k) + β̂0(k)) (9)

β̂3(k − 1) =
∗

max(γo2(k) + β̂2(k),
γo1(k) + β̂3(k)) (10)

where α̂i(k), β̂i(k) with i ∈ {0, 1, 2, 3} represent the 4
forward and backward SMs (α(k) = [α̂0(k) . . . α̂3(k)] and
β(k) = [β̂0(k) . . . β̂3(k)]); the operator max∗ is the same
defined in [31], namely

∗
max(a, b) , max(a, b) + ln

(
1 + e−|a−b|

)
(11)

The α and β processor architecture is based on 4 max∗

blocks working in parallel, one for each SM. Every max∗

has been implemented as an add–compare–select (ACS) block
with a look–up–table (LUT) for the logarithmic correction

[32]. The logarithmic correction is based on 3 fractional bits,
leading to a 22× 3 bits LUT [31]. Despite the wrapping, the
SMs relative distance is preserved during the computation.
However to combine the SMs and to compute the output
LLRs, they need to be renormalized. The “norm” blocks
in Fig. 7 are devoted to perform the renormalization: the
minimum SM among α̂0(k), α̂1(k), α̂2(k) and α̂3(k) (or
β̂0(k), β̂1(k), β̂2(k) and β̂3(k)) is found and subtracted to
obtain α̃i(k) = α̂i(k) − min{α̂j(k)|j ∈ {0, 1, 2, 3}} (or
β̃i(k) = β̂i(k) − min{β̂j(k)|j ∈ {0, 1, 2, 3}}). Then the
normalized SMs, combined with the BMs generate the output
LLRs as:

λu0
out(k) = γt(k)− γi(k) (12)

λc0
out(k) = γt(k)− γo1(k) (13)

λc1
out(k) = γt(k)− γo2(k) (14)

where

γt(k) =
∗

max(x3(k), x1(k))

− ∗
max(x2(k), x0(k)) (15)

x3(k) =
∗

max(γo1(k) + γo2(k) + α̃2(k) + β̃0(k),
γo1(k) + γo2(k) + α̃0(k) + β̃1(k)) (16)

x1(k) =
∗

max(γo1(k) + α̃1(k) + β̃2(k),
γo1(k) + α̃3(k) + β̃3(k)) (17)

x2(k) =
∗

max(γo2(k) + α̃3(k) + β̃2(k),
γo2(k) + α̃1(k) + β̃3(k)) (18)

x0(k) =
∗

max(α̃0(k) + β̃0(k), α̃2(k) + β̃1(k)) (19)

The output generation, implemented into the γ processor is
based on a tree of adders and ACS as described in [32].

The correct scheduling of the operations is mainly per-
formed by two control units (α-CU and β-CU) devoted to
start the BMU and the β processors respectively. Moreover
the control units manage the correct multiplexers selection and
the FIFOs. It is worth pointing out that the α and γ processors
are synchronized by the BM memories write enables and the
α memories read enables respectively (see Fig. 7).

Instead of implementing a training window to grant the SMs
reliability, each SISO uses the boundary SMs evaluated at the
i− 1th iteration as the initialization SMs for the ith iteration
[16] as depicted in Fig. 8.

In the implemented architecture, the control unit complexity
has been reduced by imposing that all SISOs process the
same number of windows, Nw. Both window size w and Nw

have to be tuned on the basis of the input block length, K,
to be supported. To size the window we have to consider that
each outer SISO follows a de-puncturer and is followed by a
puncturer, devoted to make the rate R = 1/2× 4/3 = 2/3. In
the presented implementation we employ w = 32 or w = 64
for the outer SISO, and w = 48 or w = 96 for the inner SISO.
As a consequence of this choice, the interleaver size (I) is
quantized to satisfy the condition I = 48×16× l = 768l with
l ∈ N+. This restriction allows the 16 SISO to process the
same number of windows and grants a great simplification
in the parallel SISO control unit. Considering that every
convolutional encoder adds 2 termination bits, I = 768l

MAURIZIO et al.: HIGH THROUGHPUT IMPLEMENTATION OF AN ADAPTIVE SERIAL CONCATENATION TURBO DECODER 257

BMU

α−proc

α−CU

BM−mem0 BM−mem1

β−proc

start

α−mem0

α−mem1

norm γ−proc

delay

norm

−FIFOβ

β−FIFO

is_inner β−FIFO

α−FIFO

local−inner

local−outer

extern

extern

−CUβ

γi(k)

γo1(k)

γ02(k)

α(k + 1)

αin

α(k)

ren − αin

βin

ren − βin

λu0
out(k)

λc0
out(k)

λc1
out(k)

β(k − 1)

β(k)

βout

λu0
in (k)

λc0
in(k)

λc1
in(k)

αoutren − αout

ren − βout

αprev

Fig. 7. Single SISO architecture

���
���
���
���
���
���
���

���
���
���
���
���
���
���

SISO0 SISO1 SISO15

i=0

i=1

i=2

0 0
0000 00 0 0

0 1 0 1 0 1

One window

β
(0)
0,1 β

(0)
1,0β

(0)
0,2 β

(0)
1,1 β

(0)
2,0β

(0)
1,2

β
(1)
1,1 β

(1)
2,0β

(1)
1,2

αinit

αinit α
(1)
0,Nw−1

α
(0)
0,Nw−1 α

(0)
14,Nw−1

α
(1)
14,Nw−1

αinit

Nw − 1 Nw − 1 Nw − 1

βinit

βinit

βinitβ
(1)
0,1 β

(1)
1,0β

(1)
0,2

β
(0)
15,2β

(0)
15,1

β
(1)
15,2β

(1)
15,1

Fig. 8. Parallel elaboration with state metric passing scheme

implies K = 512l − 2.

One of the key point in the organization of parallel SISO
units is related to the exchange of initialization state metrics
(SMs) for both α and β processing (see Figure 6). The
synchronized propagation of metrics among SISOs is achieved
through 4 FIFO memories, as detailed in the following.

In the α recursion, the first window of each SISO requires
to load its αin value from a neighbor (the nth SISO from
the n − 1th). In other words, the αout of the n − 1th SISO,
becomes the αin of the nth one. Similarly in the β recursion,
the last window of each SISO requires to load its βin from
a neighbor: the βout of the n + 1th SISO becomes the βin

of the nth one (see Fig. 6). Since each SISO acts both as
inner and outer, the inter-SISO SMs propagation is managed
through 2 FIFOs (α-FIFO extern and β-FIFO extern in Fig.
7); each FIFO has 2 positions (inner and outer).

In addition to inter-SISO communication, intra-SISO SMs
propagation also needs to be correctly managed. In the α

recursion, for every window, each SISO stores the last α
values into the αprev register. These values will be used as
the initialization α for the next window. As described in Fig.
8, the last α values of the ith SISO at the kth iteration are
α

(k)
i,Nw−1.

On the other hand the β inheritance is more complex. The
β recursion is performed in direct order on the windows
(0 . . . Nw − 1) and in reverse order on each window (k =
w− 1 . . . 0). As a consequence each SISO, for every window,
needs to load a proper starting β. The starting β (βin) for
the last window in the nth SISO is loaded from the n + 1th
one through the β-FIFO extern. However to correctly manage
intra-SISO β initialization another FIFO is required (β-FIFO
local in Fig. 7). For the ith SISO at the kth iteration the last
β of the jth window (β(k)

i,j) is pushed into the FIFO. Since the
windows are processed in direct order the first β pushed in
the β-FIFO local (β(k)

i,0) has to be extracted and pushed into
the β-FIFO extern. In fact at the next iteration it will become
the βin for the i− 1th SISO (see Fig. 8). Furthermore, since
the SISO acts both as inner and outer, two β-FIFO local are

258 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 2, NO. 3, SEPTEMBER 2006

required, inner and outer respectively (see Fig. 7).

B. Interleaver-Deinterleaver

The interleaver implementation is based on a 16–ports
non pipelined crossbar switch. The lowest N × N network
free of internal blocking and able to implement a generic
permutation of inputs is the Benes network; however for
low to modest numbers of inputs (up to 64) the crossbar is
known to be the preferred choice, mainly because of reduced
cost and simplicity. The obtained combinatorial delay for the
implemented 16 × 16 crossbar is shorter than the worst path
delay of the whole decoder architecture, allowing a working
frequency up to 115 MHz on the prototyping FPGA.

The implemented interleaving scheme is the one in Figure
2, where the data stored in the memory buffer have to be
dispatched to the 16 SISOs. The permutation law is composed
by two steps. The former is a traditional index translation,
based on a set of pre–stored permutations (called macrodata in
the figure). This first set of permutations are common to the 16
buffers. In the latter phase (called Cyclic shift) a displacement
is added to the obtained temporary address. This displace-
ment is a number in the space 0–15, meaning an additional
translation of a given number of window length. This part
is periodical and cyclic, i.e. the displacement IDXadx for a
given address adx can be obtained as (IDX(adx−n×WSIZE)+
n×WSIZE)MOD16, where WSIZE is the current window
size.

The memory containing the interleaving law is included
in the de–interleaver unit, and it can be directly accessed in
write mode from outside at every new block size configuration.
The interleaving law memory (CFG–MEM) contains Bmax

16 ×
log2

(
Bmax

16

)
bits (e.g. ≈ 10 kbit for a maximum block size

of 16384 bits).
Two buffers (ADDRESS DELAY) have been allocated as

address queues, which hold and properly synchronize the
generated addresses required by the SISO processors in order
to make access to the de–interleaving memories. As SISO
processors output extrinsic information in the reverse order,
a LIFO (Last In First Out) policy is required for these queues
to share the same interleaving law among INTERL and DE–
INTERL.

The obtained memory usage is a number of address words
equal to the latency of SISO processors, that is twice the
maximum supported window size (i.e. 96). Therefore, for
the implemented scheme the memory requirement is 2 ×
log2

(
Bmax

16

)
× 96 ≈ 2 kbit.

C. Demapper

In figure 9 the block scheme of the whole demapper is
depicted.

The following signals are received by the demapper block:
ri(t0) Complex signal received on the i–th sub–carrier at

time time t0.
αi Channel state information relative to the i–th sub–

carrier. This data comes directly from the Channel
Estimation block.

_

_

descr
i

G i

LLR
Computation

LLR
Computation

M i

Constellation
Memory

Split

1
X

α 2

*

ir

α i

Re

Im

LLR out

2
X

2
X

Fig. 9. Demapper block scheme.

LLR1

LLR0

LLR2

µ 110

max*max*max*max*max*max*max*max*

µ 001 µ 010 µ 011 µ 100 µ 101 111µ

µ 00 µ 01 µ 10 µ 11

max*

max*

max* max*

max*

max*

µ 01 µ 10 µ 11

max*max*

max* max* max*

max*max*

µ 00

µ 1µ 0

µ 000

µ 0 µ 1

64 QAM

16 QAM

4 PSK

(a)

Ti

i+1T

X

X

3

(b)

Fig. 10. Detail on the data–path implementation for two key blocks in the
demapper: (a) represents the tree–structure used to produce LLR in the LLR
Computation Unit, while in (b) the basic Newton–Ramphson step is sketched.

descri Descrambling sequence relative to the received sig-
nal. This is useful to support carrier reusing among
neighboring cells.

Gi Gain associated to the i–th sub–carrier. These gains
can be changed by the transmitter following partic-
ular strategies in order to maximize the Signal–to–
Noise–Ratio (SNR) for a given sub–carrier. For these
reasons the designed core needs to receive the proper
gain value for each of the symbols to be demapped.

Mi Modulation for the i–th sub–carrier. Valid values can
be:
• “00” this means no modulation for this carrier.
• “01” this stands for 4-PSK.
• “10” for 16-QAM.
• “11” for the 64 QAM.

On the left hand side of Figure 9, the aforementioned inputs
are shown, while the computed Log Likelihood Ratios (LLR)
provided to the channel decoder, are depicted on the rightmost
part. Two distinct regions can be seen in the demapper
structure. The lighter one contains those blocks instanced only
once; the darker region, on the other hand, contains blocks
that have to be instanced as many times as the maximum

MAURIZIO et al.: HIGH THROUGHPUT IMPLEMENTATION OF AN ADAPTIVE SERIAL CONCATENATION TURBO DECODER 259

modulation cardinality (i.e. eight times for the 64 QAM).
In figure 10(a) the data path of the LLR Computation Unit

(LLR–CU) is proposed. The eight received input values are
the normalized Euclidean distances calculated by the leftmost
part of the demapper, indicated as µ000 . . . µ111. The LLR–CU
structure is based on max∗ operations and additions, while the
black blocks on max∗s’ output are pipeline registers.

From a functional standpoint the LLR–CU can be viewed
as composed by three successive stages. Each of these stage
is devoted to the computation of a single LLR: as the input µ
traverse the structure up to three LLR can be computed. An
important feature of LLR–CU structure is that all the computed
outputs have the same latency with respect to the input µ. For
this reason we decide to insert new computed µ always as the
input of the 64 QAM stage. In case of smaller modulations,
data are simply fed toward the successive stage (16 QAM
or even 4 PSK), but the latencies are always respected. In
this way no stalls nor congestions can occur, leading to an
improved throughput.

A remarkable number of real and complex multiplications
are required in the leftmost part and they are mapped to
FPGA embedded multipliers. Unfortunately the demapping
process requires also a division, which poses more serious
implementation problems. In this particular case the hardware
division has been expressed through the use of multiplicative
inverse (reciprocation) and the popular Newton–Ramphson
function approximation method has been adopted to perform
the reciprocation. Let X be the value for which we want to
determine the inverse. If we we define a “reciprocal function”
as:

f(T) =
1
T
−X (20)

then this function will have its zero in T = 1/X . Then we
can use the Newton–Ramphson method to find equation’s (20)
zero. In this way we obtain the following relationship, which
is actually the one we used in the implemented architecture.

Ti+1 = Ti(2−XTi) (21)

In figure 10(b) the data path of a single Newton–Ramphson
(NR) step is depicted: the unit can be easily pipelined to
achieve a high throughput; moreover, as fixed–point simu-
lations showed that very good approximation results can be
obtained performing only two NR steps, the entire reciprocal
unit architecture has been designed cascading two NR steps.
An additional small ROM (256 × 8) is then required to find
the proper initial approximation (T0).

D. Latency and throughput

The allocated double buffer separating the non iterative
part of the system from the decoding loop requires that a
whole data block is completed by the parallel scheme before
a new block is stored into the buffer. Being DL the latency
of the inner–depuncturer, one single buffer is ready in a time
estimated as TD = DL × B × Tck, where B is the incoming
data block length and Tck is the internal clock period.
The execution time for the decoding loop that includes SISO

processors and interleaving memories can be written as:

TL = δ × B

16

(
1 +

2
3

)
× Iter × Tck (22)

where B
16 × 1 is the time required for the inner–SISOs to

read the input buffer once, additional B
16 × (2/3) cycles

are required for the outer–SISOs reading, and Iter is the
iteration number. The parameter δ is the overhead due to
the internal processing pipeline, which has been estimated on
actual simulation waforms as 1.18 in the worst case conditions.

Using expressions provided above with DL = 2 and
δ = 1.18, we obtain that TD = 2B × Tck while
TL ≈ 0.12B × Iter × Tck. Therefore, assuming that
the iteration number is lower than 16, we have TD < TL,
meaning that a whole data block is decoded before the
following block is loaded into the input buffer.

Thanks to its regular and highly parallel structure, the
demapper block exhibits a constant latency regardless the
modulation used or the specific channel state information.
More in detail, the demapper latency can be expressed as
Ddmp = 2+Dµ +DLLR−CU , where Dµ is the latency of the
entire Euclidean distance computation part (see figure 9) and
DLLR−CU is the latency of the LLR–CU part.

For the implemented architecture we have Dµ = 7Tck and
DLLR−CU = 2Tck, leading to a total latency of 11 clock
cycles. However such a deeply pipelined structure ensures to
be able to produce six new LLRs for each clock cycle, leading
to throughput of THRdmp = 6

Tck
LLRs per second.

V. SYSTEM PERFORMANCE AND SYNTHESIS RESULTS

The demapping and decoding architectures described in
the previous sections have been completely described and
validated in VHDL. Then, to prove functional correctness, the
core has been successfully validated in an actual physical layer
implementation on FPGA and tested on a prototyping board.

Logical and physical synthesis have been targeted for a
Xilinx XC2VP100 device that offers the required resources
in terms of internal block RAMs, embedded multipliers and
equivalent gates. The placed design requires:
• 20265 SLICEs out of 44096, i.e. 46% of device resources
• 367 18kb Block Select RAMs out of 444 available.

for the decoder, including the input double buffer and the de–
puncturing unit, and additional
• 442 SLICEs out of 44096, i.e. around 1% of device

resources
• 8 embedded 18× 18 multipliers, out of the 444 available
• 540 16x1 ROMs.

for the flexible de–mapper section; these figures refer to a
simplified version of the de–mapper described in section IV-
C, which has been scaled in order to adapt its throughput to
the one admitted by the iterative decoder.
The detailed cost of main modules in the designed structure are
given in Table I, while the global percentages of device usage
are 54% in terms of combinational and sequential distributed
elements, 83% in terms of Block Select RAMs and 13% in

260 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 2, NO. 3, SEPTEMBER 2006

TABLE I
DETAILS OF ARCHITECTURE COMPLEXITY

unit registers comb. multipl. Block
logic Select RAM

demapper 310 577 8 -
turbo decoder 21255 37972 0 230
de–puncturing 999 1826 0 5
double buffer 202 732 0 132

terms of multipliers.
According to Xilinx ISE estimations, the total equivalent

ASIC gate count for this IP is of 703,000; a total amount of
memory of 4.8 Mbit is required for interleavers and buffers.
For the implemented parallel decoder, the maximum supported
throughput depends on block length and iteration number: at
the clock frequency of 80 MHz and with a fixed number of
ten iterations, the throughput ranges from 20 Mbit/s for the
minimum block size (510 bits), up to 35 Mbit/s in the case of
the longest block size (10,750 bits).

A. Fully parallel de–mapper

The fully parallel high-speed de–mapper has also been
synthetized as a standalone unit, with the purpose of scaling up
the offered throughput. The demapper block scheme (Figure 9)
does not include any loop nor control–dependent path. For this
reason, resorting to parallel techniques to achieve very high
throughputs is probable the most attracting design choice. The
purpose of the fully parallel de–mapper is to support one new
complex value per clock cycle, with a different modulation
choice and channel state information. To achieve such a
remarkable data rate without pushing the clock frequency at
higher values parallel techniques have to be exploited. More
in detail two different types of parallelism can be employed,
namely pipelining as well as parallel computation. As far
as the pipelining is concerned, the proposed architecture is
composed by 16 pipeline stages, so showing a latency of 16
clock cycles. However, once the pipeline is fully loaded, it is
possible to extract up to 6 LLRs per clock cycle.

On the other hand parallel computation requires the
duplication of some data path resources in order to reduce the
number of clocks needed to compute the results. In this case,
the constellation scaling operations as well as the distances
evaluation have been implemented in parallel (see darker
regions in figure 9). This choice enables us to “feed” the
two rightmost LLR Computation networks with sixteen new
distances for each clock cycle.

The synthetized fully parallel high-speed de–mapper re-
quires 327,000 equivalent gates, corresponding to 8% of
a Xilinx XC2VP100, and achieves a maximum decoding
throughput of 480 Mbps with a clock frequency of 80 MHz.

VI. CONCLUSIONS

The paper presents implementation details of an adaptive
high performance modulation and coding scheme mapped
to a unique advanced FPGA device. The designed system
supports a wide range of spectral efficiencies, achieving per-
formance within 1 dB from the capacity. On the hardware

side, careful architecture design of de–mapping, de–puncturing
and decoding units have been performed with the aim of
incorporating the required flexibility and achieving very high
throughput at the same time. In particular, 16 parallel SISO
units have been allocated in the decoder that concurrently
process multiple windows of length adaptively selected on
the basis of the required spectral efficiency. Synthesis results,
derived for a clock frequency of 80 MHz, report a maximum
throughput of 35 Mbit/s for 10 iterations, with a percentage
device occupation close to 54% for logic cells and 83% for
embedded RAMs.

REFERENCES

[1] Berrou, C.; Glavieux, A.; Thitimajshima, P.; ”Near Shannon limit
error-correcting coding and decoding: Turbo-codes”, IEEE International
Conference on Communications, 1993. ICC 93. Geneva. Volume 2, 23-
26 May 1993 Page(s):1064 - 1070 vol.2

[2] L.R. Bahl, J. Cocke, F. Jelinek, and J. Raviv (1974) “Optimal Decoding
of Linear Codes for Minimizing Symbol Error Rate”, IEEE Transactions
on Information Theory, March 1974, pp.284-287.

[3] Third-Generation Partnership Project. 3GPP specifications. [Online].
Available: http://www.3GPP.org

[4] Third-Generation Partnership Project 2. 3GPP2 specifications. [Online].
Available: http://www.3GPP2.org

[5] C. Douillard, M. Jezequel, C. Berrou, N. Brengarth, J. Tousch, and N.
Pham, The turbo codec standard for DVB-RCS, 2nd Int. Symp. Turbo
Codes and Related Topics, Brest, France, Sep. 2000

[6] “Telemetry Channel Coding”, Consultative commitee for space data
systems (CCSDS), Blue Book, 101.0-B-4, 1999

[7] Bosco, G.; Montorsi, G.; Benedetto, S.; ”Soft decoding in optical
systems” IEEE Transactions on Communications, Volume 51, Issue 8,
Aug. 2003 pp. 1258 - 1265

[8] E. Yeo, P. Pakzad, B. Nikolic, V. Anantharam (2001) “VLSI archi-
tectures for iterative decoders in magnetic recording channels”, IEEE
Trans. Magn., vol. 37, pp. 748-755, Mar. 2001

[9] S. Benedetto, R. Garello, G. Montorsi, C. Berrou, C. Douillard, D.
Giancristoforo, A. Ginesi, L. Giugno, M. Luise, ”MHOMS: High-speed
ACM Modem for satellite applications”, IEEE Wireless Communica-
tions, April 2005

[10] O. Muller, A. Baghdadi, M. Jezequel, “ASIP-baser Multiprocessor
oOC Design for Simple and Double Binary Turbo Decoding”, Design
Automation & Test in Europe Conference, Munich, Germany, March
6-10, 2006

[11] S. Benedetto, D. Divsalar, G. Montorsi, F. Pollara (1996) “Soft input
soft output MAP module to decode parallel and serial concatenated
codes”, in TDA Progr. Rep. 42-127, Jet Propulsion Lab., Pasadena,
CA, pp. 1-20, 1996.

[12] S. A. Barbulescu (1996) “Iterative decoding of turbo codes and other
concatenated codes”, Ph.D. dissertation, Univ. South Australia, pp. 23-
24, 1996.

[13] S. S. Pietrobon (1996) “Efficient implementation of continuous MAP
decoders and a synchronization technique for turbo decoders”, in Proc.
Int. Symp. Inform. Theory Appl., Victoria, B.C., Canada, 1996, pp.
586-589.

[14] B. Bougard, A. Giulietti, L. Van der Perre, F. Catthoor (2002) “A class
of power efficient VLSI architectures for high speed turbo-decoding”,
Global Telecommunications Conference, 2002, GLOBECOM 2002,
Vol. 1 , pp. 549-553

[15] A. Hunt, S. Crozier, M. Richards, K. Gracie (1999) “Performance
degradation as a function of overlap depth when using sub-block
processing in the decoding of turbo codes”, Proc. of IMSC’99, 1999,
Ottawa, Canada, pp. 276-280

[16] Aliazam Abbasfar and Kung Yao (2003) “An efficient and practical
architecture for high speed turbo decoders” Proceedings of the IEEE
Vehicular Technology Conference, 2003, Volume 1, 6-9 Oct. 2003, pp.
337 - 341

[17] D. Gnaedig, E. Boutillon, M. Jezequel, V.C. Gaudet, P.G. Gulak (2003)
“Multiple Slice Turbo Codes” Proceedings of the 3rd International
Symposium on Turbo Codes and Related Topics, pp 343-346, Brest,
France, Sept. 2003

[18] A. Giulietti, L. Van der Perre, M. Strum (2002) “Parallel turbo cod-
ing interleavers: avoiding collisions in accesses to storage elements”,
Electronics Letters, Vol. 38, Iss. 5, Feb. 2002, pp. 232-234

MAURIZIO et al.: HIGH THROUGHPUT IMPLEMENTATION OF AN ADAPTIVE SERIAL CONCATENATION TURBO DECODER 261

[19] J. Kwak, K. Lee (2002) “Design of dividable interleaver for parallel
decoding in turbo codes”, Electronics Letters, Vol. 38, Iss. 22, Oct.
2002, pp.1362-1364

[20] J. Kwak, S. Min Park, S. Yoon, K. Lee (2003) “Implementation of a
parallel turbo decoder with dividable interleaver”, Int. Symp. on Circuits
and Systems, 25-28 May 2003

[21] A. Nimbalker, T.K. Blankenship, B. Classon, T.E. Fuja, D.J. Costello Jr.
(2003) “Inter-Window Shuffle Interleavers for High Throughput Turbo
Decoding”, Proceedings of the 3rd International Symposium on Turbo
Codes and Related Topics, pp 355-358, Brest, France, Sept. 2003

[22] R. Dobkin, M. Peleg, R. Ginosar (2003) “Parallel VLSI architec-
tures and Parallel Interleaving Design for Low- Latency MAP Turbo
Decoders”, Technical Report CCIT-TR436, Electrical Engineering,
Technion-Israel Institute of Technology, July 2003

[23] M.J. Thul, F. Gilbert, N. Wehn (2002) “Optimized concurrent interleav-
ing architecture for high-throughput turbodecoding”, 9th Int. Conf. On
Electronics, Circuits and Systems 2002, vol. 3, pp. 1099-1102

[24] F. Gilbert, M.J. Thul, N. Wehn (2002) “Communication centric archi-
tectures for turbo-decoding on embedded multiprocessors”, Conference
and Exhibition on Design, Automation and Test in Europe 2003, pp.
356-361

[25] M.J. Thul, F. Gilbert, N. Wehn (2003) “Concurrent Interleaving archi-
tectures for high-throughput channel coding”, Proceedings of ICASSP
2003, Vol. 2, pp. 613-616

[26] F. Speziali, J. Zory (2004) “Scalable and area efficient concurrent
interleaver for high throughput turbo-decoders”, Euromicro Symposium
on Digital System Design, Aug. 31 - Sept. 3, 2004 pp. 334- 341

[27] A. Tarable, G. Montorsi, S. Benedetto (2003) “Mapping interleaving
laws to parallel Turbo decoder architectures”, Proceedings of the 3rd
International Symposium on Turbo Codes and Related Topics, pp. 153-
156, Brest, France, Sept. 2003

[28] A. Tarable, S. Benedetto (2004) “Mapping interleaving laws to parallel
Turbo decoder architectures”, IEEE Comm. Letters, Vol. 8, No. 3,
March 2004, pp. 162-164

[29] Wei Yu; Wonjong Rhee; Boyd, S.; Cioffi, J.M.; ”Iterative water-filling
for Gaussian vector multiple-access channels”, IEEE Transactions on
Information Theory, Volume 50, Issue 1, Jan. 2004 Page(s):145 - 152

[30] A. P. Hekstra (1989) “An Alternative to Metric Rescaling in Viterbi De-
coders”, IEEE Trans. on Communications, Vol. 31, No. 11, November
1989, pp. 1220-1222

[31] G. Montorsi, S. Benedetto (2001) “Design of Fixed-Point Iterative
Decoders for Concatenated Codes with Interleavers”, IEEE Journ. on
Selected Areas in Communications, Vol. 19, No. 5, May 2001, pp. 871-
882

[32] G. Masera, G. Piccinini, M. Ruo Roch, M. Zamboni (1999) “VLSI
Architectures for Turbo Codes”, IEEE Trans. on VLSI, Vol. 7, No. 3,
September 1999, pp. 369-379

[33] G. Sapountzis, and M. Katevenis (2005) “Benes Switching Fabrics
with O(N)–Complexity Internal Backpressure”, IEEE Communications
Magazine, Vol. 43, No. 1, January 2005, pp. 88-94

Maurizio Martina Maurizio Martina was born in
Pinerolo, Italy, in 1975. He received the M.Sc. and
Ph.D. in electrical engineering from Politecnico di
Torino, Italy, in 2000 and 2004. He is currently
a Postdoctoral Researcher at the VLSI Lab, Po-
litecnico di Torino. His research activities include
VLSI design and implementation of architectures for
signal processing and comunications.

Andrea Molino Andrea Molino received the Dr.Ing
and the Ph.D degree in Electronics Engineering from
Politecnico di Torino , Italy, in 2001 and 2005
respectively. He is currently an Assistant Professor
in the Department of Electronics at Politecnico di
Torino. From Oct 2002 to June 2003, he was with
the Video Processing Lab at University of California,
San Diego (UCSD) where he worked in the develop-
ment of low complexity algorithms for video coding.
His current research interests are in the areas of high-
performance and energy-efficient VLSI architectures

for video coding and communications.

Fabrizio Vacca Fabrizio Vacca received the degree
(summa cum laude) in Computer Engineering and
the Ph.D. degree in Electrical Engineering from
Politecnico di Torino, Italy in 2000 and 2004 re-
spectively. He is currently a Postdoctoral Researcher
at VLSI Laboratory, Politecnico di Torino. His re-
search interests are in the field of flexible and scal-
able hardware architectures for telecommunications.
From October 2002 to June 2003 he was a Visiting
Researcher at the Videoprocessing Laboratory of
University of California San Diego (UCSD). He has

co-authored more than 30 scientific papers in the areas of application-specific
integrated circuit (ASIC) development, optimized hardware architectures and
FPGA-oriented cores.

Guido Masera Guido Masera received the Dr.Eng.
degree (summa cum laude) in 1986, and the Ph.D.
degree in electrical engineering from Politecnico
di Torino, Italy, in 1992. Since 1986 to 1988 he
was with CSELT (Centro Studi e Laboratori in
Telecomunicazioni, Torino, Italy) as a researcher.
Since 1992 he has been Assistant Professor and then
Associate Professor at the Electronic Department,
where he is a member of the VLSI-Lab group.
His research interests include several aspects in the
design of digital integrated circuits and systems, with

special emphasis on high-performance architecture development (especially
for wireless communications and multimedia applications) and on-chip inter-
connect modeling and optimization. He has coauthored more than 100 journal
and conference papers in the areas of ASIC-SoC development, architectural
synthesis, VLSI circuit modeling and optimization.

Guido Montorsi Guido Montorsi was born in Turin,
Italy, on January 1, 1965. He received the Laurea in
Ingegneria Elettronica in 1990 from Politecnico di
Torino, Turin, Italy, with a master thesis, concerning
the study and design of coding schemes for HDTV,
developed at the RAI Research Center, Turin. In
1992 he spent the year as visiting scholar in the De-
partment of Electrical Engineering at the Rensselaer
Polytechnic Institute, Troy, NY. In 1994 he received
the Ph.D. degree in telecommunications from the
Dipartimento di Elettronica of Politecnico di Torino.

In December 1997 he became assistant professor at the Politecnico di Torino.
From July 2001 to July 2002 he spent one year at ”Sequoia Communications”
devoloping baseband algorithm for 3G wireless receivers. In 2003 he became
senior member of IEEE and associate professor at Politecnico di Torino. His
research interests are in the area of channel coding, particularly on the analysis
and design of concatenated coding schemes and study of iterative decoding
strategies. Guido Montorsi is author of more the one hundred papers on
international journal and conferences.

