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Abstract— In hybrid CDMA systems, multiuser detection
(MUD) algorithms are adopted at the base station to reduce
both multiple access and inter-symbol interference by exploiting
space-time (ST) signal processing techniques. Linear ST-MUD
algorithms solve a linear problem where the system matrix
has a block-Toeplitz shape. While exact inversion techniques
impose an intolerable computational load, reduced complexity
algorithms may be efficiently employed even if they show sub-
optimal behavior introducing performance degradation and near-
far effects. The block-Fourier MUD algorithm is generally
considered the most effective one. However, the block-Bareiss
MUD algorithm, that has been recently reintroduced, shows also
good performance and low computational complexity comparing
favorably with the block-Fourier one. In this paper, both MUD
algorithms will be compared, along with other well known
ones, in terms of complexity, performance figures, hardware
feasibility and implementation issues. Finally a short hardware
description of the block-Bareiss and block-Fourier algorithms
will be presented along with the FPGA (Field Programmable
Gate Array) implementation of the block-Fourier using standard
VHDL (VHSIC Hardware Description Language) design.

Index Terms— Low complexity multiuser detector, hybrid
CDMA system, TD-SCDMA mobile radio system, CWTS, block-
Bareiss algorithm, block-Fourier algorithm, FPGA implementa-
tion.

I. INTRODUCTION

In 3G hybrid CDMA systems with antenna arrays at the
receivers, space-time (S-T) multiuser detection (MUD) algo-
rithms are adopted at the base station to reduce both inter-
symbol (ISI) and multiple access (MAI) interference [1]. For
each data-packet or block, in the up-link scenario, linear MUD
solves a linear system where the system matrix has a specific
block-Toeplitz structure.

Exact MUD computation exhibits a high computational load
for large matrix size (i.e. high number of users, antennas and/or
symbols per block), as it involves the inversion of a large
correlation matrix. Exact inversion of the system matrix is
not feasible due to large matrix size and real-time constraints.
In fact, in real-time mobile radio systems, computational
resources are limited and only reduced complexity algorithms
can be employed. Nevertheless, when computational complex-
ity is strongly reduced, sub-optimal algorithms might introduce
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performance degradation and other unwanted effects (e.g. near-
far problems).

Two main MUD techniques are available in literature: block-
based MUD [2],[3],[4] and one-shot MUD also known as
sliding windows detector (SWD) [5]. Both families may be
implemented using real-time hardware [4],[6],[7],[8],[9],[10].
In practice, algorithm selection is performed taking into ac-
count various aspects such as performance, complexity and
implementation issues. However, when computational power
requirement and system complexity are the key constraints,
some performance degradation have to be tolerated.

According to these considerations, a new MUD detector
scheme based on the block-Bareiss (BB) algorithm has been
reintroduced [11],[12]. This algorithm, derived from the plain
Bareiss factorization technique [13], combines good perfor-
mance and low computational load with simple hardware
implementation. For a specific hybrid CDMA radio system
(i.e. China Wireless Telecommunication Standard or CWTS for
short), the BB detector is compared with the reference direct
inversion methods and with other well known block algorithms
namely the block-Levinson algorithm (BL) [14] and the block-
Fourier Transform (BFT) algorithm [4].

Finally a floating-point implementation of the BB processor
is compared with the equivalent BFT one. With respect to the
above mentioned algorithms, the BB one is well suited for
hardware FPGA (Field Programmable Gate Array) implemen-
tation not only for its low computational load but also for its
good performance. In addition, it does not suffer from near-
far effects that plague very low complexity implementation
such as low order BFT detectors [15]. It is also worth noticing
that the BB detector is also suitable for hardware parallel
implementation. However, for perfect power control radio
systems, the BFT remains the most effective MUD algorithm
in terms of complexity and implementation feasibility. Finally,
a FPGA implementation of the BFT algorithm is presented
and commented.

The paper is organized as follows: Section II describes the
signal model used in hybrid CDMA systems and underlines
the peculiarities due to the specific CWTS standard adopted.
Section III introduces the Bareiss algorithm and the other
reduced complexity algorithms selected for comparison. Both
performance and computational complexity of the mentioned
MUD algorithms are evaluated and compared in Sections IV
and V, respectively. The proposed hardware implementation
is described in Section VI while Section VII draws some
conclusions.
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Fig. 1. Up-link burst structure for the CWTS system.

II. HYBRID CDMA SIGNAL MODEL

In hybrid synchronous CDMA systems, such as the CWTS
standard [16] whose frame structure is shown in Fig. 1, K
users (1 ≤ K ≤ 8) are active in the same frequency band
and in the same time slot being separated only by different
spreading codes. Each user transmits a data burst consisting of
2N QPSK symbols (N = 352/Q, N symbols of duration Ts =
QTc) where Q is the spreading factor (Q ∈ {1, 2, 4, 8, 16})
and the chip rate Fc is defined as Fc = 1/Tc = 1.28 Mcps.
In the following part of this paper, Q is assumed constant for
all K users: Q = 16. The semi-burst period Tsb is defined as
Tsb = NQTc = 352/Fc = 275 µs.

The column vector hk,m represents the channel impulse
response (CIR) for the link between the kth user and the mth
antenna of the array. Each vector hk,m is also assumed of
length W (W = 16) when expressed in chip intervals TC .
Space-time matrix Hk = [hk,1...hk,m...hk,M ]T for the kth
user has size M × W while the complete multi-user channel
matrix H = [H1...HK ] has size M × WK. Each CIR is
assumed known and does not vary during the time slot.

For each semi-burst, the discrete-time base-band MIMO
(Multiple Input Multiple Output) signal model is indicated by
the following equation:

y = Ad + n. (1)

The M(NQ + W − 1) × 1 vector y represents the signal
received by the array of M antennas (1 ≤ M ≤ 8) located at
the base station while vector d of size NK × 1 represents the
transmitted data for all K users. Moreover, it is E

[
ddH

]
= I.

Noise vector n takes care of both electronic noise and inter-cell
interference; n is assumed spatially correlated and temporally
uncorrelated with covariance matrix given by:

Rn = E[nnH] = Rn ⊗ INQ+W−1, (2)

where ⊗ is the Kronecker’s product, INQ+W−1 is the identity
matrix of size NQ + W − 1 and Rn is the spatial covariance
matrix ([Rn]m,m = σ2

n for m = 1, ...,M ) of size M ×M .
Since the CIRs are assumed constant in the data slot, the

matrix A of size M (NQ + W − 1) × NK containing N
shifted copies of blocks B. Fig. 2 shows that every sub-matrix
B of size M(Q + W − 1) × K is composed by K column
vectors bk (k = 1, ...,K); each of them is composed by the
convolution bk,m = ck∗hk,m between the kth spreading codes
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Fig. 2. Matrices A , B and R = AHR−1
n A.

ck and the CIR vector hk,m ordered for all M antennas: bk =
[bT

k,1...b
T
k,M ]T . The normalized term v = d(Q + W − 1) /Qe

is the delay spread expressed in symbol intervals.

In the following sections we will assume, without any loss
of generality, a zero-forcing (ZF-MUD) detector scheme. The
interested reader may refer to [1] for a detector that employs a
different estimation technique (e.g. MMSE-MUD). According
to Fig. 3, the received signal vector y is at first filtered by the
whitening S-T matched filter producing the NK × 1 output
vector:

yMF = AHR−1
n y = AHR−1/2

n R−H/2
n y; (3)

then linear ZF-MUD is performed by estimating the data
symbols vector d̄ of size NK × 1 according to:

d̄ = R−1yMF =
(
AHR−1

n A
)−1

AH R−1
n y, (4)

where R−1 is the NK × NK decorrelating matrix obtained
from matrix R = AHR−1

n A. Finally, hard decided QPSK
symbols d̂ are obtained by the threshold detector dec(·):

d̂ = dec
(
d̄
)

= dec
(
R−1yMF

)
. (5)

Equation (3) may be rewritten as:

yMF = ÃHỹ= Rd + nMF (6)

to indicate that the S-T matched filter output yMF may be
also obtained by calculating the output vector ỹ = R−H/2

n y of
the first spatial whitening filter (see Fig. 3) and then applying
the matched filter Ã = R−H/2

n A; nMF is the noise at the
output of the S-T matched filter with E

[
nMF nH

MF

]
= R.

Please note that, in the case of MMSE-MUD, equation (5)
becomes now [1]:

d̂ = dec
(
d̄
)

= dec(
(
R + I)−1yMF

)
. (7)
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Fig. 3. Block diagram of the S-T ZF-MUD.

III. EFFICIENT DETECTOR ALGORITHMS

Most of the complexity of the linear detector algorithms
employed for MUD scheme proposed in the previous section
arises from the inversion methods of the large correlation
matrix R and from the matched filter computation [8]. As
depicted in Fig. 2, matrix R is block-Toeplitz and block-
banded. It is composed by N × N sub-matrices Ri (i =
0, ..., N − 1) having size K ×K:

R =


R0 R−1 . . . R−(N−1)

R1 R0 . . . . . .
. . . . . . . . . R−1

R(N−1) . . . R1 R0

 , (8)

where R−i = RH
i (i = 1, ..., N −1). Moreover, matrix R has

only 2v − 1 non null block-diagonals: R−i = RH
i = 0, for

i = v, v + 1, ..., N − 1.
As far as the matched filter output yMF is concerned, its

computational cost dominates using an antenna array (M >>
1); however its calculation has a high degree of parallelism that
can be easily exploited during the hardware implementation
(e.g. using a polyphase Q-decimated filter bank) [8].

Some MUD algorithms compute directly the decorrelating
matrix R−1 and then calculate the solution (4) by matrix
multiplication. On the contrary, other algorithms factorize
matrix R and then solve the equation:

Rd̄ = yMF. (9)

While the block-Levinson algorithm [14] belongs to the first
class of techniques, the latter family includes the well known
block-Fourier (BFT) [17] algorithm and all methods derived
from the QR decomposition [18] of the matrix R. To this
second family belongs also the block-Bareiss algorithm that
will be discussed later on.

All the methods that belong to the second family are similar
to the plain Cholesky algorithm and differ only in the used
factorization algorithm that takes care of the block-Toeplitz
matrix R having in common the remaining processing steps.
For instance, the Cholesky algorithm computes the Cholesky
factor U of the matrix R: R = UHU. Then, both the lower
triangular system:

UHz = yMF (10)

and the upper triangular one:

Ud̄ = z, (11)

are computed sequentially by using the backward and for-
ward (B/F) algorithm, respectively. The Cholesky factor U

of a block-Toeplitz matrix R is block-banded but not block-
Toeplitz. However, the Cholesky factor structure shown in
[19] may be exploited to approximate the factorization and
to speed-up the computation if N >> v. This approximation
may be used together with the well known generalized Schur
algorithm [17] to speed up the whole computation. It is worth
mentioning that the B/F algorithm has a complexity in the
order of O[N2K2].

A. Factorization algorithms

The exact computation of the Cholesky factor U for a
arbitrary NK×NK matrix R requires a number of operations
in the order of O[N3K3] that is prohibitive for a large number
of symbols N and/or users K. For this reason, several fast
inversion or factorization algorithms have been developed.

B. Block-Fourier algorithm

The BFT algorithm [4] is derived from the plain Fourier
algorithm briefly recalled here. The Fourier technique solves
the generic problem:

Rx = y, (12)

where ∀h, k = 0, ..., n − 1 it is [R]h,k = rh,k, rh,k depends
only on the difference k − h and rh,h = r0. The solution is
computed by transforming equation (12) into the frequency
domain by exploiting the nth order DFT matrix operator F
defined as:

[F]h,k = exp {−j2π(h− 1)(k − 1)/n} , (13)

where n is the problem size and h, k = 1, ..., n. If the matrix
R is circulant, then it is well known [18] that R may be
factorized as:

R = F−1ΛF, (14)

where the matrix Λ is the diagonal matrix containing the
eigenvalues of R. It may be noticed that if A is circulant
then R is circulant, too.

The convolution problem (12) becomes now:

FRx = ΛFx = Fy, (15)

while the solution vector x is obtained by inverse DFT
transformation F−1:

x = F−1Λ−1Fy. (16)

The Fourier method is computationally effective because the
diagonal matrix Λ, that contains the eigenvalues of R, can be
efficiently computed by transforming only the first column r1

of the matrix R according to:

λ = Fr1, (17)

where column vector λ is obtained from eigenvalue matrix
Λ by rearranging its diagonal elements by means of the diag
operator:

λ = diag (Λ) = Λ 1n (18)

and 1n is the column vector of length n having all terms equal
to one.
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Unfortunately, the matrix R is not circulant, it is also block-
Toeplitz and block-band but it has only 2v−1 non null block-
diagonals (Fig. 2). It may be easily made circulant with few
modifications: the circulant block matrix Ãc is obtained from
Ã just adding and arranging columns of blocks as shown in
Fig. 4. The number of added blocks depend on the value v:
in our case, the matrix Ãc has size DP × DK where D =
N +v−1 and P = MQ while circulant matrix Rc = ÃH

c Ãc,
derived from Ãc, has size DK ×DK.

Now, the plain Fourier algorithm must be modified to handle
the block-circulant matrix Rc containing D2 blocks of size
K ×K. Instead of the Fourier matrix (13), now it is defined
the block-Fourier matrix transformation F(K) = F⊗IK where
⊗ is the Kronecker’s product, IK is the K × K identity
matrix, FK and F represent the Kth and the Dth order DFT,
respectively.

The equation equivalent to (14) is:

Rc = F−1
(K)Λ(K)F(K), (19)

where Λ(K) is the block-diagonal matrix composed of D non
null blocks of size K × K along the main block-diagonal. It
is computed (cf. Eq.17):

diag(K)

(
Λ(K)

)
= F(K)Rc1, (20)

where Rc1 is the first block column of the matrix Rc and
diag(K) (·) is the extension of the diag operator (18) to the
K ×K block size case.

Finally, the BFT algorithm computes the following matrix
equation corresponding to (15):

F(K)d̄ = Λ−1
(K)F(K)yMF (21)

and then applying the inverse DFT operator F−1
(K):

d̄ = F−1
(K)Λ

−1
(K)F(K)yMF . (22)

The block elements of block-diagonal matrix Λ(K) have
no particular structure; therefore Λ−1

(K) may be obtained with
standard (or approximated) methods such as the Cholesky
factorization. In addition, the matched filter output yMF is
obtained from equation (6). Only the first NK values of d̄
from the equation (22) are used to compute the vector d̂.

It is possible to speed up the block-Fourier algorithm by
reducing the ideal length D of the FFT (i.e. using optimized
radix-4 operators) with respect to the true value N + v − 1
and by using the well-known overlap-and-save technique. It
requires the use of L = dN/ (D − prelap−postlap)e data
vector slices of reduced size D to cover N symbols [4].

C. Block-Levinson algorithm

The BL algorithm is derived from the plain Levinson algo-
rithm that computes the direct problem Rx = y by inverting
the matrix R that is Hermitian, Toeplitz and positive defined.
For a generic matrix R of size n×n, this technique requires a
number of operations in the order of O[n2]. The BL algorithm
has been extended [14],[20] to the block-Toeplitz matrices R(i)

of size NK × NK by solving the following system at step
i + 1:

R(i+1)d̄(i+1) = y(i+1)
MF (23)

starting from the solution at step i. The original problem (9)
is solved through N − 1 iterations. By defining matrix R(i)

as:

R(i) =


R0 R−1 . . . R−i

R1 R0 . . . . . .
. . . . . . . . . R−1

Ri . . . R1 R0

 , (24)

the system (23) may be rewritten as (1 ≤ i ≤ N − 1):[
R(i) Ei

(
G(i)

)T(
G(i)

)T
Ei R0

] [
d̄(i)

µ

]
=

=

[
y(i)

MF

y(i,i+1)
MF

]
,

(25)

where d̄(i) and y(i)
MF are sub-vectors of length iK obtained

from the vectors d̄ and yMF, respectively. The vector y(i,i+1)
MF ,

that is extracted from the matched filter output yMF, has size
K× 1. Matrix G(i) is defined as G(i) =

[
RT

1 RT
2 ...RT

i

]T
, Ei

is the exchange block matrix of size iK × iK that inverts the
order of the blocks of the previous matrix G(i) and µ is an
auxiliary vector [14] of size K × 1.

As indicated in the BFT algorithm, it is also possible to
increase the algorithm processing speed by considering that,
after few iterations, some internal parameters converge rapidly
to their final value and may therefore considered constant.
Reference [4] shows a detailed description about these op-
timizations.

D. Block-Bareiss algorithm

The plain Bareiss algorithm [13] employs an iterative tech-
nique, derived from the classical Schur algorithm, to solve a
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generic linear Toeplitz system Rx = y by LU factorization
of the positive definite system matrix R of size n × n. The
complexity of the algorithm is in the order of O[n2]. The basic
idea is to transform the original system (12) in the following
equivalent ones (for 1 ≤ i ≤ n− 1):

R(±i)x= y(±i), (26)

where the matrices R(−i) have zero elements along the i
sub-diagonals below the main diagonal and matrices R(+i)

have zero elements along the i sub-diagonals above the main
diagonal. As shown in Fig. 5 for i = 3, R(−3) is an upper
triangular matrix while R(+3) is a lower triangular matrix.
These transformations are chosen to annihilate diagonals rather
than columns or rows. Each transformation requires a number
of operations in the order of O[n].

Let Zi = (δw−j+i)w=0,...,n−1;j=0,...,n−1 be a shift matrix
such that pre-multiplication by Z+i shifts i rows up with zero
fill and pre-multiplication by Z−i shifts i rows down with zero
fill. For the ith iteration (i = 1, . . . , n− 1), the corresponding
transformations are defined as:

R(−i) = R(−(i−1)) −m−iZ−iR(+(i−1))

y(−i) = y(−(i−1)) −m−iZ−iy(+(i−1))

R(+i) = R(+(i−1)) −m+iZ+iR(−(i))

y(+i) = y(+(i−1)) −m+iZ+iy(+(i)),

(27)

where m−i and m+i are defined as:

m−i = r
(−(i−1))
i,0 /r0 (28)

and
m+i = r

(+(i−1))
0,i /r

(−i)
n−1,n−1. (29)

After n − 1 iterations, R(−(n−1))x = y(−(n−1)) and the
system may be solved with backward substitution. This method
is equivalent to the LU factorization of the matrix R =
LU: r0L=

(
R(n−1)

)T2
and U= R(−(n−1)) where T2 denotes

matrix transposition above the main diagonal [21].
The Bareiss algorithm has essentially the same numerical

properties as Gaussian elimination without pivoting: it is
numerically stable if R is positive definite or diagonally
dominant, but it is unstable in general [22].

The block version of the Bareiss algorithm still employs
the same ideas behind equations (26) but now transformations
try to annihilate block-diagonals of size K ×K of the matrix
(8) instead of single elements. After i iterations, the matrix

R(−i) has null blocks along the i sub-diagonals below the
main diagonal and the matrix R(+i) has null blocks along the
i sub-diagonals above the main diagonal. The transformations
of the ith iteration (i = 1, . . . , N − 1) are defined by the
following equations:

R(−i) = R(−(i−1)) −M−iZ−iR(+(i−1))

yMF
(−i) = yMF

(−(i−1)) −M−iZ−iyMF
(+(i−1))

R(+i) = R(+(i−1)) −M+iZ+iR(−i)

yMF
(+i) = yMF

(+(i−1)) −M+iZ+iyMF
(−i),

(30)

where:
Zi = (δw−j+i)w=0,...,N−1;j=0,...,N−1 , (31)

M−i = R(−(i−1))
i,0 (R0)

−1 (32)

and
M+i = R(+(i−1))

0,i

(
R(−i)

N−1,N−1

)−1

. (33)

After N − 1 iterations, the system indicated by equation
R(−(N−1))d̄ = yMF

(−(N−1)) may be solved by a block back-
ward substitution since R(−(N−1)) is an upper triangular block
matrix.

E. Remarks

For the sake of completeness, the generalized Schur algo-
rithm with the Cholesky approximation (ACD - Approximate
Cholesky Decomposition) [19] can reduce the number of
operations in the order of O[NK3]. For a complete description
of this algorithm, the interested reader is referred to [17]. In
addition, references [8] and [23] show a brief comparison of
the ACD algorithm performance with respect to the SWD one
in the TDD-UTRA and the CWTS scenario, respectively.

All these MUD algorithms may have different behavior
depending on one or more parameters: FFT size (D), overlap-
and-save parameters (prelap, postlap or L) greatly affect BFT
algorithm while iteration step (i) is the main parameter for
BL and BB detectors. These parameters greatly affect per-
formance, computational complexity and architectural issues.
Fine tuning of these parameters depends on the adopted mobile
radio scenario and will be evaluated in Section IV.

IV. SIMULATION RESULTS

Following the CWTS standard [16], the parameters em-
ployed in the system simulations are: K = 8, N = 22, Q = 16
and W = 16. The simulation scenario is characterized by
100, 000 bursts of up-link traffic data only with scrambling
and spreading codes, without channel coding and with perfect
power control scheme. The spatio-temporal channel matrix
H adopted for the simulations is derived from the Typical
Urban (TU) multipath propagation channel as introduced by
the COST-207 group [24]. More sophisticated S-T channel
models are available; however, this simpler model has been
adopted for easy and direct comparison with respect to spatial
only algorithms (M = 1).

According to the WSSUS (Wide Sense Stationary Uncor-
related Scattering) model introduced previously, for the kth
user, channel Hk consists of a single cluster of Np = 12

46 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 1, NO. 1, SEPTEMBER 2005



-10 -5 0 5 10 15 20
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

BE
R

pre=0, post=0
pre=1, post=0
pre=0, post=1
pre=1, post=1
pre=2, post=1
pre=1, post=2
exact inversion

-10 -5 0 5 10 15 20
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

BE
R

pre=0, post=0
pre=3, post=2
pre=3, post=3;
pre=4, post=4;
pre=5, post=5
exact inversion

BFT Detector
D = 4, M = 1

BFT Detector
D = 16, M = 1 

BE
R

-10 -5 0 5 10 15 20
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR [dB]

BE
R

i = 1
i = 2
i > 2
exact inversion

BL Detector
M = 1

-10 -5 0 5 10 15 20
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR [dB]

i = 1
i = 2
i > 2
exact inversion

BB Detector
M = 1

Fig. 6. Performances of MUD algorithms in terms of BER vs. SNR for
different design parameters (D, prelap, postlap, i). Clockwise from top left
plot: i) BFT-4; ii) BFT-16; iii) BB and iv) BL detectors. Coefficient values
adopted for simulations are: M = 1, K = 8, Q = 16, W = 16 and v = 2.

uncorrelated paths, whose delays and mean powers are fixed
and set according to the TU model. Each pth path angle is a
random variable:

θk,p = N
(
θk, σ2

θ

)
(34)

with mean value θk = U [−π/3,+π/3] and standard deviation
σθ = π/36. Amplitude variations due to fast fading are
simulated by introducing the Rayleigh distribution. In addition,
to speed-up the simulations, no mobile speed is considered
since the maximum speed constraint (i.e., |v| ≤ vmax = 120
Km/h) introduced by the CWTS standard does not cause
significant channel decorrelation during the semiburst period
Tsb. In fact, according to the Clarke model [25], the correlation
of the CIR fading amplitudes is described by the Jakes’
autocorrelation function ρ0 (τ) = J0 (2πvmτ/λ) where λ is
the carrier wavelength (λ = 15 cm) and vm the radial mobile
speed. In our case, it is ρ0 (Tsb)|vm=vmax

= 0.96 and therefore
the channel may be considered constant during each time slot
(see reference [26] for similar considerations about the TDD-
UTRA scenario). Perfect knowledge of the channel is assumed
while near-far effects are not present: E

[
‖Hk‖2

]
is constant

for all K users. For discussions about near-far effects of all
algorithms presented here, reference [15] may be consulted.
The base station receiver employs a single antenna (M = 1)
or a linear array (M = 8) of equally spaced antennas at λ/2.

In Fig. 6 and 7, the performance of the approximate MUD
and the exact inversion algorithms are compared in terms of
BER for varying signal to noise ratio at the antenna array
receiver SNR = QE

[
‖Hk‖2

]
/2σ2

n in the case of a single
antenna (M = 1) and antenna array (M = 8), respectively.
In these figures, the block-Fourier algorithms are indicated as
BFT-4 or BFT-16 if D = 4 or D = 16 is adopted, respectively.
The other algorithm parameters are indicated in the figures.

In the single antenna scenario, for two or more iterations
(i ≥ 2) both BB and BL algorithms have performance similar
to the one corresponding to the exact system inversion method.
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Fig. 7. Performances of MUD algorithms in terms of BER vs. SNR for
different design parameters (D, prelap, postlap, i). Clockwise from top left
plot: i) BFT-4; ii) BFT-16; iii) BB and iv) BL detectors. Coefficient values
adopted for simulations are: M = 8, K = 8, Q = 16, W = 16 and v = 2.

On the contrary, the BFT algorithm strongly depends on the
FFT size D and the prelap (pre) and postlap (post) values. In
fact, for D = 16 , pre > 0 and post > 0, the BFT detector
performance is close the the optimum one, while if D = 4 any
combination of pre and post coefficients cannot obtain figures
near to those corresponding to the exact inversion case being
combination pre = 1, post = 2 the most effective (L = 22).

For the linear antenna array scenario with M = 8 elements,
performance is significantly better than the previous one due
to the effect of the array spatial processing. All algorithms
show good performance except the BFT one for the artifacts
introduced by the overlap-and-save technique (e.g. D = 16,
pre = 0, post = 0; D = 4, pre = 0, post = 0; D = 4,
pre = 1, post = 0 and D = 4, pre = 0, post = 1). It is
worth noticing that only one iteration is enough for BB and
BL algorithms to converge to the exact solution.

V. ALGORITHM COMPUTATIONAL COMPLEXITY

Tab. I shows the computational complexity of BB, BFT and
BL algorithms in terms of complex multiplications (×105) for
each semi-burst. The shown algorithms perform the matched
filter in the time domain (e.g. BL and BB) or frequency domain
(e.g. BFT). Matrix R is tri-diagonal (v = 2) block-Toeplitz,
with a lot of null blocks. Several algorithm optimizations
have been adopted to reduce both computational complexity
and storage size of the algorithms shown in Section III. For
instance, in the BB algorithm it is possible to: i) reduce
the matrix multiplications of (30) to block multiplications,
ii) rearrange the matrices of blocks R(+i) and R(−i) as
one column of blocks of variable size for each modified
diagonal, iii) reuse the already inverted blocks in the backward
substitution phase [12].

Fig. 8 tries to summarize the information from Tab. I and
Fig. 7. It is apparent that both Bareiss and Fourier (BFT-
4) algorithms are well suited for low complexity detectors.
On the contrary, the Levinson algorithm, even achieving good
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TABLE I
COMPUTATIONAL COMPLEXITY OF DETECTOR ALGORITHMS IN TERMS OF

COMPLEX MULTIPLICATIONS (×105) PER SEMI-BURST. BFT-4 AND

BFT-16 INDICATE THE BFT ALGORITHM WITH D = 4 AND D = 16,
RESPECTIVELY.

Parameters Algorithm Computational complexity

M = 1 M = 8

L = 4, pre = 5, post = 5

L = 3, pre = 4, post = 4

L = 2, pre = 2, post = 3

BFT-16
0.27

0.22

0.18

1.19

1.01

0.83

L = 22, pre = 2, post = 1

L = 11, pre = 1, post = 1

L = 6, pre = 0, post = 0

BFT-4
0.25

0.14

0.09

1.19

0.68

0.45

i = 21

i = 5

i = 3

i = 1

BB

1.43

0.41

0.28

0.15

1.97

0.94

0.82

0.69

i = 21

i = 5

i = 3

i = 1

BL

3.68

1.06

0.91

0.81

4.21

1.59

1.45

1.34
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Fig. 8. Performances vs. computational complexity of MUD algorithms at
different SNR conditions. Each dot of a curve indicates the approximation
degree adopted for the algorithm at that specific SNR. From left to right it is:
L = 6, 11, 22 for BFT-4 (D = 4), L = 2, 3, 4 for BFT-16 (D = 16), i =
1, 5, 9, 13, 17, 21 for BB and BL. Simulation values are the same employed
in Fig. 7.

performance, has high computational complexity and it is not
appropriate for a simple hardware implementation.

VI. HARDWARE IMPLEMENTATION

Fig. 9 and 10 show the block diagrams of the BB and BFT-
4 algorithm implementation. The BFT-4 algorithm may be
efficiently designed exploiting pipelined structures and parallel
data units (see Fig. 10). However, the BB detector may be
parallelized [21] and pipelined, too. Several MUD implementa-
tions for hybrid CDMA systems are available; however, while
the BFT-4 FPGA implementation is straightforward, the other
ones requires more sophisticated hardware architecture such as
a FPGA systolic array [23],[9] or an array of DSP/processors
such as the RCF (Reconfigurable Computer Fabric) processor
[10].

To avoid numerical problems, floating-point arithmetics
have been extensively used having care not to exceed the size
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Rc
computation 

R
E

G

REG

Inversion
processor

Bareiss
loop

Partial back-
substitution
processor

d
Rc(1,1)−1

Fig. 9. Block diagram of the BB algorithm (i = 1). The REG elements are
register blocks.
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Fig. 10. Block diagram of the BFT algorithm (D = 4, pre = post = 1).
The REG elements are register blocks.

of the FPGA built-in multipliers. The floating-point numerical
format is indicated as (Nt, Ne) where Ne is the exponent and
Nt − Ne is the mantissa size. Both detector implementations
have been simulated adopting the same scenario parameters of
Section IV and their performances shown in Fig. 11 according
to the selected floating-point format. The FPGA implementa-
tion of the detectors dictates for the smallest data size: in both
cases, the (10, 5) format is enough to have figures very close
to the ones corresponding to the full precision simulations of
Fig. 7 and still to be under the size of the FPGA built-in
multipliers. The bad performances of the (10, 4) format are
due to overflow/underflow problems.

From the implementation point of view, comparing only
the design complexity of both BFT and BB processors, it
is apparent that the BFT-4 detector is the most suited for
hardware implementation due to its straightforward design.
In fact, in spite of its performance, the design of the BFT-
4 processor is very simple. The BFT-4 main elements are the
radix-4 FFT/IFFTs that may be easily implemented without
multipliers while the Cholesky computation element and the
matched filter may be designed with fast pipelined multiply-
and-accumulate (MAC) blocks. Assuming a latency of one
time slot (i.e. 675 µs) and estimating about 180 µs for ancillary
computations (e.g. channel estimation, whitening filtering,
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Fig. 12. Floorplan of the FPGA implementation of the BFT-4 detector using
a Virtex-II XC2V6000 device (-6FF1517). No I/O pads have been plotted.

midamble interference cancellation), the delay introduced by
the detector must be less than 495 µs.

The complete detector has been described using VHDL and
designed using Mentor Graphics c© and Xilinx c© tools. The
target FPGA is the Virtex-II XC2V6000 device from Xilinx c©.
In this design, about 60% of the configurable cells (CLB -
Complex Logic Block) and 90% of internal RAM blocks has
been used. The achieved clock frequency is 21.8 MHz [12]
that meet the time constraints. The floorplan is depicted in
Fig. 12.

VII. CONCLUSIONS

Performance and complexity evaluation of CWTS multiuser
detectors indicate that both BB and BFT algorithms may be
efficiently adopted. When hardware implementation efficiency

is mandatory, the BFT-4 algorithm is the best solution for its
straightforward design. However, the BB detector may be also
used to solve performance problems of the Fourier detector at
a comparable complexity.
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