IZ POLJOPRIVREDE STRANIH ZEMLJA

VRSTE UMJETNIH GNJOJIVA

Proizvodnja mineralnih gnjojiva toliko je već uznapredovala da stavlja nekoliko vrsta na tržište.

Tekuća mineralna gnjovja: većini su dušična gnjovja, katkad često sadrže i druge elemente. Tekuća gnjovja sve više i više upotrebljavaju obični proizvođači. Upotrebljavaju ih zato, što ih se može staviti u tlo s manje ručnog rada, a pomoću toka gravitacijom ili pumpanjem.

Granulirana suha gnjovja: održavaju se u rastrešinom stanju, a ne stvrdnu, što je obična pojava kod fino samljenih i prašastih oblika. Postupak s granuliranim gnjovima jednostavniji je i lakše se jednostavno rasipavaju.

Visokoprocenati oblici suhih gnjovja: su gnjovja kod kojih se izbjegava »prvi težini« i troškovna doprema. Visokoprocenatna gnjovja s manjom zapreminom doseže u tlo potrebnu količinu biljnih hrana.

B. D.

MLJEČNIO KISELO VRENIJE VINA

Kao mlječno kiselo vrenje vina, biološko razgrađivanje kiselin ili drugo vrenje, označuje se razgradnja jabolčne kiseline vina na mljećnu kiselinu i ugljenidi dioksid. To razgrađivanje u pravilu pridonosi poboljšanju kvaliteta vina; smanjivanje kiseline tih putem može biti i do 30%/ kiseline mošta. Mljječno kiselovo vrenje ne može i to upravljati kao alkoholno. Poznato razne bakterije, koje uzrokuju to vrenje, one su i izolirane i uzgojene u čistim kulturama, ali do danas nije još uspjelo prema volji prouzročiti mlječ-nokiselo vrenje vina.

Do biološkog razgrađivanja kiseline dolazi prvenstveno u onim vinima, koja imaju na početku malo ukupnih kiselina, tako da nekada dolazi i do neželjenog smanjenju kiselina. Bakterije, koje prevode jaču kiselinu u mljećnu (Bacterium gracile, Micrococcus acidovorax, Micrococcus variococcus) nalaze se na grždu i dolaze preradom u mošću vina. Kod crnih vina biološko razgrađivanje u pravilu nastupa u isto vrijeme kada i alkoholno vrenje, kod bijelih vina počinje mnogo kasnije, tome je uzrok već a količina ukupnih kiselina, koju redovno sadrže bijela vina, te siromaštvo bijelih vina na hranjivim tvarima, potrebna za razvitak bakterija. Temperaturne 18–20°C pogoduju razgradnju kiseline, temperature ispod 10°C sprećavaju razgrađivanje; kod viših temperatura razvijaju se dobrog suho mlječčnjak sânje bakterije nego i neke druge, prvenstveno bakterije iz čepa.

U velikim bačvama, u kojima se nakon vrenja polagano snažava temperatura, biološko je razgrađivanje kiseline pojačano. Čišćenjem mladih vina sprečava se biološko razgrađivanje kiseline, dok se ostavljanjem na tropu potpomaže razgrađivanje, talog koji se sastoji uglavnom od kvasaca sadrži tvari, koje bakterije trebaju za svoj razvitak.

Mljječnikisele bakterije osjetljive su na sumporastu kiselinu, naročito ako se vina sumpor odmah nakon vrenja. Hoće li se postići smanjivanje kiselina u vinu ne smiju se mlade vina sumporiti, svakako kada toga treba paziti da li se vino dosta zdravio da se snima ostaviti bez sumporenja. U jake kiselin vinima (pH ispod 3) biološko razgrađivanje kiseline jedva je moguće, da se u takvim vinima stvore pogodni uvjeti za razvitak mlječno kiselnih bakterija, vino se može nesno osišeliti kalcijskim karbonatom.

S. Š.

IZLUČIVANJE BIRSE

Često potrošači prigovaraju kvaliteti vina u bocama, jer se na dnu boca nalazi talog birse. Narodi i se to često događa zim; ako se vino i potpuno čisto puni u boce, kod transporta po hladnom vremenu izluči se talog birse. Ta poljova naročito smeta neupućene potrošače, koji ne znaju da je birsa savim normalnim sastojak vina.

Izlučivanje birse kod vina u bocama opažamo naročito mnogo posljednjih godina. Ako se vina ostavljaju godinama u bačvama, ona se pomalo izgrađuju i postaju kemijsku i biološku stabilnost, međutim ako danas tržište traži mlada, svježa vina to već prve godine vino mora biti sposobno za punjenje u boce. Treba vresti neki postupak podrumarstva da se i u mladim vinima, koja se stavljaju u boce, spriječi izlučivanje kristala birse.

Birska kiselina je važna za vinske kiseline, njena toplovlaznost zavisi s jedne strane o količini alkohola u vini, a s druge strane o temperaturi. Za vrijeme vrenja, povećanjem alkohola, dolazi iz izlučivanja birse, koja se također po stijenama bačve. Topliljivost birse kod raznih temperaturama različita je, tako na pr. vino od 8 vol. % alkohola može kod 15°C sadržati 2,9 g/l i 24°C otopljenom formi, to isto vino kod 5°C samo 1,4 g/l. Prema tome se u vino u bocama drži kod niže temperature nego što je bilo u bačvi, ona birsa, koja se nije izlučila u bačvi, izlučiće se u bocu. Spriječiti možemo da se birsa izluči u bocama točno, da se vino u bačvi ohladimo i tako pospješimo izlučivanje birse prije punjenja u boce. U malim podrumima može se vino hladiti hladjenjem podruma, otvaranjem vrata i prozora za hladnog vremena, ili ostavljanjem vina na otvorenom kod niske temperaturi. Kod toga moramo paziti da ne dođe do oštetivanja bačava ili do smrzanja vina. U velikim pogonima preporučuje se hladjenje specijalnim aparatom sa cijevima, cijena aparata je u Austriji 12.000—15.000 Schillinga ili 2.000—3.000 DM. To je aparat koji se potrebno redovno održavaju i za hlađenje kod vrenja.

W. Saller: Der Weinsteinausfall, izaslo u »Der Winzer« 11.

NOVE METODE ODVODNJE

Tako zvana »kritična drenaža« pravoto je upotrebljavana u Engleskoj, a zatim u USA. Prije nekoliko godina tu metodu usvojili su također i u Francuskoj i Holandiji. Glavna razlika prema upotrebljavanoj ciljnevnoj drenaži sastoji se u tome, da za polaganje »cijevi« više ne treba kopati rov. Tlo siječe i oštro čelično crtalo vertikalno do dubine od 60 cm i na toj dubini pomoću cilindričnog tijela, koje ima oblik cijevi i oko 5 cm promjera, zbijalo tlo s kamenja. Pošto se ono što je u dubini razmak između drenova treba da je 3—4 mera.


Druga metoda sastoji se u kombinaciji cijevne drenaže (u većim razmacima, nego je normalno) i neke vrste rahljenja mrtvice preko drenažnog sistema. Primjene su obično za rahljenje mrtvice slično je plućima za kritičnu drenažu, samo što ima umjesto okruglog cilindričnog tijela, izmjenjivo džiuro malo dolge nagrušno. Prilikom rada ono malo podiže tlo iznad sebe. Francuzi to nazivaju »galerijska drenaža« označujući time odnos toga rahljenja mrtvice i njezino položenog drenažnog sistema. Ovo rahljenje mrtvice preporučljivo je.
KRTIČNOM DRENAŽOM POPRAVLJAJU SE TEŠKA GLINENA TLA

Krtična drenaža su kanali oko 6 cm u promjeru načinjeni u tlu sa svrhom što brže odvođenja suvišne vode. Stroj, kojim se pravi krtična drenaža, sličan je onom za podrivanje. Kad se ispravno načini krtična drenaža, djelotvorna je za odvođenje suvišne površinske i plitke podzemne vode. Povoljno djelovanje jednako je bilo kojem drugom drenažnom sistemom.

U Novoj Zelandiji, gdje je udomaćena ta vrsta drenaže u povoljnim prilikama traje i više od dvadeset godina.

Pokuši su pokazali, da je 6 do 7 godina prosječno efektivno djelovanje. U mnogim slučajevima, krtična drenaža djelovala je povoljno daljih 6 do 7 godina.

Rad krtične drenaže razlikuje se od podrivača uglavnom u obliku oruda. Orude za krtičnu drenažu je cilindričnog oblika oko 35 cm dužine, i oko 7 cm u promjeru. Ono je usmjereno blago na dolje. Pokret stroja urezuje ga u podoranicu. Kreiranje će ostati na istoj ravnini, ako su tlo i topografske prilike ujednačene.

Pokuši su pokazali, da je djelovanje krtične drenaže povoljno samo na teškim tlima, kao teškim glinevima i llovačama i glinama.

Tlo treba da je jednolično; glnasto-tlo, koje je ispresijecano s umecima pjeskovitog ili šljunkovitog tla, ne će dati dobre rezultate. Tamo će se zatrpati načinjeni kanali.

Potrebno je da tlo bude bez stijena i drugih ostataka, koji bi mogli spriječiti prolaz pluga, i uzrokovati nepravilnosti kanaličaka. Loši rezultati dobiju se kod tala, koja su bila podrvana.


Depresije i ostale neravnosti treba izbjegavati; ove neravnosti inače se očituju u kanalima, koji se izvode.

Erozija u kanaličima je problem, kad se drenaža izvodi na suviše velikim nagibima. Dopustivi stupanj pada zavisi od teksture tla, koje se drenaža; teške gline vrlo su otporne prema eroziji.

Najbolji rezultati dobijaju se, ako se drenovi polažu na dubinu od 50 do 80 cm. Ti prolazi ili kanali treba da su bar 15 cm u glinom sloju. Obično je pravilo, što je dublji kanal, to duže traje.

Razmak varira prema propusnosti tla. Čini se da je razmak od 3 m zadovoljavajući za sve prilike.

Duljina jednog drena ne treba da bude veća od 200 m, jer je otežano otežanje vode iz duljih drenova.

Pokuši su nadalje pokazali, da je brzina staja kod izvođenja također važan element. Brzine od 4 do 6 km/sat daje su najbolje rezultate.

Krtična drenaža može se u uspjehu potprijeti na tri različite načina.

417
Ona pokazuje dobre rezultate, kad se upotrebljava sama. Zatim se može upotrebiti da zamijeni drenске cijevi, kad su drenovi položeni suviše razdvojno da bi mogli zahvatiti svu vodu. U tom slučaju kritična drenaža umiče se između drenskih cijevi.

Kritična drenaža također se može upotrebiti za pomlađivanje drenaže drenskim cijevima, koje su već dugo vremena u zemlji. Kritična drenaža izvede se povrh postojećih drenskih cijevi. Pucanje i lomljenje tla, koje prati izvođenje kritične drenaže, čini tlo propusnijim te se povećava infiltracija drenskih cijevi.

Kritična drenaža nije opća zamjena za sve vrste drenaže; ali kad se pravilno izvede, pokazuje se efektivnom i ekonomičnom, jer je jeftinija, osobito na teškim tlima.

Prema »Crops & Soils«
Jan. 1955
ing. B. Dj.

Knjige i časopisi

I. A. Vlasjuk:
»K pitanju kartiranja erodiranih tala« (rus.) Počvovedene No. 10/1953.

Za planiranje i poduzimanje konkretnih zaštitnih mjera protiv erozije potrebne su pedološko- erozione karte u mjeru, koje će pokazati potrebne detalje u vezi s konfiguracijom terena. Do sada su se upotrebljavale karte u mjerilo 1:10.000 za projektiranje zaštitnih pojasa, šumskih nasada i hidrotehničkih objekata, jer se na kartama tog mjerila može prikazati stupanj erodiranosti, a mogu se pokazati i smjer bušaća i jaruga na kartiranoj površini.

Za dobivanje općeg uvida u razvoj procesa erozije tla sastavljaju se karte u mjerilo 1:25.000, 1:50.000 i 1:200.000. Na kartama toga mjerila potrebno je izdvojiti bar kompleksno 1. slabo erodirana i neerodirana tla; 2. slabo i srednje erodirana tla i 3. srednje i jako erodirana tla.

Od velike je važnosti na pedološko- erozionim kartama prikaz reljef. On se prikazuje horizontalama, te se tako može dobiti sliku o uzvisinama, pravčim vododelnicima, grebenima i ostalim elementima reljefa. Za dobru preglednost razvedenosti reljefa potrebno je smatrati horizontala na svakih 5 metara visinske razlike. Samo takve karte, na kojima je prikazan reljef, mogu stvarno poslužiti za podlogo kod projektiranja zaštitnih mjera protiv erozije.

Zbog nerijesnosti pitanja u vezi problema kartiranja erodiranih tala, na većini pedoloških karata, nije pri-kazana rasprostranjenost tih tala. Takve pedološke karte ne mogu poslužiti za meliorativne svrhe, nego je neophodno ponoviti pedološka istraživanja specijalno za tu svrhu.


Osim Soboljeve nomenklature postojale su i druge, tako na pr. u Ukrajinskom naučno-istraživačkom institutu socijalističke poljoprivrede primjenjivala se nomenklatura P. A. Kostjučenka, koja je izdvajala tri stupnja erodiranosti tala: a) slabo erodirana, b) erodirana i c) jako erodirana tla.


E. W. Russell:
»Soil tith as a factor in soil fertility«

Postoji mogućnost daljeg povećanja žetvenih prinosa, ali i koštanje