UTICAJI APLIKACIJE STEROIDNIH, BETA AGONISTA I SOMATOTROPINA NA PRI-RAST ŽIVOTINJA

Jasna Stekar

Pregledni znanstveni rad

SAŽETAK

Reč je i o danas već komercijalnom dobijanju rekombinovanog somatotropina (ST) glavnih životinjskih vrsta i donekle je izražen strah od eventualno šire upotrebe ST u uzgoju životinja, pre nego što bi bili poznati svi uticaji aplikacije i na čoveka i njegovu sredinu.

Upotreba anabolnih steroida povećava dnevni prirast kod goveda za 8 do 18%. Dodavanjem beta agonista znatno se povećava masa mišića i smanjuje sadržaj masti u organizmu. Kod preživara se povećava prirast i iskorišćavanje hrane za 13 do 20%, a kod svinja i poradi za 1 do 3%. Aplikacija somatotropina u muzara povećava proizvodnju mleka prosečno za 18% i povećava konzumaciju hrane. U toku lakcije životinje imaju nižu telesnu masu, a veću telesnu masu pri kraju lakcije i u toku zasušivanja. Sadržaj azota iz ureje u krmi testiranih krava je manji. Više je blizanaca. I kod svinja aplikacija ST povećava proizvodnju mleka. Kod tova preživara ST poboljšava dnevne priraste i iskorišćavanje hrane, a u kombinaciji s androgenima efekat se procentualno povećava.

Sve ukazuje na činjenicu da na retenciju azota utiče količina i vrsta aminokiselina u obroku.

Uvod

Nešto slično događa se i s nama samima. Tražimo i verujemo u jedinične koje će nam omogućiti da se bolje osećamo, da ojačamo naše zdravlje i produžimo život, od jogurta do raznih pčelinjih proizvoda.

Ovde će biti govora samo o dodacima koji nisu neophodni za biološke funkcije životinja. Međutim, imaju specifičan, pozitivan uticaj na klinički zdrave životinje. Najznačajniji predstavnici te vrste dodataka su jedinjenja koja stimuliraju rast. I jedinična koja menjaju hormonalno ili nervno regulisanje metabolizma isto su tako primer

Prof. dr. Jasna Stekar, Biotehniška fakulteta, VTOZD za živinorejo, Domžale.
dodataka koji životinjama nisu neophodni. Tako obe navedene, za životinje neesencijalne grupe dodataka, same po sebi nemaju nikakvu hranljivu vrednost.

Pregled literature

Klasifikacija

Namur, Morel i Bickel (1988) svrstavaju neesencijalne dodatke u sledeće grupe: tehnološki dodaci, dodaci koji povećavaju asporopiju, antimikrobna jedinjenja, odnosno stimulatori porasta, drugi stimulatori porasta, modifikatori metabolizma, probiotici, profilaktici.

Tehnološke dodatke svrstavaju u zaštitne, koji se zasnivaju, pre svega, na organskim kiselinama, kao što su propionska i mravlja kiseline, a koje mogu da smanje ili ćak da spreče bakterijsko ili gljivično kvarcenje krmiva. Tu spadaju i antioksidanci, kako prirodni, tako i sintetički, i dodaci kod peletiranja. Ne mogu se mimoći ni razne aromatske materije i boje, koje se dodaju u hranu za perad i ribe. Najčešće su to prirodni ili sintetički carotenoidi.

Medu dodaci koji povećavaju asporopiju ubrajaju se i enzimi i emulgatori. Enzimi s velikim uspomom kroje sebi put u svakodnevnu praksa, naročito kao dodaci hrani s nešto manjom svarljivošću organske materije.

Antimikrobna jedinjenja ili stimulatori porasta su antibiotici, metaboliti živih čelija gljivica ili bakterija, i hemijski sintetički hemoterapeutici. Antimikrobna jedinjenja, koja se danas koriste kao stimulatori porasta, ne absorbuju se u probavnom traktu, već deluju na mikrobe u probavnom traktu, pa i na one u buragu. Što se tiče korišćenja antimikrobnih jedinjenja za stimulisanje porasta, sve evropske zemlje imaju detaljne propise, koji nisu svuda isti.

Medu druge stimulatore porasta navedeni autori ubrajaju bakar, koji se dodaje u hranu namenjenu mladim svinjama u porastu. Pri tom se mora imati u vidu opasnost od zagadaivanja okoline svinjskim izmetom. Upravo zbog toga u nekim zemljama sada maksimalno dodaju 35 mg Cu po kilogramu hrane.

Nauka danas naglo napređuje na području hormona rasta, naročito u pogledu govede (bovine) somatotropina, bST. Hormon je belačevina, specifična za vrstu, te uneta u organizam kroz usta nema efekta, jer se molekula belačevine pod uticajem enzima razgrađuje u probavnom traktu životinje. bST luci hipofiza. Hormon ima veoma nis- žan uticaj na brojne telesne funkcije, a posebno na laktaciju i na rast. Sada je moguća komercijalna proizvodnja bST, i to s rekombinantnim - DNA tehnikama. Nivo hormona u mesu i mleku tretnih životinja isti je kao i kod netretiranih, budući da sve životinje same izlučuju hormon. Govedi, ovčji ili svinjski ST ne deluje negativno na čoveka, bez obzira na način aplikacije. Traženje i drugih modifikatora metabolizma koji bi doprineli ekonomičnijoj proizvodnji proizvoda životinjskog porekla i dalje se nastavlja. Pri tome je cilj ne samo da se nadoknade steroidni i drugi hormoni koji deluju direktno, već da se nadoknade i antimikrobni stimulatori porasta. Istraživanja su usmerena na faktore koji regulišu lučenje hormona i na jedinjenja koja bi menjala nivo izlučivanja hormona u organizmu životinja, ili bi menjala ili prigušila nervne signale. Kao primer mogu da navesti beta agonisti. Poznato je da klenbuterol i cimiterol mogu da imaju takve efekte. Međutim, poznato je i to da neki beta agonisti utiču na rad srca i krvene sudove ili na micanje probavnog trakta. Budući da deluju i na čoveka, ostaci jedinjenja u mesu mogu da budu problematični. Iz navedenog se jasno vidi da bi se upotreba takvih jedinjenja smelila odobriti tek nakon veoma brižljivog, saveznog i detaljnog ispitivanja svih mogućih štetnih efekata na životinje, čoveka i sredinu. Trenutno bi bilo prerno dati područja opštem korišćenju bilo kog jedinjenja koje deluje direktno na fiziologiju životinjske čelije, iako su dosadašnja istraživanja dala neke rezultate koji ohrabruju. Izraz »probiotici« odnosi se na duboko zamrznute bakterije, koje ožive kada se hranom unese u organizm. Dodavanje istih reguliše mikrofloru u organizmu životinja. Pri tome uticaj probiotika na rast još uvek nije jasan, ali je činjenica da probiotici utiču na regulisanje probavne mikroflore nakon tretnja antibioticima. Tokom zadnjih
nekoliko godina oni su opet predmet intenzivnih istraživa-
nja.

Kao profilaktični dodaci hrani u skladu s propisima
mogu se koristiti samo jedinjenja koja sprečavaju kokci-
diozu kod peradi i kunića.

Anabolni steroidi

Komercijalno proizvedeni polni steroidi i njima slične
molekule nisu skupi, te su zbog toga preparati ove vrste
u priličnoj upotrebii. Estrogeni i androgeni mogu da se
koriste svaki posebno ili u kombinaciji. Kao što je već
navedeno, anabolni steroidi apliciraju se isključivo kao
implantant, što olakšava njihovu aplikaciju na paši ili u
slobodnom towu. Roche i Quirke (1986) u svom su
pregledu izneli detaljne podatke o uticaju steroidnih hor-
mona na porast domaćih životinja. Rezultati aplikacije se
uvek ne podudaraju, ali kada su u pitanju goveda ili ovce
može se tvrditi, bez dvoumljenja, da steroidni hormoni
stimulišu rast. Tako njihovo korišćenje, što se tiče prirasta
i iskorišćavanja hrane, ima znatnu ekonomsku prednost.
U kojoj meri se povećava dnevni prirast može se videti
iz tabele 1.

Uticaj anabolnih steroida na rast u goveda

Effect of anabolic steroids on cattle growth

(Quirke & Schmid, 1986)

<table>
<thead>
<tr>
<th>Tabela 1 – Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>tretman</td>
</tr>
<tr>
<td>Treatment</td>
</tr>
<tr>
<td>1. 24 ili 45 mg estradiola</td>
</tr>
<tr>
<td>2. 20 mg estradiol benzoata + 200 mg progesterona</td>
</tr>
<tr>
<td>3. 36 mg zeronola</td>
</tr>
<tr>
<td>5. 300 mg trenbolon acetata</td>
</tr>
</tbody>
</table>

Beta agonisti

Otkriće da tzv. beta adrenergični agonisti povećavaju
prirast i iskorišćavanje hrane, uz istovremenu promenu
odnosa između nagomilane masti i mišića u govedu, ova-
ca, svinja i peradi, našlo je na najveći odaziv u toku zad-
njih godina. Prve temelje takvim saznanjima postavili su

Gordon i Cherkess (1958), White i Engels (1958)
I Cunningham i drugi (1963). U humanoj medicini,
prema Timmermanu (1987), stimulans beta receptora
bili su poznati već 3100. godine pre naše ere, sve cit.
prema Ločniškari i drugima (1988). Iako je testiran
veliki broj preparata, najviše podataka se odnosi na klen-
buterol i cimaterol (tabele 2 i 3).
Sažetak istraživanja i odgovora vezanih za oralno uzimanje β-agonista (klenbuterol i cimaterol), klasificirano s obzirom na raspon doziranja
Research results and answers related to oral intake of β-agonist (Klenbuterol and Cimaterol), classified according to dosage range
(Hanrahan et al., 1986)

<table>
<thead>
<tr>
<th>vrsta</th>
<th>raspon doziranja (mg/kg TM dnevno)</th>
<th>br. utvrdivanja</th>
<th>relativni (b) odgovori za uzimanje hrane, iskorišćavanje hrane, sadržaj masti i površina L. dorsi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Dosage range (mg/kg TM per day)</td>
<td>Number of statements</td>
<td>feed consumption</td>
</tr>
<tr>
<td>ovce</td>
<td>0.021 – 0.022</td>
<td>3</td>
<td>1.02</td>
</tr>
<tr>
<td>Scheep</td>
<td>0.03 – 0.12</td>
<td>10</td>
<td>1.00</td>
</tr>
<tr>
<td>0.25 – 0.42</td>
<td></td>
<td>7</td>
<td>0.97</td>
</tr>
<tr>
<td>goveda</td>
<td>0.025 – 0.115</td>
<td>4</td>
<td>0.97</td>
</tr>
<tr>
<td>Cattle</td>
<td>1.29</td>
<td>1</td>
<td>0.79</td>
</tr>
<tr>
<td>svinje</td>
<td>0.0015 – 0.0088</td>
<td>7</td>
<td>0.97</td>
</tr>
<tr>
<td>Pigs</td>
<td>0.016 – 0.018</td>
<td>3</td>
<td>0.95</td>
</tr>
<tr>
<td>0.031 – 0.050</td>
<td></td>
<td>6</td>
<td>0.95</td>
</tr>
</tbody>
</table>

a) Kod ovaca u velikom broju slučajeva nije bilo podataka o uzimanju hrane i/ili o iskorišćavanju hrane. In many cases in sheep there were no data on feed intake and/or feed conversion.
b) Odgovor je dat kao prosek tretiranih podeljeno sa prosekom netretirane kontrole. The answer is given as an average of the treated animals divided by the average of the untreated control.

Sažetak istraživanja o uticaju β-agonista (klenbuterol i cimaterol) kod peradi, klasificirano s obzirom na raspon doziranja
Research results on effect of β-agonist (Klenbuterol and Cimaterol) in poultry, classified according to dosage range
(Hanrahan et al., 1986)

<table>
<thead>
<tr>
<th>raspon doziranja (mg/kg hraniva)</th>
<th>br. utvrdivanja</th>
<th>relativni (a) odgovor iskorišćavanje hrane, % masti i % belančevina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dosage range (mg/kg of feed)</td>
<td>Number of statements</td>
<td>feed conversion % of fat % of protein</td>
</tr>
<tr>
<td>0,125 – 0,25</td>
<td>4</td>
<td>1.03</td>
</tr>
<tr>
<td>0,5</td>
<td>2</td>
<td>1.04</td>
</tr>
<tr>
<td>1,0</td>
<td>5</td>
<td>1.03</td>
</tr>
<tr>
<td>2,0 – 4,0</td>
<td>2</td>
<td>1.03</td>
</tr>
</tbody>
</table>

a) Odgovor je dat kao prosek tretiranih, podeljeno s prosekom netretirane kontrole. The answer is given as an average of the treated animals divided by the average of the untreated control.
Kao što se vidi iz tabela, dodavanje beta agonista znatno povećava masu mišića i smanjuje procentan masti u organizmu. Kod preživara uticaj na prirast i iskorišćavanje hrane je veći (+13 do +20%), kao kod peradi.

Koliko mi je poznato, prvi eksperiment s beta agonistima u nas su izveli Loćniškari i drugi (1988). Bilirima deset provenjeniosa dodavali su u hravno 0,5 ppm terbutilamin-sulfata, koji proizvodi „Bosnaljek” pod nazivom „Bricanyl”, i to od 17. dana života pa dalje. Težina tretiranih pilića povećala se za 18%, a isto tako pilići su imali i za oko 10% karakteristično manje abdominalne masti. Za obe karakteristike važi da su razlike signifikantne između provenjeniosa. U tretiranoj grupi mortalitet je bio manji, a i konverzija hrane bila je veća za 3%.

Hormon rasta

Hormon rasta, somatotropin (ST) je polipeptid i nje-gova se molekula sastoji od 191 aminokiselina. Pre no što se počelo s proizvodnjom ST primenom rekombinacione DNA tehnike, hormone su dobijali ekstrahiranjem iz hipofize životinja. Danas se ST najznačajniji životinjski vrsta (goveda, svinja i ovaca) proizvodi komercijalno. Prema Quirk i dru. (1988), rekombinantno dobijanje ST verovatno se može smatrati najznačajnijim biotehniološkim zahvatom u stočarstvu. Bazirano na tak koncentracije ketonskih tela u krvi, autori zaključuju da postoji veza između bST i metabolizma masti. U pogledu sastava mliečne masti ustanovljeno je da se svaki put nakon injekcije bST povećao procent saznačenih masnih kiselina s dugim lancem, dok se udeo kiselina s kratkim lancem smanjivao. Sadržaj ureje u mleku tretiranih životinja bio je manji, dok je koncentracija balančevina ostala nepromenjena.

Proizvodnja mleka u toku 32-sedmičnog tretmana

Milk production during 32 weeks of treatment (Rijkema et al., 1987)

<table>
<thead>
<tr>
<th>Tabela 4 – Table 4</th>
<th>kontrola Control</th>
<th>bST</th>
<th>razlika Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>mlieko (kg/krava/dan)</td>
<td>22,9 26,9 4,0</td>
<td>4,0/4,0/4,0</td>
<td></td>
</tr>
<tr>
<td>Milk (kg/cow/day)</td>
<td>4% FCM (kg/krava/dan)</td>
<td>24,9 29,5 4,6</td>
<td></td>
</tr>
<tr>
<td>4% of FCM (kg/cow/day)</td>
<td>4,69 4,77 0,08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mliečne masti (%)</td>
<td>3,44 3,50 0,06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milk fat (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mliečne balančevine (%)</td>
<td>4,69 4,77 0,08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milk protein (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) LSM svedeni na nivo pre tretiranja

LSM reduced to the level before treatment

+++ Razlika signifikanta kod P<0,001

The difference is significant at P<0,001

Aplikacijom bST proizvodnja mleka se povećala za 18,5%. Povećala se i konzumacija suve materije, ali je to povećanje manje od povećanja proizvodnje mleka. Prividno iskorišćavanje krmiva (kg 4% FCM/kg VEM) povećalo se za 8,5%. Telesne mase i promene telesnih masa životinja obe grupe nisu se razlikovale za vreme tretmana.
Autori su izveli i testirani u pogledu sastava i svojstava mleka za preradu u sirove. Utvrđeno je da između grupa nisu postojale nikakve razlike u pogledu sastava i ukusa sira.

Zdravstveno stanje životinja obe grupe bilo je zadovoljavajuće. Pojava mastitisa i prosećan broj somatskih čelija između grupa u toku tretmana nisu bili značajni. Mada su vrednosti kod bST grupe bile nesna i malo veće. U bST grupi krave su otelile 7 pari blizanaca, a u kontrolnoj grupi samo 1 pari.

Peel i drugi (1988) izveli su sličan ogled sa 207 krava, u trajanju od 32 nedelje. Rezultati su bili u okvirima već poznatih rezultata. Autori nisu utvrdili korelaciju između početne proizvodnje mleka pojedinih krava i proizvodnje mleka nakon tretiranja s bST. Kod tretiranih životinja konzumiranje suve materije i telesna masa bili su veći na kraju ogleda. U bST grupi bili je više blizanaca – 13 pari, u kontrolnoj grupi 4 pari.

Gravert (1988) je, na osnovu 10 ogleda izvedenih s 386 krava tretiranim s bST i 232 netretirane krave, došao do zaključka da se proizvodnja mleka dnevno povećala za 4,5 kg FCM, a dnevna konzumacija suve materije za 1,6 kg. Prema tome, prividno iskorišćavanje krmiva povećalo se za 10%. Ako se, međutim, imaju u vidu i veće potrebe za održavanjem zbog povećanog prirasta, može se očekivati da će se prividno iskorišćavanje krmiva povećati za samo 6%. Tretiranje s bST ograničava prirast telesne mase u laktaciji, ali se isti povećavaju pri kraju laktacije i u toku zaslušivanja.

Prividno iskorišćavanje krmiva veće je, pre svega, na početku tretmana. U prvih 8 nedelja proizvodnja mleka se povećala za 5,0 kg FCM, a konzumiranje suve materije za svega 0,6 kg. U tom periodu kontrolne životinje su imale pozitivan energetski bilans (+13,3 MJ NEL/dan), dok je kod životinja tretiranih s bST taj bilans bio uravnotežen (+0,5 MJ NEL/dan). Tako je tretiranje s bST imalo za posledicu deficit energije kod blizu polovine tretiranih krava, što bi moglo da dovede do pojave tihoga tjeranja i do produžavanja intervala telenja.

Autor nije utvrdio interakciju između genotipa i tretmana, te iskorišćavanja krmiva. Isto tako nije utvrđena korelacija između nivoa proizvodnje ili početne količine mleka i povećanja proizvodnje mleka. Utvrđeno je blago povećanje broja somatskih celija u mleku, ali nije bilo više pojava mastitisa, zdravstvenih problema, problema u vezi s telenjem, uginuća teladi, kao ni razlika u kvalitetu mleka i u pogledu njegovih tehnoloških karakteristika.

Već na osnovu ove prezentacije najznačajnijih konkretnih rezultata dobijenih u nekoliko ogleda s muznim kravama može se videti da je izazov, vezan za aplikaciju bST, zaista veliki. Velika preduzeća koja su u proizvodnju rekombinantnog ST uložila znatna financijska sredstva nastojaće da ga prodaju što više. A i iskušenje je zaista veliko. Da li ćemo znati i moći da izbegnemo sve veće poznate, pa i one nepoznate opasnosti i komplikacije koje aplikacija ST nemojno donosi sa sobom?! Prema Harkinsu i drugima (1985), somatotropin povećava proizvodnju mleka i kod svinja. Ogled je izveden sa 16 svinja, od kojih je 8 tretirano supkutano svinskim (porcine) somatotropinom (pST) u dozi od 8,22 mg po svini dnevno. Kod tretiranih svinja zabeležena je signifikantno (P<0,05) veća proizvodnja mleka u odnosu na kontrolne životinje (netretirane). Proizvodnja mleka merena je 16, 22 i 28. dana nakon presećenja. U svakom legu bilo je po 10 prasadi. Proizvodnja mleka povećala se za 13,6% (9,2 odnosno 8,1 kg/dan), 17,0% (10,3 odnosno 8,8) i 20% (10,8 odnosno 9,0). Uporedo s rastom proizvodnje mleka povećavala se i telesna masa prasadi. Kao osnova uzeta je težina u 9 – 10. danu (2,79 kg po prasetu). Težine prasadi čije su majke tretirane s pST, 16, 22. i 28. dana dostigle su sledeće vrednosti: 4,06, 5,30 i 6,51, dok su težine prasadi netretiranih majki bile 3,95, 5,08 i 6,18 kg. Prosečna razlika od 0,32 kg u 28. danu nije bila signifikantna (P = 0,13). Svine tretirane s pST u 3. i 4. sedmici nakon presećenja konzumirale su manje hrane u odnosu na drugu sedmicu – 35 kg, odnosno 31 i 35 kg. Svine iz kontrolne grupe konzumirale su 35 kg, odnosno 41 i 43 kg. Razlika iznosi 20 – 24% i je signifikantna je (P>0,05), a isto tako je i razlika u telesnoj masi (P<0,10) i gubitku telesne mase: –13,6 odnosno –6,8 kg i –0,94 odnosno –0,30 cm. Autori nisu utvrdili štetne uticaje po zdravlje životinja.

Somatotropin, hormon rasta, stimulira rast. Rezultati apliciranja hipofiznog pST kod svinja sadržani su u tabeli br. 5.

U literaturi su velike razlike što se tiče doziranja pST i Broja životinja, pa je veoma teško dati neku prosečnu ocenu. Rezultati uglavnom ukazuju da se može očekivati znatno veći prirast, iskorišćavanje hrane kod merenja površine mesa i sadržaja masti. U većim eksperimentima (Grebner i drugi, 1987, i McLaren i drugi, 1987) s hipofiznim pST postignuti prirasti i iskorišćavanje hrane su u širokom rasponu (od 7 – 14% i 15 – 42%). Slično je i kod površine mišića longissimus dorsi, koji se povećao za 8 – 13%, a deblijina slanine na ledima se smanjila za 31 – 58%. Istraživanja izvedena s rekombinantnim pST kod svinja uskoro će biti ocenjena i nadamo se da će rezultati biti objavljeni.

Sa preživivama u tovu izvedeno je znatno manje eksperimenta sa ST u odnosu na muzare. Verovatno zbog toga što se kod tovljenika prilično koriste steroidi, i to s velikim uspehom.
O uticaju hormona rasta samog i u kombinaciji s zeronolom kod jagnjadi izveštava Wolf rom i drugi (1985). Eksperiment je trajao 28 dana, a izveden je po principu 4 \times 2 i u svakom postupku bilo je po 8 jagnjad. Govedi hipofizni somatotropin apliciran je svaki dan, a to: 0, 1, 5 ili 10 mg/jagnje. Zeronol je bio implantiran 0 mg ili 12 mg/jagnje, tri dana pre početka eksperimenta. Navešćemo samo neke značajnije rezultate. Na prosečnu dnevnu konzumaciju hrane nije uticao niti zeronol, niti bST, ali je aplikacija bST povećala (P<0,01) prosečne dnevne prisariste i konverziju hrane, i to linearno. Kod aplikacije 10 mg/dan povećanje u odnosu na kontrolu bilo je 25 i 15%. Osim toga, bST linearno je povećao (P<0,001) i nivo glukoze u krvi u 14. danu, a smanjio (P<0,05) krven azot (N) iz ureje 14. i 28. dana. Pоказало se da je uz navedeni nivo bST implantiranje zeronol na još više povećalo prosečne dnevne prisariste i konverziju hrane. Povećanje prisarista u jagnjadi, do kojeg dolazi nakon implantacije zeronol, može da bude još veće aplikacijom bST. Ukoliko zeronol deluje stimulativno na izlučivanje ST, taj uticaj pri 12 mg zeronol za jagnje nije maksimalan.

Aspl und i drugi (1988) izveli su više eksperimenta s ovcama, a olij je bio da se rasvjeti uticaj ST na meta-

bolizam belančevina. U prethodnom eksperimentu, kada su ovcama aplicirali rekombinantni bST 30 dana uzastopce (0,5 mg/kg TM), što su još jednom ponovili nakon odmora od tri dana, bilans je bio signifikantno veći (P<0,01) u oba slučaja aplikacije ST, i to 2,62 odnosno 1,04, odnosno 2,14 g/dan. Nakon toga su izveli još tri eksperimenta sa 8 ovaca, gde su korišćeni sledeći izvori belančevina: kezine, bez belančevina, želatina; aplikacija ST signifikantno (P<0,05) je poboljšala retenciju azota u životinje koje su tretirane kezineom (0,81, odnosno 0,11 g/dan). Kod životinje koje su držane na obroku bez belančevina bST nije povećao taloženje azota (−4,13, odnosno −4,33, P = 0,33), što takođe važi za životinje koje su tretirane želatinom (−2,54, odnosno −3,06, P = 0,39). Nivo insulina (ng/ml) bio je veći kod sva tri načina ishrane. Glukoza u plazmi povećana je injekcijama ST kod životinja držanih na kezineu, nešto je malo bilo veća kod želatina, dok se kod držanja na obroku bez N nije promenila. Podaci pokazuju da ST podstiče kako sintezu, tako i razgradnju belančevina, kao i to da je delovanje ST kompleksno. Očigledno je da ST podiže nivo insulina u plazmi, te da na retenciju azota, nivo glukoze i na metabolizam amino-
kiselina isto tako utiču količina i vrsta aminokiselina u obro-
ku. Kod aplikacije ST snabdevanje životinja belančevi-
nama postaje kritično.
Fabry i drugi (1985) istraživali su uticaj bST na rast, iskorišćavanje hrane i na kvalitet mesa kod junica u tovu. Životinjama su davane injekcije hormona rasta svaki dan. Prethodni ogled trajao je 45 dana i obuhvatio je 20 junica raspoređenih u 10 parova s obzirom na telesnu masu i prirast. Pre početka ogleda parovi junica su nasumice raspoređeni u dve grupe: u kontrolnu grupu i u grupu tretiranu sa bST. Dnevna doza ST iznosila je 50 μg/kg TM. Ogled je trajao 126 dana. Životinje su hranjene individuálno i konzumacije hrane je utvrđivana dnevno. Za ocenu svarljivosti, koja je izvedena od 42. do 48. dana, korišćen je Cr₃O₅. Ukupno povećanje TM i prosečan dnevni prirast bili su signifikantno veći kod tretiranih životinja, i to za 24%. Signifikantno se poboljšalo i iskorišćavanje krmiva, dok je kvalitet polutki trupa ostao neizmenjen.

Quirke i drugi (1988), citirano prema Quirke i Schmidt (1988) utvrdili su, na osnovu ogleda u trajanju od 22 sedmice, da je aplikacija hipofiznog bST kod tovne junadi frizijske rase donela za 10 – 13% veće priraste. U ogledu se ispitivao i uticaj bST u kombinaciji s estradiolom i utvrđeno je dalje povećavanje dnevnih prirasta i konverzije hrane.

Zaključak

U Jugoslovlji korišćenje hormona u tovu životinja nije dozvoljeno. Međutim, svi hormoni ne bi se smeli podjednako tretirati, budući da među njima, tačnije u pogledu njihovog delovanja, postoje značajne razlike. Da li ćemo, ipak, dozvoliti upotrebu anabolnih steroida?

Literatura

EFFECTS OF STEROIDS, BETA AGONISTS AND SOMATOTROPHIN ON ANIMAL WEIGHT GAIN

SUMMARY

The schedule of non-essential feed additives according to Namura, Morel and Bickel (1988) is given. It is stated that within the European Economic Community the use of steroid hormones is allowed in fattening but only in the form of implants.

Today's commercial derivation (extraction) of recombinant somatotrophin (ST) in main animal species is mentioned and to some extent fear is expressed that possibly ST might be extensively used in growing of animals before all effects of the use of ST on man and his environment are known.

With the use of anabolic steroids the daily weight gain in cattle increases by 8 to 18 per cent. When beta agonists are added, the muscle volume increases and the fat level in the organism decreases. In ruminants the weight gain and feed conversion increase by 13 to 20 percent and in pigs and poultry by 1 to 3 percent. When somatotrophin is applied in dairy cows, the milk production increases by 18 percent on the average and the feed consumption increases, too. During lactation the animals show a smaller body weight while the body weight is bigger towards the end of lactation and during the dry-up. The nitrogen level from urea in the feed of tested cows is lower. There are more twins. In pigs, too, the use of ST increases the milk production. In the fattening of ruminants the daily weight gain and the feed conversion are improved and when combined with androgens, the effect increases in percentages.

Everything points to the fact that nitrogen retention is influenced by the amount and the type of amino acids in the ration.