Važnost mikroelementa u voćarstvu

Pod mikroelementima (oligoelementima) podrazumijevamo one elemente, koji su voćkama za njihov normalan razvoj, potrebni u vrlo malim količinama. Od mikroelementa do sada su najviše poznati bor, cink, mangan, bakar, molibden i željezo. Kako u organizmu voćaka sudjeluju u vrlo malim količinama, nije im se obraćala naročita pažnja sve došlo dok se na voćkama nisu počele pojavljivati ozbiljne posljedice, osobito u pogledu rodnosti. Postepenim ispitivanjima došlo se do spoznaje kako koji elemenat djeluje, i kakva je njegova uloga u pogledu razvoja voćaka i kvalitete njihova prinosa.

Iako nihove funkcije nisu potpuno ispitane, ipak možemo sa sigurnošću zaključiti da je njihova uloga u razvoju voćaka kao i kvalitetu plodova vrlo velika. Zbog nedostatka ovih elemenata imamo raznih anomalija na voćkama u pogledu rasta, oštećenja listova, plodova, pupova, mladica i t. d. U daljem izlaganju osvrtnut ćemo se samo na one elemente, čije je djelovanje na vočki najbolje poznato.

Mikroelementi dolaze u tlo iz litosfere. Zahvaljujući razornom djelovanju raznih klimatskih procesa, koji djeluju na litosferu, naša se tla obogaćuju pojedinim mikroelementima.

Tla na kojima su podignuti voćnjaci, kao i razne druge ratarske i površarske kulture, znatno su siromašnja mikroelementima od onih tala na kojima nemamo nikakve poljoprivredne proizvodnje.

Na onima tlima, na kojima se uzgajaju voćne kulture, naročito ako im se ne poklanja više pažnje putem pravilne obrade i gnojenja, iz godine u godinu sve više oširomašuju mikroelementima.

Mikroelementi iz zemljista odlaze putem raznih kultura, nepravilnom obrađom, erozijom, navodnjavanjem i t. d.

Da se povrate oduzeti mikroelementi, danas se pored primjene raznih agrotehničkih mjera, kod gnojenja stajskim gnojem i mineralnim gnojivima primjenjuje gnojenje mikroelementima. Dodavanjem mikroelementa gnojenjem stajskim i mineralnim gnojivima ili samim mikroelementima od ogromne je važnosti za naše voćarstvo. Kod nas je primjena gnojenja mikroelementima neophodno potrebna, jer su naša tla pretežno oskudna.

Za normalan razvoj voćaka potrebni su ovi mikroelementi:

BOR: Od svih mikroelementa, koji su neophodno potrebni za normalan razvoj voćaka, najpoznatiji je bor. Nedostatak bora imamo najviše na onim tlima, koja su izložena jačem djelovanju oborina, to su zapravo kiselija tla (podzoli). Zbog jakih oborina dolazi do brzog gubljenja fiziološki aktivnog bora. Pored oborina gubitak bora zavisi i o kapacitetu tla za vezivanje hranjivih elemenata, strukturi, teksturi, sadržini organskih tvari i t. d. Što se tiče mogućnosti vezivanja bora u povoljnijoj situaciji iloće i glinasta tla od pjeskotvitih tala. Za povezivanje bora u tlu od ogromne su važnosti organske tvari, te stoga tla s većom količinom organskih tvari imaju bolju mogućnost povezivanja bora.
Bor djeluje na sastav protoplazme kao i na oplodnju. On je neophodno potreban za normalan porast polenove cjevćice, te u nedostatku istog dolazi do sprečavanja oplodnje. Bor djeluje na normalan tok oplodnje, kao i na kvalitet plodova. Zbog nedostatka bora plodovi su nepravilno razvijeni. U više slučajeva imamo oko sjemene lože pojavu tamnozoelenih pjeva. Lišće dobiva izgd jest. Na starijim stablima jabuka i krušaka kao i ostatih vrsta voća suše se mladice. Pored suspenja mladica kod bresaka prijevremeno opadaju listovi i uigiba korijenov sistem, dok se na debelu odlupljuje kora. Navedeno je, da su plodovi nepravilni i da imaju tamne mrle oko sjemene lože, pored toga se na mesu primjećuju plustasti dijelovi, dok se na pokožici nalaze crvenkaste pjege. Mladice su kratke i s grbljom korom, koja nas podsjeća na opekotine. Nedostatak bora odražava se gotovo na svim voćnim vrstama u vidu raznog deformiranja listova, mladica, plodova i t. d.

CINK: Nedostatak cinka javlja se naročito u onim voćnjacima, u kojima se vrši redovna natapanja. Na onim tlima, na kojima je veća količina vodenog osjeća se manja pristupačnost fiziološkog aktivnog cinka za voće. Na huminskim tlima, tlima bogatim organskim tvarima imamo veću količinu cinka podesnog za normalan razvoj voćaka. Naročito se nedostatak cinka osjeća u voćnjacima podignutim na pjeskovitim tlima, koji su alkalne reakcije.

Nedostatak cinka osobito se očituje u kružljavom porastu pojedinih grana na periferiji krošnje. Zbog nedostatka ovog elementa imamo kod mladica tipičan kratki internodijalni razvoj. Lateralni pupovi, koji se nalaze na donjim dijelovima mladica, jako su sitni i pretežno u proljeće opadaju. Ovi pupovi, ako i prolistaju, lišće je jako usko i zašiljeno. Iz terminalnih pupova razvija se sitno lišće u vidu rozete. Naročito kod jače oštećenih pojedinih stabala jabuka dolazi do jačih posljedica u pogledu rodnosti.

Zbog nedostatka ovog mikroelementa ne može doći do oplodnje, iako voće normalno cvetaju. Ono plodova što se zametne, sitno je i izduženo i razvija se abnormally. Plodovi kada sazru blježe su obojeni bez okusa i mirisa.

BAKAR. Nedostatak baka osjeća se naročito na trešnanim, zabarenim i jako podzolastim tlima, dok se na neutralnim i alkalnim tlima nedostatak baka rijetko pojavljuje. Postoje mišljenje, da stalnom primjenom fungicida na bazi baka u borbi protiv raznih bolesti i štetinja dolazi do umornosti tla. Međutim, istraživanja francuskih stručnjaka dokazala su, da su te tvrđnje neosnovane. Utvrđeno je, da se primjenom borkoške juhe pored njenog fungicidnog djelovanja tlo obogaćuje bakrom. Bakar povoljno djeluje na razvoj nitrifikacijskih bakterija. Naročito veliki utjecaj na razvoj voće ima bakar u stvaranju klorofil. Pored toga što utiče na stvaranje klorofil služi nam kao katalizator oksidacijskih procesa u voćcima. Nedostatkom ovoga elementa i u tlu izazvan je slabiji porast mladica a i slabiji razvoj korijenova sistema.

MOLIBDEN se nalazi u tlu u vrlo malim količinama. Za razliku od ostalih mikroelemenata topljivost mu se povećava kalifikacijom. Smatra se, da je za aktiviziranje molibdena u tlu kalifikacija jedan od najvažnijih faktora. Molibden kod voćaka izaziva porast kako mladica i lišća, tako isto i korijenova
sistema. Do prekida normalnog porasta mladica, lišća i korijenova sistema kao i normalnog roda, dolazi zbog nedostatka ovog mikroelementa.

ZELJEZO: Željezo se nalazi na pretežno barskim i vlažnim tima i tima, izloženim ispiranju, u koma dolazi do stalne migracije ovog mikroelementa iz gornjih slojeva. Nedostatak željeza u tlu može doći kao posljedica jače zastupljenosti krečnjača, koji ga inaktivira. Nedostatak željeza može biti izazvan suviškom mangana, jer je ovaj antagonist željeza. U nedostatku željeza dolazi do kloroze, jer je željezo glavni sastavni dio klorofila. Do nedostatka željeza u voćkama može doći ako se one nalaze u tlu slabije strukture kao i slabe prozračenosti. Zbog nedostatka željeza dolazi do slabe asimilacije i slabog stvaranja organskih tvari, koje se negativno odražava na normalan razvoj kako nadzemnih, tako i podzemnih dijelova voćke.

Iz navedenog može se zaključiti, da je pristupačnost svih elemenata, izuzevši molibdenu, u kiselim tima veća nego u jači alkalnim tima, tj. u tima bogatijim vapnom. Korisno djelovanje kalcifikacije je u više slučajeva umanjeno radi inaktiviranja mikroelementa. Zato se i preporučuje dodavanje pojedinih mikroelementa prskanjem kod onih voćnjaka, koji se nalaze podgutni na jače alkalnim timima.

Tlima, kojima nedostaje bor, dodajemo ga u vidu boraksa ili borne kiseline. Voćnjacima, podgutnim na pjeskovitim timima, potrebne su manje količine boraksa nego voćnjacima podgutnim na težim timima i timima, s većom sadržinom vapna. Dok se na pjeskovitim timima možemo zadovoljiti sa 10 kg, dotle na težim timima i timima s većim postotkom vapna moramo dodavati cca 40 kg boraksa po ha. Pored gnojenja zemljišta ovaj mikroelement pretvara u većinu voćaka prskanjem voćnih stabala. Kod prskanja obično upotrebljavamo 0.88 kg u 500 l vode.

Mangan nadoknađuje gnojenjem manganovim sulfatom. Obično se ovo gnojivo umazuje u količini od 50—100 kg po ha. Pored gnojenja mangan sulfatom ovaj mikroelement pretvara u većinu voćaka prskanjem i bor možemo dodavati voćcama prskanjem. Dosađašnja prskačija dala su zadovoljavajuće rezultate. Za prskanje jabuka i šljiva preporučuje se 1.5 kg mangan sulfata na 500 l vode, dok se za breskву preporučuje 1 a za kašiju 1.3 kg mangan sulfata i 2 kg gašenog vapna u 250 l vode.

Nedostatak cinka nadoknađuje dodavanjem cink sulfata. Koju čemo količinu cink sulfata dodati tima zavisii u prvom redu o sastavu tla kao i c količini orborna, jer od orborna zavisi ispiranje mikroelementa. Obično se uzima od 10—16 kg po ha. Želimo li ovaj mikroelement dodavati voćcama prskanjem, onda ga uzimamo u ovim količinama: za breskву i kašiju 5 kg cink sulfata i 2.5 kg gašenog vapna u 500 l vode. Za kruške uzima se 7, a za šljive 9, dok se za jabuke uzima 2.5—3 kg za zimska prskanja, dok se za prskanja poslije cvjetanja upotrebljava koncentracija cink-sulfata u kombinaciji s gašenim vapnom 0,5—1%.

Bakar dodajemo u vidu bakarnog sulfata. Kod dodavanja bakarnog sulfata ako su pjeskovita tla bit će dovoljna količina od 50 kg po ha. Ukoliko je tlo bogatije humusom, onda mu je potrebno dodati cca 200 kg bakarnog sulfata po ha. Smatra se da su ove količine dovoljne za period od 7 god. Ukoliko se bakar želi dodavati prskanjem, onda se uzima u koncentraciji 0.1%.

Molibden dodajamo tlima u vidu Na-molibdata. Prema dosadašnjim iskustvima smatra se da je dovoljna količina od 5—22 kg po ha. Za prskanje se uzima 0,1—0.2%—tna otopina. Prskanje se obično obavlja poslije formiranja plodova.

Nedostatak željeza možemo nadoknaditi prskanjem solima ovog elementa. Prema američkim istraživanjima vrlo dobre rezultate pokazala je primjena željeznog — aethylen diamin tetracetata.

Pored navedenih slučajeva dodavanja pojedinih mikroelementa tima, mi ih možemo dodavati redovnim gnojenjem stajskim gnojem. Na ovo nas upućuje analiza Trome-a, koji je našao da u 50 t stajskog gnoja pri 80%/ vla-
žnosti ima slijedeća količina pojedinih mikroelemenata: bora 1.570, mangana 7.266, cinka 3.800, bakra 0.559, molibdena 0.044 i kobalta 0.044 kg.

Na osnovu iznešenih posljedica, koje se nepovoljno odražavaju na normalan razvoj voćaka, kao i mogućnosti uklanjanja istih, možemo zaključiti slijedeće:

a) da postoji mogućnost direktnog dodavanja odgovarajućih elemenata tlu,
b) dodavanje mikroelemenata možemo izvršiti prskanjem voćaka, kako u doba mirovanja (zimsko prskanje), tako i u doba vegetacije,
c) da se mora redovito vršiti prihramnjanje voćnjaka podignutih na tlima oskudnim odgovarajućim mikroelementima,
da vrlo brzo možemo ukloniti štetne posljedice izazvane nedostatkom pojedinog mikroelementa, pravdobnim gnojenjem ili prskanjem.

Kroz našu zemlju

SIMPOZIJUM TEHNOLOŠKE MIKROBIOLOGIJE

Od 15. do 17. ožujka o. g. održan je u Ljubljani I. Simpozijum tehnološke mikrobiologije u organizaciji Saveza kemičara-tehnologa FNRJ, Saveza društava poljoprivrednih inženjera i tehnčara FNRJ i Kemičkog Instituta »Boris Kidrič«. Kroz tri dana rada Simpozijuma održan je niz predavanja iz raznih područja tehnološke mikrobiologije, a svaki je referat bio praćen vrlo plodnom diskusijom.

Opći referat pod naslovom: Suvremeni problemi tehnološke mikrobiologije i mogućnosti za njihovo rješavanje kod nas, održao je Dr. Stević. U tome referatu bilo je objašnjeno cjelokupno područje rada tehnoloških mikrobiologa, prikazan je ukratko razvitak pojedinih grana mikrobiologije (prema izučavanju grupa mikroorganizama), bakteriologija, mikologija, virologija, protozologija, odnosno prema primjeni (medicinska, veterinarska, poljoprivredna, tehnološka). Mjesto tehnološke mikrobiologije time je određeno, ona je predmet izučavanja mikroorganizama i njihove primjene u raznim mikrobiološkim granama, odnosno u industrijskim preradama organskih tvari (mljeksarska mikrobiologija, vinarska, fermentaciona, konzervna i t. d.). Referat dr. Stevića razrađen je po temama: I. Stanje industrije, čija djelatnost zavisi od mikroorga-
nizama, II. Osnovni mikrobiološki problemi industrijske proizvodnje kod nas, III. Putovi i način rješavanja problema tehnološke mikrobiologije.

Ostali referati obradili su specijalna tehnološka područja kod kojih je djelovanje mikroorganizama više ili manje značajno. To su bili referati pod naslovima: Mikrobiološki problemi u industriji špirita i kvasca (Rašajski).

Suvremeni mikrobiološki problemi u vinogradarstvu (Milisavljević).

Suvremeni mikrobiološki problemi u industriji pliva (Johanides).

Fermenti mikroorganizama i mogućnosti njihove proizvodnje (Vrtar).

Suvremeni mikrobiološki problemi industrije vrenja i mogućnosti za njihovo rješavanje kod nas (Krajo van).

Suvremeni mikrobiološki problemi u mljekarstvu i mogućnosti primjene rezultata kod nas (Konjajev).

Suvremeni mikrobiološki problemi u konzervnoj industriji. Mogućnosti upotrebe njenih rezultata kod nas (Šljajmer).

Suvremeni mikrobiološki problemi u industriji papira i celuloze, kao i moguća upotrebljivost dobivenih rezultata kod nas (Blinč)

Suvremeni mikrobiološki problemi u tekstilnoj industriji i mogućnosti primjene rezultata kod nas (Koče var).