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DIOPHANTINE TRIPLES WITH VALUES IN THE

SEQUENCES OF FIBONACCI AND LUCAS NUMBERS
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Abstract. Let FL = {1, 2, 3, 4, 5, 7, 8, 11, 13, 18, 21, . . .} be the set
consisting of all Fibonacci and Lucas numbers with positive subscripts.
We find all triples (a, b, c) of positive integers a < b < c such that ab +
1, ac+ 1, bc+ 1 are all members of FL.

1. Introduction

Let A be a subset of the positive integers. A Diophantine m-tuple with
values in A is a set of m positive integers {a1, a2, . . . , am} such that aiaj + 1
is a member of A for all 1 ≤ i < j ≤ m. The classical case is when A is the
set of squares. The main results here are that m ≤ 5 and that if there are
any examples with m = 5, then there are only finitely many of them (see [3]).
Infinite families of examples are known in this case for m = 4. Another topic
which has received interest is when A is the set of members of some binary
recurrent sequence. Some necessary conditions on the binary recurrence for
the existence of infinitely many examples with m = 3 appear in [4]. For
example, one such condition is that the roots of the characteristic equation of
the binary recurrence are integers and the smallest one in absolute value is 1.
In particular, for the Fibonacci sequence {Fn}n≥1 given by F1 = F2 = 1 and
Fn+2 = Fn+1 + Fn for all n ≥ 1, and its Lucas companion {Ln}n≥1 given by
L1 = 1, L2 = 3, Ln+2 = Ln+1+Ln for all n ≥ 1, we have, by the main result
in [4], that there are only finitely many Diophantine triples with values in
F = {Fn : n ≥ 1}, and also there are only finitely many Diophantine triples
with values in L = {Ln : n ≥ 1}. In [5, 6], it is shown that in fact there is no
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Diophantine triple with values in F and that {1, 2, 3} is the only Diophantine
triple with values in L.

Here we take FL = F ⋃L = {1, 2, 3, 4, 5, 7, 8, 11, 13, 18, 21, . . .} to be
the set of Fibonacci and Lucas numbers with positive subscripts and study
Diophantine triples with values in FL. Surprisingly, we find an infinite para-
metric family of examples in addition to a few sporadic ones. Our result is
the following.

Theorem 1.1. Assume that 1 ≤ a < b < c are positive integers such that

ab+ 1, ac+ 1, bc+ 1 are members of FL. Then one of the following holds:

(i) {a, b, c} = {F2k, L2k+1, L2k+2} for some positive integer k;
(ii) {a, b, c} = {1, 2, 3}, {1, 3, 4}, {1, 2, 6}, {1, 2, 10}, {1, 6, 33}.
As a byproduct of our classification theorem of Diophantine triples with

values in FL, we get right–away the following result.

Corollary 1.2. There are no diophantine quadruples with values in FL.

2. Preliminary results

All the results in this section can be found in [6]. Put

(α, β) =

(

1 +
√
5

2
,
1−

√
5

2

)

for the two roots of the Fibonacci and Lucas sequences. Their Binet formulas
are

(2.1) Fn =
αn − βn

α− β
and Ln = αn + βn for all n ≥ 1.

In particular,

(2.2) αn−2 ≤ Fn ≤ αn−1, αn−1 ≤ Ln ≤ αn+1 hold for all n ≥ 1

and also
(2.3)
αn−2 ≤ Fn − 1 ≤ αn−1, αn−1 ≤ Ln − 1 ≤ αn hold for all n ≥ 6.

Lemma 2.1. 1. Fn ≤ Ln, and equality holds if and only if n = 1;
2. FnLn = F2n;

3. Ln = Fn+1 + Fn−1;

4. L2
n − 5F 2

n = 4(−1)n;
5. L2n = L2

n − 2(−1)n;
6. L3n = Ln(L

2
n − 3(−1)n);

7. F3n = Fn(5F
2
n + 3(−1)n).

For a prime number p and an integer m we write νp(m) for the exponent
of p in the factorization of m.
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Lemma 2.2. The following divisibility relations hold:

1. gcd(Fu, Fv) = Fgcd(u,v);

2. gcd(Lu, Lv) =







Lgcd(u,v), if ν2(u) = ν2(v);
2, if ν2(u) 6= ν2(v) and 3 | gcd(u, v);
1, otherwise;

3. gcd(Fu, Lv) =







Lgcd(u,v), if ν2(u) > ν2(v);
2, if ν2(u) ≤ ν2(v) and 3 | gcd(u, v);
1, otherwise.

For an integer m, we write Em and E′
m for any member of {Fm, Lm}.

Corollary 2.3. We have

gcd(Em, En) ≤ Lgcd(m,n).

Lemma 2.4. The following formulae hold:

1.

Fn − 1 =



















Fn−1

2

Ln+1

2

, if n ≡ 1 (mod 4);

Fn+1

2

Ln−1

2

, if n ≡ 3 (mod 4);

Fn−2

2

Ln+2

2

, if n ≡ 2 (mod 4);

Fn+2

2

Ln−2

2

, if n ≡ 0 (mod 4);

2.

Ln − 1 =























5Fn−1

2

Fn+1

2

, if n ≡ 1 (mod 4);

Ln−1

2

Ln+1

2

, if n ≡ 3 (mod 4);
F3n/2

Fn/2
, if n ≡ 2 (mod 4);

L3n/2

Ln/2
, if n ≡ 0 (mod 4).

3. The proof of Theorem 1.1

3.1. The setup. The verification that the triples shown at (i) satisfy the
hypothesis of the theorem follows because

F2kL2k+1 + 1 = F4k+1 ∈ FL;

F2kL2k+2 + 1 = F4k+2 ∈ FL;

L2k+1L2k+2 + 1 = L4k+3 ∈ FL.

The above formulas follow easily from Lemma 2.4. The verification that the
triples shown at (ii) satisfy the hypothesis of the theorem is straightforward.
We have to show that if 1 < a < b < c are integers such that

(3.1)

ab+ 1 = Fx, Lx;

ac+ 1 = Fy, Ly;

bc+ 1 = Fz, Lz;

for some positive integers x, y, z, then {a, b, c} is like in (i) or (ii) of the
theorem. Since the cases when right–hand sides are all Fibonacci and all
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Lucas numbers have been treated in [5,6], respectively, we assume that in the
right–hand sides of (3.1) there is at least one Fibonacci number and at least
one Lucas number.

3.2. The outline. We split the proof into various steps. Each step reveals
some structure of the Diophantine triples with values in FL provided z is
sufficiently large. Each section concludes with a verification of the small
cases.

3.3. The very small cases. We checked the case when z ≤ 120. The
only sporadic solutions found in this range are the ones shown at (ii) of the
theorem.

3.4. A bound for z in terms of y. From now on, we assume that z > 120.
Note that the system (3.1) together with inequalities (2.2) lead to

(3.2) αz+1 > Lz ≥ bc+ 1 > ac+ 1 ≥ Fy ≥ αy−2, so z ≥ y − 2,

and

α2y+2 > L2
y > c2 > bc+ 1 ≥ Fz ≥ αz−2, so z ≤ 2y + 3.

Hence, z ∈ [y − 2, 2y + 3].
In fact, the case z = y− 2 is not possible. Indeed, if this is the case, then

since z ≥ 121, we have y ≥ 123, and by Lemma 2.1, we have

Fy−1+Fy−3 = Fz+1+Fz−1 = Lz ≥ bc+1 > ac+1 ≥ Fy = Fy−1+Fy−3+Fy−4,

giving Fy−4 < 0, a contradiction for y ≥ 123. Thus, z ∈ [y − 1, 2y + 3].
Let us record this conclusion.

Lemma 3.1. We have z ∈ [y − 1, 2y + 3].

To continue, we distinguish four cases as follows. Consider each of the
statements

(3.3) ac+ 1 = Ly, y even;

and

(3.4) bc+ 1 = Lz, z even.

The four cases correspond to whether both (3.3) and (3.4) hold, or only
(3.4) holds but not (3.3), or only (3.3) holds but not (3.4), or none holds.
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3.5. The case when both (3.3) and (3.4) hold. Since a < b < c, we get
that y < z. Further, by Lemma 2.4 and Corollary 2.3, we have

c | gcd(ac, bc) = gcd(Ly − 1, Lz − 1) | gcd(E3y/2, E
′
3z/2),

so

c ≤ Lgcd(3y/2,3z/2) = L(3/2) gcd(y,z) < α(3/2) gcd(y,z)+1.

Clearly, gcd(y, z) = z/d for some integer d. If d ≥ 4, then, by inequalities
(2.3), we have

αz−1 ≤ Lz − 1 = bc < c2 < α3z/d+2 ≤ α3z/4+2,

leading to z ≤ 12, which is impossible. If d = 3, then gcd(y, z) = z/3,
therefore y = z/3, 2z/3, z or y ≥ (4/3)z. Since y < z, the last two cases are
impossible.

The case y = z/3 leads, via the fact that z ≤ 2y + 3 (see Lemma 3.1), so
y ≥ (z − 3)/2, to z/3 = y ≥ (z − 3)/2, so z ≤ 9, which is impossible.

The case y = 2z/3 implies that y is a multiple of 4, so, by Lemma 2.4, we
have

Ly − 1 = L2z/3 − 1 =
Lz

Lz/3
| Lz,

so Ly − 1 is in fact coprime to Lz − 1. This shows that c = 1, a contradiction.

3.6. The case when (3.4) holds but (3.3) doesn’t. The argument is similar
here. We use again Lemma 2.4 to conclude that for some δ ∈ {±1,±2} such
that y ≡ δ (mod 2), we have

c | gcd(ac, bc) | gcd(Ey − 1, Lz − 1) | 5 gcd (E(y−δ)/2E(y+δ)/2, E
′
3z/2)

|5 gcd (E(y−δ)/2, E
′
3z/2) gcd(E(y+δ)/2, E

′
3z/2),

so, by Corollary 2.3, we have

(3.5)
c ≤ 5Lgcd((y−δ)/2,3z/2)Lgcd((y+δ)/2,3z/2)

< α5.5+gcd((y−δ)/2,3z/2)+gcd((y+δ)/2,3z/2).

Here, we used in addition to estimates (2.2) also that 5 < α3.5. We thus get
that, by inequality (2.3),

αz−1 < Lz − 1 = bc < c2 < α11+2 gcd((y−δ)/2,3z/2)+2 gcd((y+δ)/2,3z/2),

giving

(3.6) z < 12 + 2 gcd((y − δ)/2, 3z/2) + 2 gcd((y + δ)/2, 3z/2).

By parity reasons (recall that z is even), we get

(3.7) z ≤ 10 + 2 gcd((y − δ)/2, 3z/2) + 2 gcd((y + δ)/2, 3z/2).

Let D± = gcd((y ± δ)/2, 3z/2). Note that

gcd(D+, D−) | gcd((y + δ)/2, (y − δ)/2) | (y + δ)/2− (y − δ)/2 = δ | 2,
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and certainly lcm[D+, D−] | 3z/2. Thus,
D+D− = lcm[D+, D−] gcd(D+, D−) | 2(3z/2) = 3z,

showing that min{D+, D−} ≤
√
3z. Thus, there exists ε ∈ {±1} such that

z ≤ 10 + 2
√
3z + 2 gcd((y + εδ)/2, 3z/2).

The value of ε is chosen such that gcd((y+εδ)/2, 3z/2) = max{D+, D−}. We
write gcd((y + εδ)/2, 3z/2) = (3z)/(2d) with some positive integer d. Thus,

(3.8) z ≤ 10 + 2
√
3z +

3z

d
.

If d ≥ 5, we get

z ≤ 10 + 2
√
3z +

3z

5
,

giving z ≤ 119, a contradiction.
If d = 4, then 4 | z. Thus, Lz − 1 = L3z/2/Lz/2 and in calculation (3.5)

we have E′
3z/2 = L3z/2. Further, (y+ εδ)/2 = 3zλ/8 for some positive integer

λ. If λ ≥ 2, then, using y ≤ z + 1, we get

z + 3

2
≥ y + εδ

2
=

3zλ

8
≥ 3z

4
,

leading to z ≤ 6, a contradiction. Hence, (y + εδ) = 3z/8. In particular,
ν2((y + εδ)/2) < ν2(3z/2). Lemma 2.2 shows that

gcd(E(y+εδ)/2, E
′
3z/2) = gcd(E(y+εδ)/2, L3z/2) ≤ 2 < α2.

Retracing our steps, we conclude that in the right–hand side of (3.8), the
summand 3z/d can be replaced by 4. Thus, we get

z ≤ 14 + 2
√
3z,

giving z ≤ 34, a contradiction.
If d ≤ 2, then

y + εδ

2
≥ 3z

2d
≥ 3z

4
,

so

z + 3 = (z + 1) + 2 ≥ y + εδ ≥ 3z

2
,

giving z ≤ 6, a contradiction.
If d = 3, then y + εδ = λz for some positive integer λ. The case λ ≥ 2,

gives z + 3 ≥ (z + 1) + 2 ≥ y + εδ = λz ≥ 2z, so z ≤ 3, a contradiction. The
case λ = 1, leads to z = y+ εδ, so z = y− 1, y+ 1, y+ 2 (the case z = y− 2
is not possible by Lemma 3.1).

Let us treat first the case z = y + 2. Then y is also even so

ac = Fy − 1 = Fz−2 − 1 | FzFz−4.

The last divisibility relation follows from Lemma 2.4. Since

bc = Lz − 1 | F3z ,
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it follows that

c | gcd(FzFz−4, F3z) | gcd(Fz, F3z) gcd(Fz−4, F3z) | FzFgcd(3z,z−4) | F12Fz .

On the other hand, by Lemma 2.4, we have

c | L3z/2

Lz/2
, or c | F3z/2

Fz/2
,

according to whether 4 | z or not, respectively. Since F12 = 144 and since
Fz = Fz/2Lz/2 (see Lemma 2.1), we get that

(3.9) c | 144 gcd
(

Fz/2,
L3z/2

Lz/2

)

gcd

(

Lz/2,
L3z/2

Lz/2

)

,

or

(3.10) c | 144 gcd
(

Fz/2,
F3z/2

Fz/2

)

gcd

(

Lz/2,
F3z/2

Fz/2

)

,

according to whether 4 | z or not, respectively. Note that since Fz/2 | F3z/2,

Lz/2 | L3z/2 and L2
3z/2 − 5F 2

3z/2 = ±4 (see again Lemma 2.1), it follows that

the first gcd in (3.9) and the second gcd in (3.10) are 1 or 2. If 4 | z, then
L3z/2 = Lz/2(L

2
z/2 − 3),

by Lemma 2.1, so the second gcd in (3.9) divides 3. Similarly when 4 does
not divide z, then

F3z/2 = Fz/2(5F
2
z/2 − 3),

again by Lemma 2.1, so the first gcd in (3.10) also divides 3. In conclusion,
in all cases, we get c | 144 · 6 = 864, so αz−1 < Lz < c2 ≤ 8642, so z ≤ 29.

Assume now z = y − 1. Then y = z + 1. If ac+ 1 = Lz+1, then

ac+ 1 = Lz+1 > Lz = bc+ 1,

so a > b, a contradiction. Thus, ac + 1 = Fz+1. Since ac = Fz+1 − 1 and
bc = Lz − 1 = (Fz+1 − 1) + Fz−1 (see Lemma 2.1), we get that c | Fz−1. But
also

c | Lz − 1 =
E3z/2

Ez/2
| F3z .

Hence, c | gcd(F3z , Fz−1) = Fgcd(3z,z−1) | F3 = 2, a contradiction.
Assume finally that z = y + 1. Thus, y = z − 1. If ac + 1 = Fy , we get

the same contradiction as before. Namely, c | Fy − 1 = Fz−1 − 1 and also
c | Lz − 1 = Fz+1 + (Fz−1 − 1), therefore c | Fz+1. But also

c | Lz − 1 =
E3z/2

Ez/2
| F3z ,

so c | gcd(F3z , Fz+1) = Fgcd(3z,z+1) | F3 = 2, a contradiction. Suppose
therefore that ac+ 1 = Ly − 1 = Lz−1 − 1. Then c also divides

Lz − 1 = Lz−2 + (Lz−1 − 1),
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so c | Lz−2 | F2z−4. Since also c | Lz − 1 | E3z/2 | F3z , we conclude that c |
gcd(F2z−4, F3z) = Fgcd(3z,2z−4) | F12, so c ≤ 144. So, αz−1 < Lz < c2 = 1442,
so z ≤ 21, a contradiction.

3.7. The case when (3.3) holds but (3.4) doesn’t. We start by following
the argument from the beginning of the previous case. We get the conclusions
(3.5) and (3.6) except that in the right–hand side, y and z are swapped:

(3.11) c < α5.5+gcd((z−δ1)/2,3y/2)+gcd((z+δ1)/2,3y/2),

which together with
αz−2 < Fz ≤ c2

leads to the slightly weaker analogue of (3.7), namely

(3.12) z ≤ 12 + 2 gcd((z − δ1)/2, 3y/2) + 2 gcd((z + δ1)/2, 3y/2).

Here, δ1 ∈ {±1,±2} is such that z ≡ δ1 (mod 2). As before, one of the
numbers gcd((z+δ1)/2, 3y/2) and gcd((z−δ1)/2, 3y/2) is at most

√
3y. Hence,

there exists ε ∈ {±1} such that if we write

gcd((z + εδ1)/2, 3y/2) = (z + εδ1)/(2d)

with some integer d ≥ 1, then

z ≤ 12 +
(z + εδ)

d
+ 2
√

3y.

If d ≥ 2, then we use the fact that y ≤ z + 1, and get

z ≤ 12 +
z + 2

2
+ 2
√

3(z + 1),

giving z ≤ 93, a contradiction.
If d = 1, then gcd((z + εδ1)/2, 3y/2) = (z + εδ1)/2, so λ(z + εδ1) = 3y

holds with some positive integer λ.
If λ ≥ 4, then

z − 2 ≤ z + εδ1 = 3y/λ ≤ 3y/4 ≤ (3z + 3)/4,

giving z ≤ 11, a contradiction.
If λ = 1, then y = (z + εδ1)/3 ≤ (z + 2)/3. Since z ≤ 2y + 3, so

y ≥ (z − 3)/2, we get (z − 3)/2 ≤ y ≤ (z + 2)/3, so z ≤ 13, a contradiction.
If λ = 2, then z + εδ1 = 3y/2, so z = 3y/2± 1, 3y/2± 2. Furthermore,

since in this case z + εδ1 is even, it follows that y is a multiple of 4. Thus,

ac = Ly − 1 =
L3y/2

Ly/2
,

and
bc = E′

z − 1 = A′E′
(z+εδ1)/2

E′
(z−εδ1)/2

= AE′
3y/2E

′
3y/2−εδ1

.

Here, A′ | 5. If E′
3y/2 = F3y/2, then

c | 5 gcd(L3y/2, F3y/2) gcd(L3y/2, E
′
3y/2−εδ) | 10 gcd(F3y , F3y−2εδ1) | 10F4 | 30,
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so αz−2 ≤ Fz ≤ c2 ≤ 900, so z ≤ 16, a contradiction. If E′
3y/2 = L3y/2, then

b/a = A′Ly/2E
′
3y/2−εδ1

≥ α2y−5.

Since z ≤ 3y/2 + 2, we get that y ≥ (2/3)(z − 2), so b ≥ α2y−5 ≥ α4z/3−23/3.
Thus, by inequalities (2.2),

αz+1 > Lz > b2 > α8z/3−46/3,

giving z < 9, a contradiction.
If λ = 3, then z = y − 1, y + 1, y + 2. We use that

c | ac = Ly − 1 = E3y/2/Ey/2 | F3y.

If z = y+ 2, then z is even, so bc+1 = Fz. Hence, c | Fz − 1 = Fy+2 − 1.
But also, by Lemma 2.1, we have

c | Ly − 1 = Fy+1 + Fy−1 − 1 = Fy+2 − Fy + Fy−1 − 1 = (Fy+2 − 1)− Fy−2.

Hence, c | Fy−2. Therefore c | gcd(F3y, Fy−2) = Fgcd(3y,y−2) | F6 = 8. This

shows that αz−2 < Fz ≤ c2 ≤ 82, so z ≤ 10, a contradiction.
If z = y− 1, then bc = E′

z − 1 ≤ Ly−1− 1 < Ly − 1 = ac, a contradiction.
Finally suppose that z = y+1. If bc+1 = Fz , it follows that bc = Fy+1−1.

But also ac = Ly − 1 = (Fy+1 − 1) + Fy−1. Hence, c | Fy−1, therefore
c | gcd(F3y , Fy−1) = Fgcd(3y,y−1) | F3 = 2, a contradiction. If bc + 1 = Lz,
then bc = Ly+1 − 1. Since ac = Ly − 1, it follows that c | Ly+1 − Ly = Ly−1,
so c | F2y−2. Thus, c | gcd(F3y , F2y−2) = Fgcd(3y,2y−2) | F12. This shows that

αz−2 < Fz ≤ c2 ≤ 1442, so z ≤ 22, a contradiction.
From the last three subsections we conclude that neither (3.3) nor (3.4)

holds.

3.8. The case when neither (3.3) nor (3.4) holds. Here we show that the
following holds.

Lemma 3.2. We have |z − y| ≤ 4.

Since now we know that neither (3.3) and (3.4) hold, we get, by Lemma
2.4, that

ac = Ey − 1 = AE(y−δ)/2E(y+δ)/2,

bc = E′
z − 1 = A′E′

(z−δ1)/2
E′

(z+δ1)/2
,
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where A,A′ ∈ {1, 5} and δ, δ1 ∈ {±1,±2} are such that y ≡ δ (mod 2) and
z ≡ δ1 (mod 2). Hence,

c | gcd(ac, bc) | gcd
(

AE(y−δ)/2E(y+δ)/2, A
′E′

(z−δ1)/2
E′

(z+δ1)/2

)

| 5
∏

ε,ε1∈{±1}

gcd(E(y+εδ)/2, E
′
(z−ε1δ1)/2

)

≤ 5
∏

ε,ε1∈{±1}

Lgcd((y+εδ)/2,(z−ε1δ1)/2)

< 5α4+
∑

ε,ε1∈{±1} gcd((y+εδ)/2,(z−ε1δ1)/2).

Hence, by (2.2),

αz−2 ≤ Fz < c2 < 25α8+2
∑

ε,ε1∈{±1} gcd((y+εδ)/2,(z−ε1δ1)/2),

which together with the fact that 52 < α7 gives

z ≤ 16 + 2
∑

ε,ε1∈{±1}

gcd((y + εδ)/2, (z − ε1δ1)/2).

By an argument used before, for each ε ∈ {±1} the greatest common divisor
of

gcd((y + εδ)/2, (z − δ1)/2) and gcd((y + εδ)/2, (z + δ1)/2)

divides δ1, therefore 2, and the least common multiple of the above two num-
bers is at most (y + 2)/2. So, the smallest is at most

√
y + 2 ≤

√
z + 3. In

the same way, for each ε1 ∈ {±1}, one of the numbers

gcd((z + ε1δ1)/2, (y − δ)/2) and gcd((z + ε1δ1), (y + δ)/2)

is at most
√
z + 2. Thus, up to changing δ to −δ and/or δ1 to −δ1 if needed,

we conclude that

(3.13) z ≤ 16 +
z − δ1
d1

+
z + δ1
d2

+ 2
√
z + 2 + 2

√
z + 3.

Here, d1 and d2 are defined by

gcd((y − δ)/2, (z − δ1)/2) = (z − δ1)/(2d1);

gcd((y + δ)/2, (z + δ1)/2) = (z + δ1)/(2d2).

Let us treat first the case when one of d1, d2 equals 1. Say d1 = 1. Then
y−δ = λ(z−δ1). If λ ≥ 2, we then have z−2 ≤ z−δ1 = (y−δ)/λ ≤ (z+3)/2,
so z ≤ 7, a contradiction. Thus, λ = 1, so y − δ = z − δ1. In particular,
|y − z| = |δ − δ1| ≤ 4, which is the title of this section. The same conclusion
is reached in the case when d2 = 1.

So, assume that min{d1, d2} ≥ 2. Suppose first that d1 = d2 = 2. Since
d1 = 2, it follows that (y − δ) = λ(z − δ1)/2, where λ cannot be 2. If λ ≥ 3,
then z + 3 ≥ y + 2 ≥ y − δ = λ(z − δ1)/2 ≥ 3(z − 2)/2, so z ≤ 12, a
contradiction. Thus, λ = 1 and y− δ = (z− δ1)/2, therefore 2y− z = 2δ− δ1.
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Since also d2 = 2, we get that y + δ = λ1(z + δ1)/2, where λ1 cannot be 2.
A similar argument as before shows that λ1 = 1, so y + δ = (z + δ1)/2, so
2y − z = −(2δ − δ1). Hence, 2δ − δ1 = y − 2z = −(2δ − δ1), so 2δ = δ1.
This shows that 2y = z. In particular, y = z/2 > 60. Hence, z is even. In
particular, since (3.4) does not hold, we get

bc = F2y − 1.

If ac = Fy − 1, then c ≤ Fy − 1, so

F2y = 1 + bc < c2 < (Fy − 1)2,

a contradiction for y > 60 (in fact, even for y ≥ 2), conclusion which can be
reached using the Binet formulas (2.1). Assume that ac = Ly − 1. If a ≥ 2,
then c ≤ (Ly − 1)/2, so

F2y = 1 + bc < c2 < (Ly − 1)2/4,

again a contradiction for y > 60 (in fact, even for y ≥ 2), which can be checked
using the Binet formulas (2.1). Hence, a = 1, c = Ly − 1, so

Ly − 1 | bc = F2y − 1 = FyLy − 1 = Fy(Ly − 1) + (Fy − 1),

so Ly − 1 | Fy − 1, a contradiction for any y ≥ 3 because then 1 < Fy < Ly

(see Lemma 2.1). This shows that it is not possible that d1 = d2 = 2. Hence,
min{d1, d2} = 2 and max{d1, d2} ≥ 3. Thus, 1/d1 + 1/d2 ≤ 5/6. Returning
to (3.13), we get

z ≤ 16 + (z + 2) (1/d1 + 1/d2) + 2
√
z + 2 + 2

√
z + 3

≤ 16 +
5(z + 2)

6
+ 2

√
z + 2 + 2

√
z + 3,

giving z < 776. To deal with this last range, we looked at

FL = {1, 2, 3, 4, 5, 7, 8, 11, 13, 18, 21, . . .}
= {L1, F3, F4, L3, F5, L4, F6, . . . , Fn+1, Ln, Fn+2, Ln+1, . . .}.

Let FLm be the mth element in FL. Note that since 1 ≤ a < b < c, it follows
that bc+ 1 > ac+ 1 ≥ 4, so both ac+ 1, bc+ 1 are in

FL\{1, 2, 3} = {L3, F5, L4, F6, . . . , Fn+2, Ln+1, . . .}.
The general formulas are

FL1 = 1, FL2 = 2, FL3 = 3,

FLn =

{

L(n+2)/2 if n ≡ 0 (mod 2)
F(n+5)/2 if n ≡ 1 (mod 2)

for n ≥ 4.

We checked computationally that the only pairs 1 < k < n ≤ 1600 with
gcd(FLn − 1,FLk − 1} ≥

√
FLn which moreover satisfy k ≤ n − 7 are
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(k, n) = (13 + 16t, 20 + 16t) for t ∈ [0, 99]. The difference n − k is always 7
for such pairs. To deal with them, we use a theoretical argument. Note that

FLk − 1 = F9+8t − 1 = F4t+4L4t+5,

FLn − 1 = L11+8t − 1 = L4t+6L4t+5.

Hence,

gcd(FLk − 1,Fn − 1) = gcd(F4t+4L4t+5, L4t+6L4t+5)

= L4t+5 gcd(F4t+4, L4t+6) = 3L4t+5.

The fact that the last gcd above is 3 follows because 3 = F4, F4 | F4t+4,
3 = L2 and L2 | L4t+6 and further,

gcd(F4t+4, L4t+6) | gcd(F8t+8, F8t+12) = Fgcd(8t+8,8t+12) | F4.

Thus, c | 3L4t+5. It is not possible that c | L4t+5, for if it were so, then

c2 ≤ L2
4t+5 = L8t+10 − 2 < L8t+11 − 1 = FLn − 1 = bc,

a contradiction. Thus, c ∈ {2L4t+5, 3L4t+5}. The case c = 2L4t+5 leads to
a = F4t+4/2, b = L4t+6/2, so

ab+ 1 =
1

4
F4t+4L4t+6 + 1 =

F8t+10 − 1

4
+ 1 =

F8t+10 + 3

4

=
F8t+10 + F4

4
=

F4t+3L4t+7

4
,

while the case c = 3L4t+5 leads to a = F4t+4/3, b = L4t+6/3, so

ab+ 1 =
1

9
F4t+4L4t+6 + 1 =

F8t+10 − 1

9
+ 1 =

F8t+10 + 8

9

=
F8t+10 + F6

9
=

F4t+8L4t+2

9
.

It remains to show that neither F4t+3L4t+7/4 nor F4t+8L4t+2/9 belongs to
FL. This follows right away for t > 1 because in this case F4t+3/4 >
1, L4t+2/9 > 1 and 4t+ 8 > 4t+ 7 > 12. Thus, if either of

F4t+3L4t+7

4
= Ew, or

F4t+8L4t+2

9
= Ew

holds, then w > 4t + 7 > 12 in the first case and w > 4t + 8 > 12 in the
second case, and by Carmichael’s primitive divisor theorem we get that Ew

has in both cases a prime factor that does not divide the left–hand side of
its corresponding equation, which makes the above equalities impossible. For
t = 0, 1, we checked by hand and for t = 0 we do in fact get the sporadic
solution c = 3L8t+5 = 33, a = F4t+4/3 = 1 and b = L4t+6/3 = 6. This implies
that even in the range 120 < z ≤ 776, we have that |z − y| ≤ 4.
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3.9. x ∈ [z−30, y+1]. Continuing with the argument from the preceding
section, we saw that there exist δ, δ1 ∈ {±1,±2} such that y ≡ δ (mod 2),
z ≡ δ1 (mod 2) and y − δ = z − δ1. Furthermore,

ac = Ey − 1 = AE(y−δ)/2E(y+δ)/2;

bc = E′
z − 1 = A′E′

(z−δ1)/2
E′

(z+δ1)/2
= A′E′

(y−δ)/2E
′
(y+2δ1−δ)/2.

The three numbers (y − δ)/2, (y + δ)/2, y + 2δ1 − δ)/2 are distinct except if
δ = δ1. Assume for the moment that δ 6= δ1.

If E(y−δ)/2 6= E′
(y−δ)/2, then {E(y−δ)/2, E

′
(y−δ)/2} = {F(y−δ)/2, L(y−δ)/2}.

Further, in this case,

c | gcd(ac, bc)

| 5 gcd(F(y−δ)/2, L(y−δ)/2) gcd(E(y−δ)/2, E
′
(y+2δ1−δ)/2)

× gcd(E(y+δ)/2, E
′
(y−δ)/2) gcd(E(y+δ)/2, E

′
y+2δ1−δ)/2)

| 5 · 2 · gcd(Fy−δ, Fy+2δ1−δ) gcd(Fy−δ, Fy+δ) gcd(Fy+δ, Fy+2δ1−δ)

| 10F 2
|2δ1−2δ|F2|δ|,

so c ≤ 10F 2
8F4 = 13230. So, αz−2 < Fz < c2 < 132302, therefore z ≤ 42, a

contradiction. So,

(3.14) E(y−δ)/2 = E′
(y−δ)/2.

But then

c | 5E(y−δ)/2 gcd(E(y+δ)/2, E
′
(y+2δ1−δ)/2)

| 5E(y−δ)/2 gcd(Fy+δ, Fy+2δ1−δ)

| 5E(y−δ)/2F|2δ1−2δ|,

therefore

c ≤ 5L(y−δ)/2F8 ≤ 105αy/2+1 < αy/2+11.

Hence,

a =
Ey − 1

c
≥ Fy − 1

αy/2+11
≥ αy/2−13,

where the last inequality holds by (2.3). Thus,

αx+1 > Lx ≥ ab+ 1 > a2 > αy−26 ≥ αz−30,

giving x ≥ z − 30.
This was in case δ 6= δ1. But if δ = δ1, then y = z, therefore ac = Fy − 1,

bc = Ly − 1, and y is odd. Thus, c | Fy − 1 and c | Ly − 1 = (Fy − 1)+ 2Fy−1,
showing that c | 2Fy−1. Since y is odd, ac = Fy − 1 = E(y−1)/2E(y+1)/2.
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Hence,

c | 2 gcd(Fy−1, E(y−1)/2, E(y+1)/2)

| 2E(y−1)/2 gcd(Fy−1, E(y+1)/2)

| 2E(y−1)/2 gcd(Fy−1, Fy+1)

| 2E(y−1)/2,

so

c ≤ 2L(y−1)/2 ≤ 2α(y+1)/2 < αy/2+3.

So, even in this case when δ = δ1, we have c < αy/2+3 < αy/2+11, and the
previous argument leads to x ≥ z − 30. To see that x ≤ y + 1, assume that
this is not so. Then x ≥ y + 2 and

ab = Ex − 1 ≥ Fy+2 − 1 ≥ Ly − 1 = bc,

a contradiction. The middle inequality above follows because, by Lemma 2.1,
we have Ly = Fy+1 +Fy−1 < Fy+2, where the last inequality holds for y ≥ 5,
which is our case since y = z − δ1 + δ ≥ z − 4 ≥ 117. Thus, we have proved
the following lemma.

Lemma 3.3. We have x ∈ [z − 30, y + 1].

Before closing this section, we record an important byproduct of it, which
is the following:

Lemma 3.4. In the notation

ac = Ey − 1 = AE(y−δ)/2E(y+δ)/2;

bc = E′
z − 1 = A′E′

(z−δ1)/2
E′

(z+δ1)/2
,

with the natural conditions A,A′ ∈ {1, 5}, δ, δ1 ∈ {±1}, y ≡ δ (mod 2), z ≡
δ1 (mod 2), we have

E(y−δ)/2 = E′
(z−δ1)/2

.

Indeed, this was shown above explicitly when δ 6= δ1 (see (3.14)), while
for δ = δ1, we have y = z, Ey = Fy , E′

z = Lz = Ly, y is odd, and then the
desired conclusion follows from Lemma 2.4 because

Ey − 1 = Fy − 1 = F(y−1)/2L(y+1)/2 and E′
z − 1 = Ly− 1 = 5F(y−1)/2F(y+1)/2,

or

Ey − 1 = Fy − 1 = F(y+1)/2L(y−1)/2 and E′
z − 1 = Ly − 1 = L(y−1)/2L(y+1)/2

according to whether y ≡ 1, 3 (mod 4), respectively, hence taking δ = 1, we
get E(y−δ)/2 = E′

(z−δ1)/2
= F(y−1)/2 or L(y−1)/2 according to whether y ≡ 1, 3

(mod 4), respectively.
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3.10. The range z ∈ [120, 1100]. Now we make a computation to cover
the range 120 < z ≤ 1100. To do that, we generated all triples 1 ≤ l < k <
n ≤ 2200 of elements of FL with the following properties:

(i) k ∈ {n− 9, . . . , n− 1};
(ii) l ∈ {n− 61, . . . , k − 1};
(iii) (FLk − 1)(FLl − 1)(FLn − 1) = �;
(iv) FLk − 1 | (FLl − 1)(FLn − 1);

FLl − 1 | (FLk − 1)(FLn − 1);
FLn − 1 | (FLl − 1)(FLk − 1).

Indeed, the relevance of the above conditions is that if we write

ab+ 1 = FLk, ac+ 1 = FLl, bc+ 1 = FLn,

then (i) follows from the fact that |z − y| ≤ 4, (ii) comes from the fact that
x ∈ [z − 30, y + 1], (iii) comes from the fact that

(FLl − 1)(FLk − 1)(Fn − 1) = (abc)2,

and (iv) comes from the fact that

a =

√

(FLk − 1)(FLl − 1)

FLn − 1
,

b =

√

(FLk − 1)(FLn − 1)

FLl − 1
,

a =

√

(FLl − 1)(FLn − 1)

FLk − 1
,

are all integers. We got a certain number of possibilities, but all of them came
from (i) of the theorem, which are triples of the form

(l, k, n) = (8t− 3, 8t− 1, 8t+ 4)

for some positive integer t ≥ 15.
Let us now formulate the analogue of (3.3) and (3.4) for the first equation

of the system (3.1):

(3.15) ab+ 1 = Lx, x even.

3.11. The case when (3.15) holds. This is very similar to the arguments
used in Sections 3.6 and 3.7 so we just recycle those ideas here. Assuming
that (3.15) holds then

ab = Lx − 1 =
E′′

3x/2

E′′
x/2

;

bc = Ez − 1 = A′E′
(z−δ1)/2

E′
(z+δ1)/2

,
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giving

b | gcd(ab, bc) | gcd(E′′
3x/2, A

′E′
(z−δ1)/2

E′
(z+δ1)/2

)

| 5 gcd(E′′
3x/2, E

′
(z−δ1)/2)

) gcd(E′′
3x/2, E

′
(z+δ1)/2)

),

so
b ≤ 5Lgcd(3x/2,(z−δ1)/2)Lgcd(3x/2,(z+δ1)/2)

≤ 5αgcd(3x/2,(z−δ1)/2)+gcd(3x/2,(z+δ1)/2)+2.

Hence,

αx−2 < Fx < b2 < α11+2 gcd(3x/2,(z−δ1)/2)+2 gcd(3x/2,(z+δ1)/2),

where we used again the fact that 5 < α3.5. Hence,

x ≤ 12 + 2 gcd(3x/2, (z − δ1)/2) + 2 gcd(3x/2, (z + δ1)/2).

As in Sections 3.6, 3.7, one of gcd(3x/2, (z−δ1)/2) and gcd(3x/2, (z+δ1)/2) is

at most
√
3x. So, there is ε1 ∈ {±1} such that gcd(3x/2, (z−ε1δ1)/2) = 3x/2d

with some positive integer d, and further

x ≤ 12 + 3x/d+ 2
√
3x.

If d ≥ 4, then

x ≤ 12 + 3x/4 + 2
√
3x,

giving x ≤ 300, so z ≤ x+ 30 < 330, a contradiction. If d ≤ 2, then

(z + 2)/2 ≥ (z − εδ1)/2 ≥ 3x/(2d) ≥ 3(z − 30)/4,

giving z ≤ 94, a contradiction. If d = 3, we get (z − εδ1)/2 = λx/2 for some
integer λ ≥ 1. If λ ≥ 2, then z + 2 ≥ z − ε1δ1 ≥ 2x ≥ 2(z − 30), so z ≤ 62, a
contradiction. Finally, if λ = 1, then z−ε1δ1 = x. Thus, z = x+2, x+1, x−1.
The fact that z = x− 2 is not possible follows from the argument of Lemma
3.1 which in particular implies that z ≥ x − 1. Now the argument from the
end of Section 3.6 (just interchange the pair (c, y) there with the pair (b, x))
gives b ≤ 864, so αx−1 < Fx < b2 < 8642, so x ≤ 30, a contradiction with
x ≥ z − 30 > 1070.

3.12. All of x, y, z are in an interval of length at most 8. Here, we recycle
the ideas of Section 3.8. Write

ab = E′′
x − 1 = A′′E′′

(x−δ2)/2
E′′

(x+δ2)/2
;

bc = E′
z − 1 = A′E′

(z−δ1)/2
E′

(z+δ1)/2
.

Hence,

b | gcd(ab, bc) | gcd(A′′E′′
(x−δ2)/2

E′′
(x+δ2)/2

, A′E′
(z−δ1)/2

E′
(z+δ1)/2

)

| 5 gcd(E′′
(x−δ2)/2

, E′
(z−δ1)/2

) gcd(E′′
(x−δ2)/2

, E′
(z+δ1)/2

)

× gcd(E′′
(x+δ2)/2

, E′
(z−δ1)/2

) gcd(E′′
(x−δ2)/2

, E′
(z+δ1)/2

),
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so

b ≤ 5
∏

ε1,ε2∈{±1}

Lgcd((x−ε2δ2)/2,(z−ε1δ1)/2)

≤ α7.5+
∑

ε1,ε2∈{±1} gcd((x−ε2δ2)/2,(z−ε1δ1)/2).

Since

αx−2 < Fx ≤ E′′
x < b2,

we get

x ≤ 16 + 2
∑

ε1,ε2∈{±1}

gcd((x − ε2δ2)/2, (z − ε1δ1)/2).

As in Section 3.8, for each ε1 ∈ {±1} one of

gcd((z + ε1δ1)/2, (x− δ2)/2), and gcd((z + ε1δ1)/2, (x+ δ2)/2)

is at most
√
z + 2, while for each ε2 ∈ {±1}, one of

gcd((x+ ε2δ2)/2, (z − δ1)/2), and gcd((x+ ε2δ2)/2, (z + δ1)/2)

is at most
√
x+ 2. So, there are ε1, ε2 ∈ {±1} such that if we put

gcd((x + ε2δ2)/2, z + ε1δ1)/2) = (z + ε1δ1)/(2d1),

gcd((x − ε2δ2)/2, z − ε1δ1)/2) = (z − ε1δ1)/(2d2),

then

x ≤ 16 + (z + ε1δ1)/d1 + (z − ε1δ1)/d2 + 2
√
x+ 2 + 2

√
z + 2.

Since, x ≤ z + 1, we get

(3.16) x ≤ 16 + (z + ε1δ1)/d1 + (z − ε1δ1)/d2 + 2
√
z + 3 + 2

√
z + 2.

Assume that one of d1, d2 equals 1. Say, d1 = 1. Then x+ ε2δ2 = λ(z+ ε1δ1)
holds with some positive integer λ. If λ ≥ 2, then

z + 3 ≥ x+ 2 ≥ x+ ε2δ2 = λ(z + ε1δ1) ≥ 2(z − 2),

so z ≤ 7, a contradiction. Hence, λ = 1 and x+ ε2δ2 = z+ ε1δ1. In particular
|z − x| = |ε2δ2 − ε1δ1| ≤ 4. But also |z − y| ≤ 4, so we get the desired
conclusion. This was when d1 = 1. When d2 = 1 a similar argument shows
that x− ε2δ2 = z − ε1δ1, and we get a the same conclusion that |z − x| ≤ 4.

It remains to study the case when min{d1, d2} ≥ 2. If also max{d1, d2} ≥
3, then 1/d1 + 1/d2 ≤ 5/6, so going back to (3.16) and using that x ≥ z − 4,
we get

z − 30 ≤ x ≤ 16 + (z + 2)(1/d1 + 1/d2) + 2
√
z + 3 + 2

√
z + 2

≤ 16 + 5(z + 2)/6 + 2
√
z + 3 + 2

√
z + 2,

giving z < 1100, a contradiction. Finally, assume that d1 = d2 = 2. Then
x+ε2δ2 = λ(z+ε1δ1)/2 for some integer λ which is not 2. If λ = 1, we then get
z−32 ≤ x−2 ≤ x+ε2δ2 = (z+ε1δ1)/2 ≤ (z+2)/2, so z ≤ 66, a contradiction.
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If λ ≥ 3, then z + 3 ≥ x + 2 ≥ x + ε2δ2 ≥ 3(z + ε1δ1)/2 ≥ 3(z − 2)/2, so
z ≤ 12, again a contradiction.

3.13. Final considerations. Let us now write

ab = E′′
x − 1 = A′′E′′

(x−δ2)/2
E′′

(x+δ2)/2
;

ac = Ey − 1 = AE(y−δ)/2E(y+δ)/2;

bc = E′
z − 1 = A′E′

(z−δ1)/2
E′

(z+δ1)/2
.

We already saw that y − δ = z − δ1, that E(y−δ)/2 = E′
(z−δ1)/2

(see Lemma

3.4) and that up to changing the sign of δ2, there exists ε1 ∈ {±1} such that
x− δ2 = z − ε1δ1.

Let us show that E′′
(x−δ2)/2

= E′
(z−ε1δ1)/2

. Here, we recycle the ideas of

Section 3.9.
Consider first the case δ2 6= ε1δ1. If E

′′
(x−δ2)/2

6= E′
(z−ε1δ1)/2

, we then have

{E′′
(x−δ2)/2

, E′
(z−ε1δ1)/2

} = {F(x−δ2)/2, L(x−δ2)/2}. Hence,

b | gcd(A′′E′′
(x−δ2)/2

E′′
(x+δ2)/2

, A′E′
(z−δ1)/2

E′
(z+δ1)/2

)

| 5 gcd(F(x−δ2)/2, L(x−δ2)/2) gcd(E
′′
(x−δ2)/2

, E′
(x+2ε1δ1−δ2)/2

)

× gcd(E′
(x−δ2)/2

, E′′
(x+δ2)/2

) gcd(E′
(x+2ε1δ1−δ2)/2

, E′′
(x+δ2)/2

)

| 5 · 2 gcd(Fx−δ2 , Fx+2ε1δ1−δ2) gcd(Fx−δ2 , Fx+δ2) gcd(Fx+2ε1δ1−δ2 , Fx+δ2)

×10F2|δ2|F
2
|2ε1δ1−2δ2|

,

so b ≤ 10F4F
2
8 ≤ 30 × 212 ≤ 13230, giving αx−2 < Fx ≤ 132302, so x ≤ 42,

a contradiction with x ≥ z − 8. This was when ε1δ1 6= δ2 and showed that
E′′

(x−δ2)/2
= E′

(z−ε1δ1)/2
. But if ε1δ1 = δ2, then x = z, so ab = Fz − 1, bc =

Lz − 1 and z is odd. By Lemma 2.4, we have

Fz − 1 = F(z−1)/2L(z+1)/2, and Lz − 1 = 5F(z−1)/2F(z+1)/2,

and

Fz − 1 = F(z+1)/2L(z−1)/2, and Lz − 1 = L(z−1)/2L(z+1)/2,

according to whether z ≡ 1, 3 (mod 4), respectively, so it follows that we can
take δ2 = 1 and E′′

(x−δ2)/2
= E′

(z+ε1δ1)/2
= F(z−1)/2 or L(z−1)/2 according to

whether z ≡ 1, 3 (mod 4), respectively.
So far we showed that the last of the sets of two elements

(3.17)
{E′′

(x−δ2)/2
, E′′

(x+δ2)/2
}, {E(y−δ)/2, E(y+δ)/2}, {E′

(z−δ1)/2
, E′

(z+δ1)/2
}

has a common element with each of the first two. A similar argument shows
that the first two sets have a common element. Indeed, just assume that this
is not so and recycle the same ideas from Section 3.9 and the beginning of the
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current one with ab = A′′E′′
(x−δ2)/2

E′′
(x+δ2)/2

and ac = AE(y−δ)/2E(y+δ)/2 in

oder to bound a. To bound then x use the fact that

b

a
=

bc

ac
=

E′
z − 1

Ey − 1
≤ Lz − 1

Fy − 1
≤ αz+1

αy−2
= αz−y+3 ≤ α7

(because z − y ≤ 4), to get that b ≤ aα7, so αx−2 ≤ Fx < b2 ≤ α14a2 to
conclude that a small bound on a leads to a small bound on x. We do not
give the details of such a calculation since it is similar to previous ones and
the conclusion is that x is very small (say, x < 100).

Thus, any two of the sets shown at (3.17) have a common element. Fur-
ther, the product of all the above 6 elements (from the union of the three
sets) together with AA′A′′ equals (abc)2, which is a perfect square. The next
immediate goal is to show that A = A′ = A′′ = 1 and that the above 6 ele-
ments can be grouped in three equal pairs. Well, the claim that the elements
in the union of the sets shown at (3.17) can be grouped in three equal pairs
is equivalent to saying that the three sets look like

(3.18) {U, V }, {V,W}, {U,W}
for some positive integers U, V, W . Well, if this would not be so, then the
only way that any two of them have a common element is if they are of the
form

{E,X}, {E, Y }, {E,Z}
for some positive integers E, X, Y, Z. If this is the case and if p is a prime
factor of gcd(E,X), then p divides gcd(Fx−δ2 , Fx+δ2) | F2|δ2|, so p can only
be 3. A similar argument applies to gcd(E, Y ) and gcd(E,Z). Since then

AA′A′′(EX)(EY )(EZ) = (abc)2,

we get that E = ∆�, where ∆ ∈ {1, 3, 5, 15}. Since E = E(x−δ2)/2 ∈
{F(x−δ2)/2, L(x−δ2)/2}, none of the resulting equations has such large solu-
tions, namely with x > 970 (see, for example, [1, Theorem 4] for the Fibonacci
case and [2, Theorem 2] for the Lucas case). This shows that indeed the sets
(3.17) look like (3.18). Then

AA′A′′(UV )(VW )(UW ) = (abc)2,

showing that AA′A′′ is a square. So, it is 1 or 52. Note now that a Fibonacci
number among E′′

x , Ey, E′
z has the property that the corresponding expres-

sion E′′
x − 1, Ey − 1, E′

z − 1 contributes one Fibonacci and one Lucas numbers
among the elements from the sets (3.18), so an odd number of Fibonacci and
Lucas numbers, whereas Lucas numbers among E′′

x , Ey , E′
z have the prop-

erty that the corresponding expressions E′′
x − 1, Ey − 1, E′

z − 1 contribute
an even number of Fibonacci and Lucas numbers (2 or 0) to the elements of
the sets (3.18). This observation together with the fact that at least one of
E′′

x , Ey, E′
z is a Fibonacci number, shows that exactly two of such numbers

are Fibonacci numbers and only one is a Lucas number. Thus, by Lemma
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2.4, two of A, A′, A′′ are 1 and the third one is in {1, 5}. Since the product
of all three is a square, it follows that A = A′ = A′′ = 1. In particular,
UV = ab, V W = ac, UW = bc, so {U, V,W} = {a, b, c}. Thus, a, b, c are
Fibonacci and Lucas numbers. Finally, since two of E′′

x , Ey, E
′
z are Fibonacci

numbers, and one is a Lucas number, and for the one who is a Lucas num-
ber, say E′′

x (just to give an example), we have that E′′
x − 1 = A′′UV , with

A′′ = 1, it follows that both U and V are Lucas numbers. In conclusion, not
only do we infer that {a, b, c} are Fibonacci and Lucas numbers, but we learn
that exactly two of them are Lucas numbers and one is a Fibonacci number.
Finally, since y − δ = z − δ1 and z + δ1 = x − δ2, we conclude that a, b, c
are Fibonacci and Lucas numbers with indices in an interval of length 2. If
{Fk, Lk} ⊂ {a, b, c}, then FkLk +1 = F2k +1 must be a Fibonacci or a Lucas
number, which is false for such large values of x, y, z since

F2k < F2k + 1 < F2k+1 holds for all k > 1,

while

L2k−2 < F2k + 1 < L2k−1 holds for all k > 2.

Hence, {a, b, c} = {Fu, Lv, Lw} with distinct indices u, v, w and {u, v, w} =
{t, t+ 1, t+ 2}. Considering the cases t = 2k and t = 2k − 1 (so, t even and
odd respectively), we only need to analyze the following six possibilities

{a, b, c} = {F2k, L2k+1, L2k+2}, {L2k, F2k+1, L2k+2}, {L2k, L2k+1, F2k+2},
{F2k−1, L2k, L2k+1}, {L2k−1, F2k, L2k+1}, {L2k−1, L2k, F2k+1}.

The first one is the one we want. The remaining five cases can be eliminated
right–away by trivial inequalities. For example, for the second triple on the
first row above, we have

max{F4k+3, L4k+2} < L2kL2k+2 + 1 < min{F4k+4, L4k+3} for all k ≥ 2,

so L2kL2k+2 + 1 cannot be a Fibonacci or Lucas number with index at least
997. Similarly,

max{F4k+2, L4k+1} < L2kL2k+1 + 1 < min{F4k+3, L4k+2} for all k ≥ 2,

max{F4k+1, L4k} < L2k−1L2k+1 + 1 < min{F4k+2, L4k+1} for all k ≥ 2,

max{F4k+1, L4k−1} < L2kF2k+1 + 1 < min{F4k+2, L4k} for all k ≥ 2.

The theorem is proved.
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