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FINITE NONABELIAN p-GROUPS OF EXPONENT > p
WITH A SMALL NUMBER OF MAXIMAL ABELIAN
SUBGROUPS OF EXPONENT > p
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ABSTRACT. Y. Berkovich has proposed to classify nonabelian finite p-
groups G of exponent > p which have exactly p maximal abelian subgroups
of exponent > p and this was done here in Theorem 1 for p = 2 and in
Theorem 2 for p > 2. The next critical case, where G has exactly p + 1
maximal abelian subgroups of exponent > p was done only for the case
p =2 in Theorem 3.

Let G be a nonabelian finite p-group of exponent > p. If S is a mini-
mal nonabelian subgroup in G, then S has exactly p 4+ 1 maximal subgroups
S1,82,...,5p4+1 and they are abelian and they lie in p 4 1 pairwise distinct
maximal abelian subgroups in G. If at least two of S.s are elementary abelian,
then S is generated by its elements of order p and then (by Lemma 65.1 in [2])
S = Dg or S =2 S(p?) (the nonabelian group of order p® and exponent p > 2).
If all minimal nonabelian subgroups of G are generated by its elements of
order p, then by Theorem 10.33 in [1] (for p = 2) and Proposition 7 in [3] (for
p > 2), G has only one maximal abelian subgroup A of exponent > p, where
Ais of index p in G and A = H,(G) (Hughes subgroup). However, if a min-
imal nonabelian subgroup of G has at most one elementary abelian maximal
subgroup, then G has at least p maximal abelian subgroups of exponent > p.

From the above follows that a nonabelian p-group G of exponent > p has
either exactly one maximal abelian subgroup of exponent > p or G has at least
p of them. Therefore Y. Berkovich has proposed to classify nonabelian finite
p-groups of exponent > p which have exactly p maximal abelian subgroups of
exsponent > p and this was done here in Theorem 1 for p = 2 and in Theorem

2010 Mathematics Subject Classification. 20D15.
Key words and phrases. Finite p-groups, minimal nonabelian subgroups, maximal
abelian subgroups, quasidihedral 2-groups, Hughes subgroup.

99



100 Z. JANKO

2 for p > 2. By the above, such a group G possesses a minimal nonabelian
subgroup S which is not isomorphic to Dg or S(p®). Also, such an S has exactly
one maximal subgroup X which is elementary abelian so that ®(S) = Z(95)
is elementary abelian and |S : ®(S)| = p?. Leta € S — X and b € X — ®(S)
so that o(a) < p% o(b) = p and S = (a,b), where ®(S) = (a?,[a,b]). If
|®(S)| = p, then |S| = p* and S = M5 (the nonabelian group of order p® and
exponent p?, where p > 2). If |®(S)| = p?, then S = M, (2,1, 1), where

Mp(2a]-a1) = <a7b | ap2 =b = 1, [avb] = ¢, ! = [Ca a] = [C, b] = 1>

Suppose that G possesses a non-normal maximal abelian subgroup H of ex-
ponent > p. Set K = Ng(H) so that |G : K| =p, H < K and H® < K. All
elements in G — K are of order p. If p = 2, then K is abelian (by a result of
Burnside), a contradiction. Hence in this case we must have p > 2. For any
g€ G—K, HY <K and so H and HY normalize each other.

Y. Berkovich has proposed to consider also the next critical case, where
G has exactly p + 1 maximal abelian subgroups of exponent > p. However,
we have been able to classify such p-groups only in case p = 2 in Theorem 3.

THEOREM 1. Let G be a monabelian 2-group with exactly 2 mazximal
abelian subgroups of exponent > 2. Then G = M x V, where

M =My(2,1,1) = (a,b| a* =b*> =1, [a,b] = ¢, ¢ =][c,a] = [c,b] = 1)
and exp(V) < 2.

PROOF. Let G be a nonabelian 2-group with exactly 2 maximal abelian
subgroups of exponent > 2. Let H; and Hs be the two maximal abelian
subgroups of exponent > 2, where we know that H; and Hs are normal in
G. If H1Hy < G, then all elements in G — (H1Hs) are involutions and then
(by a result of Burnside) HyH; would be abelian, a contradiction. Hence
H1Hy = G and H; N Hy = Z(G) so that G is of class 2 and all elements in
G —(H,UH>) are involutions. Indeed, all elements of order > 2 lie in H; or Ha
(by our hypothesis). If g € G— (H;UH3), then a maximal abelian subgroup H
containing (g) is elementary abelian implying that Z(G) is elementary abelian.
Since H 4G, Lemma 57.1 in [2] implies that for any € G — H thereis h € H
such that (z,h) is minimal nonabelian. Since (x,h) = Dg or My(2,1,1), it
follows that exp((z, h)) = 4 and so o(x) < 4. We have proved that exp(G) = 4.
For any z,y € G, [2%,y] = [r,y]? = 1 and so we get U;1(G) < Z(G).

Suppose that both H; and Hs are not maximal subgroups in G. Then
|H; : Z(G)| > 4 for i = 1,2 and let h; € H; — Z(G) be an element of order
4 (i = 1,2) so that 1 # h? € Z(G). Let H} be a maximal subgroup of H;
which contains Z(G)(h;), i = 1,2. Then My = H1H; and My = HyHY are
distinct maximal subgroups of G' containing H; and Hs, respectively. Since
all elements in G — (Hy U Ha) are involutions, it follows that all elements in
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G — (M1 U My) are involutions. Let g € G — (M U Mz) and m € My N M.
Then g and gm € G — (M7 U M>) are involutions and so we get

1= (gm)? = gmgm = ¢*mIm = m?m and so m? = m™".

It follows that g inverts each element in M7 N M5 so that a result of Burnside
implies that M; N M is abelian. In particular, (hi,hg) is abelian. Let YV
be a maximal abelian subgroup in G containing (h1, h2). By our hypothesis,
Y = H; or Y = Hj, a contradiction. We have proved that we may assume
|G : Hi| = 2 and so H; is a maximal subgroup in G.

Let Hf be a maximal subgroup of H; containing Q;(H;). Then Ms =
HyHY is a maximal subgroup of G and all elements in G — (H; U Ma) are
involutions. If g € G — (Hy U My), then for any « € Hy = Hy N Ms, gz €
G — (H1 U M) is an involution. This implies 29 = 27! and so g inverts
each element in Hy. In particular, g centralizes Qi(H7). It follows that
Oy (Hy) < Z(G) and so Q4 (Hy) = Z(G) = Hy N Hy and therefore all elements
in Hy — Z(G) are of order 4.

Suppose that Z(G) is not a maximal subgroup in H;. Note that all
elements in G — (Hy U Hy) are involutions and all elements in Hy — H; and in
Hy — Z(G) are of order 4. Let v € H; — Z(G) so that v? € Z(G) and let H}*
be a maximal subgroup of H; containing Z(G)(v) so that My = H{*Hy is a
maximal subgroup in G. If g € G—(H,UM3), then g and gv € G—(H,UM3)
are involutions implying that v9 = v~=!. Then each element in G — H; also
inverts (v). Hence each element in G — H; inverts each element of order 4 in
H, and since it also centralizes Z(G), it follows that each element in G — H;
inverts each element in H;. But then G is quasidihedral and so in particular
all elements in G — H; must be involutions, a contradiction. We have proved
that Z(G) = HyNH> is a maximal subgroup in H; and so Hs is also a maximal
subgroup in G.

If each minimal nonabelian subgroup in G is isomorphic to Dg, then
by Theorem 10.33 in [1] our group G is quasidihedral and so G has only
one maximal abelian subgroup of exponent > 2, a contradiction. Hence G
possesses a minimal nonabelian subgroup

MgM2(271a1): <aab | a4:b2:17 [aab] = = [Caa]: [va]:1>

Then M covers G/Hy and H,/Z(G) and M NH; is abelian of type (4, 2), where
we have M NZ(G) = E4. Indeed, if M does not cover G/Hy or Hy/Z(G), then
M would be abelian, a contradiction. Let V' be a complement of M N Z(G)
in Z(G). Then G = M x V and our theorem is proved. O

THEOREM 2. Let G be a nonabelian p-group of exponent > p, where
p > 2. Suppose that G has exactly p mazimal abelian subgroups Hy, Ha, ..., Hp
of exponent > p. Then exp(G) = p?, Z(G) is elementary abelian, each H;
normalizes each H; (i,j = 1,2,...,p), H = H1Hy---Hy, = H,(G) (Hughes
subgroup) and U1(G) <Z(H) =Hi N Hy---N Hp.
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PROOF. Let G be a p-group, p > 2, satisfying the assumptions of The-
orem 2. It is easy to see that GG possesses at least one minimal nonabelian
subgroup M which is isomorphic to Mys or M,(2,1,1). Suppose that this is
false. Then all minimal nonabelian subgroups of G' are isomorphic to S(p®)
and so by Proposition 7 in [3] G has an abelian subgroup A of exponent > p
and index p such that A = H,(G). But then G has only one maximal abelian
subgroup of exponent > p, a contradiction. Hence there is such M as above.
Any two maximal subgroups of M lie in two distinct maximal abelian sub-
groups in G. In this way we get p pairwise distinct maximal abelian subgroups
in G of exponent > p and one maximal abelian subgroup which is elementary
abelian. In particular, Z(G) is elementary abelian.

We want to show that exp(G) = p?. Let Hy, Ho, ..., H, be the set of all p
maximal abelian subgroups in G which are of exponent > p. Set exp(G) = p°©,
where e > 2 and let g be an element of order p° so that g € H = H Hy - - - H),
where we know that each H; normalizes each H; (see the paragraph preceding
Theorem 1). If g is not contained in all H; (i =1,2,...,p), say g € Hi, then
by Lemma 57.1 in [2], there is h; € Hy such that (g, h1) is minimal nonabelian.
Since all minimal nonabelian subgroups of G are of exponent < p?, we get
e = 2. Sosuppose that g € H; foralli =1,2,...,p. In particular, g € H1NH>.
Since (Hs — Hy) = Ho, there is h € Hy — Hy such that o(h) = p¢. By Lemma
57.1 in [2], there is k € H; such that (h,k) is minimal nonabelian. This
implies again e = 2. We have proved that exp(G) = p?. If H < G, then all
elements in G — H are of order p and so H = H,(G). Now, Z(H) centralizes
all H; and so Z(H) < HiNHsy---NHy,. But HHNHy---NH, <Z(H) and so
we get Z(H) = HiNHy---N Hp.

Let g be any element of order p? in G. Then g € H = H1Hy - - Hp, where
H; < H foralli=1,2,...,p. We have either g € H; (and then also g? € H;)
or (by Lemma 57.1 in [2]) there is h; € H; such that M = (g, h;) is minimal
nonabelian, where M = Mys or M = M,(2,1,1). Then we know that M
contains exactly one maximal subgroup X of exponent p? such that X < H;.
This implies that ¢? € X < H;. Hence in any case we get g € H; for all
i=1,2,...,p. Hence ¢ € Hi N Hy---NHy, = Z(H) and so U1(G) < Z(H).
Our theorem is proved. O

THEOREM 3. Let G be a monabelian 2-group with exactly 3 mazximal
abelian subgroups Hy, Ho, Hs of exponent > 2. Then G = H1HsHs and
Z(G) = H,NHyNHs.

(a) If Hy is conjugate in G to (say) Ha, then exp(Hy) = 4, Hs is of index
2 in G with exp(Hs) < 8, Z(G) is elementary abelian and G has a
maximal subgroup which is quasidihedral of exponent 4.

(b) If all H; are normal in G, i = 1,2,3, then G is of class 2, U1(G) <
Z(G) and so G' is elementary abelian.
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PROOF. Let G be a nonabelian 2-group with exactly 3 maximal abelian
subgroups Hy, Ha, Hs of exponent > 2. Set H = (Hy, Hy, Hs) so that H <G.
If H < G, then all elements in G — H are involutions. But then (by a result
of Burnside) H is abelian, a contradiction. Hence we have G = (Hy, Hy, Hs3)
and then obviously Z(G) = H; N Hy N Hs.

(i) First we consider the case where some H; are not normal in G.

Then we may assume that Hy and Hs are conjugate in G and then H3<G.
We set K = Ng(H;) so that |G : K| =2, H < K and K = Ng(Hz). For any
g€ G— K, Hy = H{ and H Hy = HF. Then Hj covers G/(H, H;) so that
G = (H1H3)Hs. All elements in G — (K U Hs) are involutions and so for each
involution ¢ € G — (K U H3), a maximal abelian subgroup in G containing ¢
is elementary abelian. In particular, Z(G) is elementary abelian.

Set G1 = H1H3 and let g € H3 — K so that Hy = H{ < G;. It follows
G = G and set H = H3N K so that H3 normalizes Hy. We have H; N H3 =
Z(G) is elementary abelian and also Hy N H3 = Z(G). Then K = H; H3 and

K' < HyNH; =7Z(G) < Z(K)

so that K is of class 2 and K’ is elementary abelian. For any k1, ko € K follows
[k%, ko] = [k1,k2]? = 1 and so U1(K) < Z(K). We have Z(K) < H; and if
Z(K) > Z(G), then Z(K)Hj3 is contained in a maximal abelian subgroup in G
distinct from Hy, Hy and Hs and so Z(K)H3 must be elementary abelian. We
have proved that in any case Z(K) is elementary abelian and so exp(K) = 4
and 4 < exp(Hs) < 8.

Assume, by way of contradiction, that Z(K) > Z(G). Since Z(K) < Hy,
it follows that L = Z(K)Hs is a proper subgroup of G. We know that all
elements in G — (K U L) are involutions. Let i € G— (K UL) and z € KN L.
Then iz € G — (K U L) and so

1 = (iz)? = iziz implying 2* = 2~

Since 7 inverts each element in K NL, it follows that i centralizes Z(K') (noting
that Z(K) is elementary abelian). But then Z(K) < Z(G), a contradiction.
We have proved that Z(K) = Z(G) and so in particular, U;(Hy) < Z(G).

Suppose, by way of contradiction, that Hj3 is not a maximal subgroup in
G. Let v be an element of order 4 in H; so that v? € Z(K) = Z(G) and we
set R = Hs(v). Since |R : H3| = 2, it follows that R is a proper subgroup
of G and all elements in G — (K U R) are involutions. If i € G — (K U R)
and y € K N R, then iy € G — (K U R) so that iy is an involution implying
y* = y~1. Thus i inverts each element in K N R = (v)H} implying that KN R
is abelian. Let X be a maximal abelian subgroup of G containing K N R.
Since X is obviously distinct from each H;, i = 1,2,3, and exp(X) > 2, we
have a contradiction. We have proved that Hj is a maximal subgroup in G.

All elements in G — (K U H3) are involutions, where K and Hj are two
distinct maximal subgroups in G. Then each involution ¢ € G — (K U Hs)
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inverts each element in K N Hy = Hj. In particular, i centralizes Q;(H3)
and so Qi (H3) = Hy N Hy = Z(G). Since Hy N Hy < Hj, it follows that
exp(H;) = 4. Then Hj (i) is quasidihedral of exponent 4 and Hj(i) is a
maximal subgroup in G. Finally, H; N Hi = Z(G) is a maximal subgroup
of Hy and so exp(Hy) =4 and G = H1Hs = H1HyHs. We have proved all
properties of G stated in part (a) of our theorem.

(i) Now assume that all H; are normal in G, i =1,2,3.
Then we have again G = Hy Hy Hs.

(ii1) First suppose that Hy, Hy and Hs do not cover G.

Then G — (Hy U Ha U H3) is not empty so that all elements in G — (H; U
Hy U Hj) are involutions. Let i € G — (Hy U Ho U H3) and let A be a maximal
abelian subgroup in G containing 7 so that A is distinct from H;, Ho and Hg
implying that A must be elementary abelian. Since Z(G) < A, it follows that
Z(G) is elementary abelian.

It is easy to see that exp(G) = 4. Suppose that g € G with o(g) > 8.
For any i € {1,2,3}, we have either ¢ € H; (and then also ¢g?> € H;) or
g € G— H;. In the second case Lemma 57.1 in [2] implies that there is h € H;
such that M = (g,h) is minimal nonabelian. Since exp(M) > 8, each of
the three maximal subgroups M; (i = 1,2,3) of M are of exponent > 2 and
they lie in three pairwise distinct maximal abelian subgroups Hi, Hs, Hs of
exponent > 2 in G. Hence for an j € {1,2,3}, we have M; < H; and then
g*> € M; < H;. We have proved that in any case g*> € H; for each i € {1, 2,3}
and so g € Hy N Hy N Hy = Z(G). But Z(G) is elementary abelian and so
o(g?) < 2, a contradiction. We have proved that exp(G) = 4.

Suppose that there is h € G of order 4 such that h? ¢ Z(G). Since all
elements of order 4 in G are contained in H; U Hs U H3, we may assume that
h € H;. Then interchanging Hy and Hj (if necessary), we may assume that
h2 ¢ Hg. Set KO = H1H2 so that Z(Ko) = H1 n Hg and h2 g Z(Ko) We
have K) < H; N Hy = Z(Ky) and so Ky is of class 2. Suppose, by way of
contradiction, that exp(Z(Ky)) = 4. Let k € Ko — (H; U Hy) and let B be
a maximal abelian subgroup of G containing Z(K)(k) so that we must have
B = Hj. But then Hs > Z(Ky) and so Z(Ky) = Hy N Hy N Hy = Z(G), a
contradiction. Hence Z(K)p) is elementary abelian. But then for all x € Ky,
[h?, 2] = [h,2]? = 1 and so h? € Z(Kj), a final contradiction. We have proved
that U1(G) < Z(G) implying that G’ is elementary abelian and so we have
obtained some 2-groups from part (b) of our theorem.

(i12) Now assume that G = Hy U Hy U Hs, i.e., Hy, Ho, H3 cover G.

Let i # j with i,j € {1,2,3} = {i,j,k}. If H;H; < G, then Hy >
G —(H;H;) and since (G—(H;H;)) = G, G would be abelian, a contradiction.
Thus
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Because i # j are arbitrary elements in {1, 2,3}, we also get
H,NH,=H;NH,=7Z(G) and so H, = (G — (H; UH;)) UZ(G).

Also, G’ < H;NH; =Z(G) and so G is of class 2.

If Z(G) is elementary abelian, then for any =,y € G, [22,y] = [z,y]?> = 1
and so U1(G) < Z(G). So assume that exp(Z(G)) > 2. In this case each
maximal abelian subgroup of G contains Z(G) and so must be equal to one
of Hy,Hy H3. Let g € G. Then either ¢ € H; (and then also ¢g?> € H;)
or g € G — H;. In the second case, by Lemma 57.1 in [2], there is h € H;
such that M = (g, h) is minimal nonabelian. Then three maximal subgroups
S1,52,53 of M lie in three pairwise distinct maximal abelian subgroups in
G which are equal to Hy, Hy or H3. Hence we may assume S; < H; and so
g% € H;. Thus in any case, g> € H; N Hy N Hz = Z(G) and so we get again
U1(G) < Z(G). For any z,y € G, [z,y]? = [#?,y] = 1 and so G’ is elementary
abelian. We have obtained the groups from part (b) of our theorem and we
are done. O
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