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FINITE NONABELIAN p-GROUPS OF EXPONENT > p
WITH A SMALL NUMBER OF MAXIMAL ABELIAN
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Abstract. Y. Berkovich has proposed to classify nonabelian finite p-
groups G of exponent > p which have exactly p maximal abelian subgroups
of exponent > p and this was done here in Theorem 1 for p = 2 and in
Theorem 2 for p > 2. The next critical case, where G has exactly p + 1

maximal abelian subgroups of exponent > p was done only for the case
p = 2 in Theorem 3.

Let G be a nonabelian finite p-group of exponent > p. If S is a mini-
mal nonabelian subgroup in G, then S has exactly p+ 1 maximal subgroups
S1, S2, . . . , Sp+1 and they are abelian and they lie in p + 1 pairwise distinct
maximal abelian subgroups in G. If at least two of S′

is are elementary abelian,
then S is generated by its elements of order p and then (by Lemma 65.1 in [2])
S ∼= D8 or S ∼= S(p3) (the nonabelian group of order p3 and exponent p > 2).
If all minimal nonabelian subgroups of G are generated by its elements of
order p, then by Theorem 10.33 in [1] (for p = 2) and Proposition 7 in [3] (for
p > 2), G has only one maximal abelian subgroup A of exponent > p, where
A is of index p in G and A = Hp(G) (Hughes subgroup). However, if a min-
imal nonabelian subgroup of G has at most one elementary abelian maximal
subgroup, then G has at least p maximal abelian subgroups of exponent > p.

From the above follows that a nonabelian p-group G of exponent > p has
either exactly one maximal abelian subgroup of exponent > p orG has at least
p of them. Therefore Y. Berkovich has proposed to classify nonabelian finite
p-groups of exponent > p which have exactly p maximal abelian subgroups of
exsponent > p and this was done here in Theorem 1 for p = 2 and in Theorem
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2 for p > 2. By the above, such a group G possesses a minimal nonabelian
subgroup S which is not isomorphic to D8 or S(p

3). Also, such an S has exactly
one maximal subgroup X which is elementary abelian so that Φ(S) = Z(S)
is elementary abelian and |S : Φ(S)| = p2. Let a ∈ S −X and b ∈ X − Φ(S)
so that o(a) ≤ p2, o(b) = p and S = 〈a, b〉, where Φ(S) = 〈ap, [a, b]〉. If
|Φ(S)| = p, then |S| = p3 and S ∼= Mp3 (the nonabelian group of order p3 and
exponent p2, where p > 2). If |Φ(S)| = p2, then S ∼= Mp(2, 1, 1), where

Mp(2, 1, 1) = 〈a, b | ap
2

= bp = 1, [a, b] = c, cp = [c, a] = [c, b] = 1〉.

Suppose that G possesses a non-normal maximal abelian subgroup H of ex-
ponent > p. Set K = NG(H) so that |G : K| = p, H < K and HG ≤ K. All
elements in G−K are of order p. If p = 2, then K is abelian (by a result of
Burnside), a contradiction. Hence in this case we must have p > 2. For any
g ∈ G−K, Hg ≤ K and so H and Hg normalize each other.

Y. Berkovich has proposed to consider also the next critical case, where
G has exactly p + 1 maximal abelian subgroups of exponent > p. However,
we have been able to classify such p-groups only in case p = 2 in Theorem 3.

Theorem 1. Let G be a nonabelian 2-group with exactly 2 maximal
abelian subgroups of exponent > 2. Then G = M × V , where

M ∼= M2(2, 1, 1) = 〈a, b | a4 = b2 = 1, [a, b] = c, c2 = [c, a] = [c, b] = 1〉

and exp(V ) ≤ 2.

Proof. Let G be a nonabelian 2-group with exactly 2 maximal abelian
subgroups of exponent > 2. Let H1 and H2 be the two maximal abelian
subgroups of exponent > 2, where we know that H1 and H2 are normal in
G. If H1H2 < G, then all elements in G − (H1H2) are involutions and then
(by a result of Burnside) H1H2 would be abelian, a contradiction. Hence
H1H2 = G and H1 ∩ H2 = Z(G) so that G is of class 2 and all elements in
G−(H1∪H2) are involutions. Indeed, all elements of order > 2 lie in H1 orH2

(by our hypothesis). If g ∈ G−(H1∪H2), then a maximal abelian subgroupH
containing 〈g〉 is elementary abelian implying that Z(G) is elementary abelian.
Since HEG, Lemma 57.1 in [2] implies that for any x ∈ G−H there is h ∈ H
such that 〈x, h〉 is minimal nonabelian. Since 〈x, h〉 ∼= D8 or M2(2, 1, 1), it
follows that exp(〈x, h〉) = 4 and so o(x) ≤ 4. We have proved that exp(G) = 4.
For any x, y ∈ G, [x2, y] = [x, y]2 = 1 and so we get ℧1(G) ≤ Z(G).

Suppose that both H1 and H2 are not maximal subgroups in G. Then
|Hi : Z(G)| ≥ 4 for i = 1, 2 and let hi ∈ Hi − Z(G) be an element of order
4 (i = 1, 2) so that 1 6= h2

i ∈ Z(G). Let H∗

i be a maximal subgroup of Hi

which contains Z(G)〈hi〉, i = 1, 2. Then M1 = H1H
∗

2 and M2 = H2H
∗

1 are
distinct maximal subgroups of G containing H1 and H2, respectively. Since
all elements in G − (H1 ∪H2) are involutions, it follows that all elements in
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G − (M1 ∪M2) are involutions. Let g ∈ G − (M1 ∪M2) and m ∈ M1 ∩M2.
Then g and gm ∈ G− (M1 ∪M2) are involutions and so we get

1 = (gm)2 = gmgm = g2mgm = mgm and so mg = m−1.

It follows that g inverts each element in M1 ∩M2 so that a result of Burnside
implies that M1 ∩ M2 is abelian. In particular, 〈h1, h2〉 is abelian. Let Y
be a maximal abelian subgroup in G containing 〈h1, h2〉. By our hypothesis,
Y = H1 or Y = H2, a contradiction. We have proved that we may assume
|G : H1| = 2 and so H1 is a maximal subgroup in G.

Let H∗

1 be a maximal subgroup of H1 containing Ω1(H1). Then M2 =
H2H

∗

1 is a maximal subgroup of G and all elements in G − (H1 ∪ M2) are
involutions. If g ∈ G − (H1 ∪ M2), then for any x ∈ H∗

1 = H1 ∩ M2, gx ∈
G − (H1 ∪ M2) is an involution. This implies xg = x−1 and so g inverts
each element in H∗

1 . In particular, g centralizes Ω1(H1). It follows that
Ω1(H1) ≤ Z(G) and so Ω1(H1) = Z(G) = H1 ∩H2 and therefore all elements
in H1 − Z(G) are of order 4.

Suppose that Z(G) is not a maximal subgroup in H1. Note that all
elements in G− (H1 ∪H2) are involutions and all elements in H2−H1 and in
H1 − Z(G) are of order 4. Let v ∈ H1 − Z(G) so that v2 ∈ Z(G) and let H∗∗

1

be a maximal subgroup of H1 containing Z(G)〈v〉 so that M∗

2 = H∗∗

1 H2 is a
maximal subgroup in G. If g ∈ G−(H1∪M

∗

2 ), then g and gv ∈ G−(H1∪M
∗

2 )
are involutions implying that vg = v−1. Then each element in G − H1 also
inverts 〈v〉. Hence each element in G−H1 inverts each element of order 4 in
H1 and since it also centralizes Z(G), it follows that each element in G−H1

inverts each element in H1. But then G is quasidihedral and so in particular
all elements in G−H1 must be involutions, a contradiction. We have proved
that Z(G) = H1∩H2 is a maximal subgroup in H1 and soH2 is also a maximal
subgroup in G.

If each minimal nonabelian subgroup in G is isomorphic to D8, then
by Theorem 10.33 in [1] our group G is quasidihedral and so G has only
one maximal abelian subgroup of exponent > 2, a contradiction. Hence G
possesses a minimal nonabelian subgroup

M ∼= M2(2, 1, 1) = 〈a, b | a4 = b2 = 1, [a, b] = c, c2 = [c, a] = [c, b] = 1〉.

ThenM coversG/H1 andH1/Z(G) andM∩H1 is abelian of type (4, 2), where
we have M ∩Z(G) ∼= E4. Indeed, if M does not cover G/H1 or H1/Z(G), then
M would be abelian, a contradiction. Let V be a complement of M ∩ Z(G)
in Z(G). Then G = M × V and our theorem is proved.

Theorem 2. Let G be a nonabelian p-group of exponent > p, where
p > 2. Suppose that G has exactly p maximal abelian subgroups H1, H2, . . . , Hp

of exponent > p. Then exp(G) = p2, Z(G) is elementary abelian, each Hi

normalizes each Hj (i, j = 1, 2, . . . , p), H = H1H2 · · ·Hp = Hp(G) (Hughes
subgroup) and ℧1(G) ≤ Z(H) = H1 ∩H2 · · · ∩Hp.
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Proof. Let G be a p-group, p > 2, satisfying the assumptions of The-
orem 2. It is easy to see that G possesses at least one minimal nonabelian
subgroup M which is isomorphic to Mp3 or Mp(2, 1, 1). Suppose that this is
false. Then all minimal nonabelian subgroups of G are isomorphic to S(p3)
and so by Proposition 7 in [3] G has an abelian subgroup A of exponent > p
and index p such that A = Hp(G). But then G has only one maximal abelian
subgroup of exponent > p, a contradiction. Hence there is such M as above.
Any two maximal subgroups of M lie in two distinct maximal abelian sub-
groups in G. In this way we get p pairwise distinct maximal abelian subgroups
in G of exponent > p and one maximal abelian subgroup which is elementary
abelian. In particular, Z(G) is elementary abelian.

We want to show that exp(G) = p2. Let H1, H2, . . . , Hp be the set of all p
maximal abelian subgroups in G which are of exponent > p. Set exp(G) = pe,
where e ≥ 2 and let g be an element of order pe so that g ∈ H = H1H2 · · ·Hp,
where we know that each Hi normalizes each Hj (see the paragraph preceding
Theorem 1). If g is not contained in all Hi (i = 1, 2, . . . , p), say g 6∈ H1, then
by Lemma 57.1 in [2], there is h1 ∈ H1 such that 〈g, h1〉 is minimal nonabelian.
Since all minimal nonabelian subgroups of G are of exponent ≤ p2, we get
e = 2. So suppose that g ∈ Hi for all i = 1, 2, . . . , p. In particular, g ∈ H1∩H2.
Since 〈H2 −H1〉 = H2, there is h ∈ H2 −H1 such that o(h) = pe. By Lemma
57.1 in [2], there is k ∈ H1 such that 〈h, k〉 is minimal nonabelian. This
implies again e = 2. We have proved that exp(G) = p2. If H < G, then all
elements in G−H are of order p and so H = Hp(G). Now, Z(H) centralizes
all Hi and so Z(H) ≤ H1 ∩H2 · · · ∩Hp. But H1 ∩H2 · · · ∩Hp ≤ Z(H) and so
we get Z(H) = H1 ∩H2 · · · ∩Hp.

Let g be any element of order p2 in G. Then g ∈ H = H1H2 · · ·Hp, where
Hi EH for all i = 1, 2, . . . , p. We have either g ∈ Hi (and then also gp ∈ Hi)
or (by Lemma 57.1 in [2]) there is hi ∈ Hi such that M = 〈g, hi〉 is minimal
nonabelian, where M ∼= Mp3 or M ∼= Mp(2, 1, 1). Then we know that M
contains exactly one maximal subgroup X of exponent p2 such that X ≤ Hi.
This implies that gp ∈ X ≤ Hi. Hence in any case we get gp ∈ Hi for all
i = 1, 2, . . . , p. Hence gp ∈ H1 ∩ H2 · · · ∩Hp = Z(H) and so ℧1(G) ≤ Z(H).
Our theorem is proved.

Theorem 3. Let G be a nonabelian 2-group with exactly 3 maximal
abelian subgroups H1, H2, H3 of exponent > 2. Then G = H1H2H3 and
Z(G) = H1 ∩H2 ∩H3.

(a) If H1 is conjugate in G to (say) H2, then exp(H1) = 4, H3 is of index
2 in G with exp(H3) ≤ 8, Z(G) is elementary abelian and G has a
maximal subgroup which is quasidihedral of exponent 4.

(b) If all Hi are normal in G, i = 1, 2, 3, then G is of class 2, ℧1(G) ≤
Z(G) and so G′ is elementary abelian.
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Proof. Let G be a nonabelian 2-group with exactly 3 maximal abelian
subgroups H1, H2, H3 of exponent > 2. Set H = 〈H1, H2, H3〉 so that H EG.
If H < G, then all elements in G −H are involutions. But then (by a result
of Burnside) H is abelian, a contradiction. Hence we have G = 〈H1, H2, H3〉
and then obviously Z(G) = H1 ∩H2 ∩H3.

(i) First we consider the case where some Hi are not normal in G.
Then we may assume that H1 and H2 are conjugate in G and then H3EG.

We set K = NG(H1) so that |G : K| = 2, H1 < K and K = NG(H2). For any
g ∈ G −K, H2 = Hg

1 and H1H2 = HG
1 . Then H3 covers G/(H1H2) so that

G = (H1H2)H3. All elements in G− (K ∪H3) are involutions and so for each
involution i ∈ G − (K ∪H3), a maximal abelian subgroup in G containing i
is elementary abelian. In particular, Z(G) is elementary abelian.

Set G1 = H1H3 and let g ∈ H3 −K so that H2 = Hg
1 ≤ G1. It follows

G1 = G and set H∗

3 = H3∩K so that H∗

3 normalizes H1. We have H1∩H3 =
Z(G) is elementary abelian and also H2 ∩H3 = Z(G). Then K = H1H

∗

3 and

K ′ ≤ H1 ∩H∗

3 = Z(G) ≤ Z(K)

so thatK is of class 2 andK ′ is elementary abelian. For any k1, k2 ∈ K follows
[k21 , k2] = [k1, k2]

2 = 1 and so ℧1(K) ≤ Z(K). We have Z(K) < H1 and if
Z(K) > Z(G), then Z(K)H∗

3 is contained in a maximal abelian subgroup in G
distinct from H1, H2 and H3 and so Z(K)H∗

3 must be elementary abelian. We
have proved that in any case Z(K) is elementary abelian and so exp(K) = 4
and 4 ≤ exp(H3) ≤ 8.

Assume, by way of contradiction, that Z(K) > Z(G). Since Z(K) < H1,
it follows that L = Z(K)H3 is a proper subgroup of G. We know that all
elements in G− (K ∪L) are involutions. Let i ∈ G− (K ∪L) and x ∈ K ∩L.
Then ix ∈ G− (K ∪ L) and so

1 = (ix)2 = ixix implying xi = x−1.

Since i inverts each element in K∩L, it follows that i centralizes Z(K) (noting
that Z(K) is elementary abelian). But then Z(K) ≤ Z(G), a contradiction.
We have proved that Z(K) = Z(G) and so in particular, ℧1(H1) ≤ Z(G).

Suppose, by way of contradiction, that H3 is not a maximal subgroup in
G. Let v be an element of order 4 in H1 so that v2 ∈ Z(K) = Z(G) and we
set R = H3〈v〉. Since |R : H3| = 2, it follows that R is a proper subgroup
of G and all elements in G − (K ∪ R) are involutions. If i ∈ G − (K ∪ R)
and y ∈ K ∩ R, then iy ∈ G − (K ∪ R) so that iy is an involution implying
yi = y−1. Thus i inverts each element in K ∩R = 〈v〉H∗

3 implying that K∩R
is abelian. Let X be a maximal abelian subgroup of G containing K ∩ R.
Since X is obviously distinct from each Hi, i = 1, 2, 3, and exp(X) > 2, we
have a contradiction. We have proved that H3 is a maximal subgroup in G.

All elements in G − (K ∪ H3) are involutions, where K and H3 are two
distinct maximal subgroups in G. Then each involution i ∈ G − (K ∪ H3)
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inverts each element in K ∩ H3 = H∗

3 . In particular, i centralizes Ω1(H
∗

3 )
and so Ω1(H

∗

3 ) = H1 ∩ H3 = Z(G). Since H1 ∩ H3 < H∗

3 , it follows that
exp(H∗

3 ) = 4. Then H∗

3 〈i〉 is quasidihedral of exponent 4 and H∗

3 〈i〉 is a
maximal subgroup in G. Finally, H1 ∩ H∗

3 = Z(G) is a maximal subgroup
of H1 and so exp(H1) = 4 and G = H1H3 = H1H2H3. We have proved all
properties of G stated in part (a) of our theorem.

(ii) Now assume that all Hi are normal in G, i = 1, 2, 3.
Then we have again G = H1H2H3.

(ii1) First suppose that H1, H2 and H3 do not cover G.
Then G− (H1 ∪H2 ∪H3) is not empty so that all elements in G− (H1 ∪

H2 ∪H3) are involutions. Let i ∈ G− (H1 ∪H2 ∪H3) and let A be a maximal
abelian subgroup in G containing i so that A is distinct from H1, H2 and H3

implying that A must be elementary abelian. Since Z(G) < A, it follows that
Z(G) is elementary abelian.

It is easy to see that exp(G) = 4. Suppose that g ∈ G with o(g) ≥ 8.
For any i ∈ {1, 2, 3}, we have either g ∈ Hi (and then also g2 ∈ Hi) or
g ∈ G−Hi. In the second case Lemma 57.1 in [2] implies that there is h ∈ Hi

such that M = 〈g, h〉 is minimal nonabelian. Since exp(M) ≥ 8, each of
the three maximal subgroups Mi (i = 1, 2, 3) of M are of exponent > 2 and
they lie in three pairwise distinct maximal abelian subgroups H1, H2, H3 of
exponent > 2 in G. Hence for an j ∈ {1, 2, 3}, we have Mj ≤ Hi and then
g2 ∈ Mj ≤ Hi. We have proved that in any case g2 ∈ Hi for each i ∈ {1, 2, 3}
and so g2 ∈ H1 ∩ H2 ∩ H3 = Z(G). But Z(G) is elementary abelian and so
o(g2) ≤ 2, a contradiction. We have proved that exp(G) = 4.

Suppose that there is h ∈ G of order 4 such that h2 6∈ Z(G). Since all
elements of order 4 in G are contained in H1 ∪H2 ∪H3, we may assume that
h ∈ H1. Then interchanging H2 and H3 (if necessary), we may assume that
h2 6∈ H2. Set K0 = H1H2 so that Z(K0) = H1 ∩ H2 and h2 6∈ Z(K0). We
have K ′

0 ≤ H1 ∩ H2 = Z(K0) and so K0 is of class 2. Suppose, by way of
contradiction, that exp(Z(K0)) = 4. Let k ∈ K0 − (H1 ∪ H2) and let B be
a maximal abelian subgroup of G containing Z(K0)〈k〉 so that we must have
B = H3. But then H3 ≥ Z(K0) and so Z(K0) = H1 ∩ H2 ∩ H3 = Z(G), a
contradiction. Hence Z(K0) is elementary abelian. But then for all x ∈ K0,
[h2, x] = [h, x]2 = 1 and so h2 ∈ Z(K0), a final contradiction. We have proved
that ℧1(G) ≤ Z(G) implying that G′ is elementary abelian and so we have
obtained some 2-groups from part (b) of our theorem.

(ii2) Now assume that G = H1 ∪H2 ∪H3, i.e., H1, H2, H3 cover G.
Let i 6= j with i, j ∈ {1, 2, 3} = {i, j, k}. If HiHj < G, then Hk ≥

G−(HiHj) and since 〈G−(HiHj)〉 = G, G would be abelian, a contradiction.
Thus

HiHj = G, Hi ∩Hj = Z(G), Hk ≥ G− (Hi ∪Hj) and Hk ≥ Z(G).
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Because i 6= j are arbitrary elements in {1, 2, 3}, we also get

Hi ∩Hk = Hj ∩Hk = Z(G) and so Hk = (G− (Hi ∪Hj)) ∪ Z(G).

Also, G′ ≤ Hi ∩Hj = Z(G) and so G is of class 2.
If Z(G) is elementary abelian, then for any x, y ∈ G, [x2, y] = [x, y]2 = 1

and so ℧1(G) ≤ Z(G). So assume that exp(Z(G)) > 2. In this case each
maximal abelian subgroup of G contains Z(G) and so must be equal to one
of H1, H2, H3. Let g ∈ G. Then either g ∈ Hi (and then also g2 ∈ Hi)
or g ∈ G − Hi. In the second case, by Lemma 57.1 in [2], there is h ∈ Hi

such that M = 〈g, h〉 is minimal nonabelian. Then three maximal subgroups
S1, S2, S3 of M lie in three pairwise distinct maximal abelian subgroups in
G which are equal to H1, H2 or H3. Hence we may assume S1 ≤ Hi and so
g2 ∈ Hi. Thus in any case, g2 ∈ H1 ∩ H2 ∩ H3 = Z(G) and so we get again
℧1(G) ≤ Z(G). For any x, y ∈ G, [x, y]2 = [x2, y] = 1 and so G′ is elementary
abelian. We have obtained the groups from part (b) of our theorem and we
are done.

References

[1] Y. Berkovich, Groups of prime power order, Vol. 1, Walter de Gruyter, Berlin-New
York, 2008.

[2] Y. Berkovich and Z. Janko, Groups of prime power order, Vol. 2, Walter de Gruyter,
Berlin-New York, 2008.

[3] Z. Janko, Finite p-groups with some isolated subgroups, J. Algebra 465 (2016), 41–61.

Z. Janko

Mathematical Institute
University of Heidelberg
69120 Heidelberg
Germany
E-mail : janko@mathi.uni-heidelberg.de

Received : 25.7.2016.


