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ON A NEW CLASS OF FUNCTIONAL SPACES WITH

APPLICATION TO THE VELOCITY AVERAGING

Martin Lazar and Darko Mitrović
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Abstract. We introduce a new family of functional spaces which in-
corporate Bochner spaces Lp(Rm;E), with E being an appropriate Banach
space, and to which we extend the H-distributions. We use the developed
theory to prove a general version of the velocity averaging lemma in a
heterogeneous Lp, p ≤ 2 setting.

1. Introduction and motivation

In [7] the authors prove the velocity averaging result for a sequence of
solutions to problems determined by a general (pseudo)differential equation
operator:

(1.1) Pun(x,y) =
∑

k=1

∂αk
xk

(ak(x,y)un(x,y)) = ∂κyGn(x,y),

where (x,y) ∈ Rd+m, αk > 0 are real numbers, ∂αk
xk

are (the Fourier) mul-
tiplier operators with the symbols (2πiξk)

αk , while ∂κp = ∂κ1
p1 . . . ∂

κm
pm for a

multi-index κ = (κ1, . . . , κm) ∈ Nm.
More precisely, assuming that un ⇀ 0 in Lp(Rd+m), for p ∈ 〈1, 2], and

that the principal symbol A of the operator P satisfies the restrictive non-
degeneracy condition:
(1.2)

(a.e. (x,y) ∈ Rd+m), A(x,y, ξ) :=
∑

k∈I′

ak(x,y)(2πiξ)
αk 6= 0 (∀ ξ ∈ P) ,
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we were able to prove that the sequence of averaged quantities
(∫

Rm

ρ(y)un(x,y)dy

)

converges to 0 strongly in L1
loc(R

d) for any ρ ∈ Cc(R
m).

Here the dual variable ξ takes values in a suitably defined manifold P
determined by the order of derivatives from (1.1) (see Remark 1.3 for details).

The main tool in the proof of the above result are H-distributions [1, 7]
– a generalisation of the concept of H-measures [2, 12] to Lp, p ≤ 2 setting,
whose the most up-to-date version we provide below.

Theorem 1.1. Let (un) be a bounded sequence in Lp(Rd+m), p ∈ 〈1, 2],
and let (vn) be a sequence converging weakly to zero in L2(Rd) ∩ Lq(Rd) for
some (finite) q ≥ p′. Let p̄ ∈ [1, p〉 be such that 1

p + 1
p̄′ +

1
q = 1. Then, after

passing to a subsequence (not relabeled), there exists a continuous bilinear

functional B on Lp
′

(Rm; Lp̄
′

(Rd)) ⊗ Cd(P) (with L∞(Rd) being replaced by

C0(R
d) if q = p′) such that for every φ1 ∈ Lp

′

(Rm; Lp̄
′

(Rd)), φ2 ∈ C0(R
d),

and ψ ∈ Cd(P), it holds

(1.3) B(φ1φ2, ψ) = lim
n→∞

∫

Rd+m

φ1(x,y)un(x,y)AψP

(

φ2vn
)

(x)dxdy,

where AψP is the (Fourier) multiplier operator on Rd associated to ψ◦πP and
πP is a projection on the manifold P given by (1.5) below.

The functional B we call the H-distribution corresponding to (sub)sequen-
ces (of) (un) and (vn).

The proof of the theorem can be found in the Appendix.
Like H-measures, H-distributions provide an information on a (potential)

strong convergence of the corresponding sequence(s). In particular, if the
functional B associated to sequences of solutions un and

vn =

∫

Rm ρ(y)un(x,y)dy

|
∫

Rm ρ(y)un(x,y)dy|

is zero (with ρ ∈ Cc(R
m) being arbitrary), then for the product we have

unvn =
∣

∣

∣

∫

Rm

ρ(y)un(x,y)dy
∣

∣

∣ −→ 0 in L1
loc(R

d),

which is exactly the corresponding velocity averaging result.
Thus the velocity averaging result follows directly once showing that cor-

responding H-distribution is trivial. Crucial in that direction is the following
result [7, Corollary 2.3].

Corollary 1.2. If p̄ > 1 the bilinear functional B defined in Theorem
1.1 can be extended as a continuous functional on Lp

′

(Rm; Lp̄
′

(Rd; Cd(P))).
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By standard arguments, starting from the equation (1.1) in [7] we ob-
tained

AB = 0.

Taking coefficients ak ∈ Lp̄
′

(Rd+m) and assuming the non-degeneracy condi-

tion (1.2) one gets χA=0 = 0 in Lp
′

(Rm; Lp̄
′

(Rd; Cd(P))). By Corollary 1.2
the distribution B is continuous on that space, which implies that B = 0,
thus providing the result.

The same idea, of extending an appropriate functional determined by a
sequence of solutions of (1.1) to a Banach space in which the characteristic
function of the principal symbol equals one, was used in the L2 framework
with the aim of (generalised) H-measures [5, 6, 9].

The general result on an extension of a bilinear functional on Lp(Rd)⊗E,
where E is a separable Banach space, can be found in [7].

The motivation for the current paper was to weaken the non-degeneracy
assumption (1.2), and to obtain an analogue result under the standard non-
degeneracy condition (e.g. [3, 10, 11]), i.e. to replace (1.2) by

(1.4) (a.e. x ∈ Rd), (∀ ξ ∈ P) A(x,y, ξ) 6= 0 (a.e. y ∈ Rm).

Such a generalisation would allow one to consider a larger family of (pseudo)-
differential operators. As a standard example, one can consider the operator
with the principal symbol p(y, ξ) = ξ1 + yξ2 obviously satisfying (1.4), but
not obeying its stronger counterpart (1.2).

It is easy to check that condition (1.4) implies χA=0 = 0 in the space

Lp̄
′

(Rd; Cd(P; Lp
′

(Rm))). Thus, following the above ideas one would first try
to extend H-distributions as continuous functionals on the mentioned space.
However, such an extension turned out to be beyond the capacity of tech-
niques familiar to the authors. For that reason we take another approach
based on a class of suitable defined functional spaces presented in the next
section. Section 3 provides the extension result for the H-distributions, while
in the subsequent one we apply the developed theory to the velocity averaging
problem. The paper is closed by the conclusion section pointing toward some
open problems and feasible generalisations of the obtained results. The exis-
tence result for H-distributions, which are the basic tool used in the paper, is
presented in the Appendix.

Remark 1.3. We assume that the order of derivatives αkj entering the
principal symbol are either integers, or larger or equal to the space dimension
d (thus providing appropriate smoothness of the principal symbol with respect
to the dual variable).

The manifold P is determined by the relation

P = {ξ ∈ Rd :

d
∑

i=1

|ξi|
lαi = 1},
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where l is a minimal number such that either lαi > d or lαi is an even integer
for each i. These assumptions ensure that the introduced manifold is of class
Cd which enables one to analyse associated multipliers, as well as to define
appropriate variant of the H-distributions on them (see Theorem 1.1).

In order to associate an Lp multiplier to a function defined on P we extend
it to Rd\{0} by means of the projection

(1.5)
(

πP(ξ)
)

i
= ξi

(

|ξ1|
lα1 + · · ·+ |ξd|

lαd

)−1/lαi

= ξi |ξ|
−1/αi
α , i = 1, . . . , d,

for all ξ ∈ Rd\{0}, where here and in the sequel we use abbreviation |ξ|α =
(

∑

|ξi|
lαi

)1/l

.

There are many criteria on a symbol ψ providing it to be an Lp multiplier.
A standard one is the Marcinkiewicz multiplier theorem [4, Theorem 5.2.4],
where one can find rather precise Lp-bound of the functional Aψ with respect
to ψ. Throughout the paper Aψ stands for a Fourier multiplier operator
defined by

Aψ(u) = F̄(ψû),

where û(ξ) = F(u)(ξ) =
∫

Rd e
−2πix·ξu(x)dx is the Fourier transform while F̄

(or ∨) is the inverse Fourier transform.
The Marcinkiewicz multiplier theorem requires a symbol being of class Cd

(at least outside coordinate hyperplanes), which is the main reason for which
we have to consider smooth functions with respect to the dual variable ξ. In
[6, Lemma 5] we have proven that for any ψ ∈ Cd(P), the composition ψ ◦ π
is an Lp multiplier satisfying

‖AψP‖Lp→Lp ≤ C‖ψ‖Cd(P),(1.6)

with a constant C depending only on p ∈ 〈1,∞〉 and d. Here and in the sequel,
for ψ ∈ Cd(P) we shall denote by AψP the multiplier operator corresponding
to the extension ψ ◦ πP.

2. W spaces

For s ∈ 〈1,∞〉 and s̄ > s, let r be defined as 1/s′ + 1/s̄ = 1/r. We
introduce a functional ‖ · ‖W (s̄,s) by the relation

‖φ‖W (s̄,s) = sup
‖ρ‖s′=1

(∫

Rd

∥

∥

∫

Rm

ρ(x,y)φ(x,y, ξ)dy
∥

∥

r

Cd(P)
dx

)1/r

(2.1)

for any function φ for which the right hand side makes sense. Here, ‖ρ‖s′ =
‖ρ‖Ls′(Rd+m).

It is easily checked that

W (s̄,s)(Rd,Rm,P) =W (s̄,s) := {φ : ‖φ‖W (s̄,s) <∞}

defines a vector space.
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Remark 2.1. Roughly speaking, an element from the introduced W (s̄,s)

space is an Ls function with respect to y, while an Ls̄ function with re-
spect to x. Obviously, it contains tensor products of the form ϕ ⊗ ψ ∈
Ls̄(Rd; Ls(Rm))⊗ Cd(P).

By identifying two functions φ1, φ2 ∈W (s̄,s) such that

(a.e. x ∈ Rd) (∀ ξ ∈ P) (a.e. y ∈ Rm) φ1 − φ2 = 0

relation (2.1) defines a norm on W (s̄,s).
A function φ is zero in W (s̄,s) if and only if

(a.e. x ∈ Rd), (∀ ξ ∈ P) φ(x,y, ξ) = 0 (a.e. y ∈ Rm).

Remark 2.2. Notice also that it is easy to check that the space
Ls̄(Rd; Ls(Rm; Cd(P))) is continuously embedded into W (s̄,s); just note that

∥

∥

∫

Rm

ρ(x,y)φ(x,y, ξ)dy
∥

∥

Cd(P)
≤

∫

Rm

|ρ(x,y)|‖φ(x,y, ·)‖Cd(P)dy.

Let us finally analyse mutual relations between introduced spaces for dif-
ferent values of multi-indices (s̄, s). In particular we would like to check
if W (q̄,q) →֒ W (s̄,s) for (q̄, q) > (s̄, s). As it is the case with standard
Lebesgue spaces, corresponding embedding is obtained for localised versions
W (s̄,s)(Ωx,Ωy,P), where Ωx and Ωy are relatively compact sets in Rd and
Rm, respectively. These spaces are defined in the same manner as the above
ones, just by restricting test functions ρ in (2.1) to Ls

′

(Ωx × Ωy). The result
is given by the next lemma.

Lemma 2.3. Let q > s and 1/s′ + 1/s̄ = 1/q′ + 1/q̄ = 1/r. Then the
following continuous embedding holds

(2.2) W (q̄,q)(Ωx,Ωy,P) →֒ W (s̄,s)(Ωx,Ωy,P).

Proof. First note that the assumptions directly imply q̄ > s̄.
In order to prove the result, recall that for any 1 < q′ < s′, it holds

‖ρ‖Lq′ (Ωx×Ωy)
≤ C‖ρ‖Ls′(Ωx×Ωy)

for a constant C depending on Ωx × Ωy, s
′ and q′. Thus

‖φ‖W (s,s̄) = sup
‖ρ‖s′=1

(∫

Rd

∥

∥

∫

Rm

ρ(x,y)φ(x,y, ξ)dy
∥

∥

r

Cd(P)
dx

)1/r

≤ sup
‖ρ‖q′≤C

(∫

Rd

∥

∥

∫

Rm

ρ(x,y)φ(x,y, ξ)dy
∥

∥

r

Cd(P)
dx

)1/r

= C‖φ‖W (q,q̄) ,

which implies (2.2).
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Now, we can provide a precise definition of the space to which H-
distributions are extended.

For each N ∈ N, we partition the spaces Rd and Rm on disjoint hyper-
cubes with the edge parallel to the coordinate axis and of the length 1/2N

(let us call it the N -partition). We assume that a vertex of some hypercube
is at the origin, so that the N +1-partition is simply obtained by partitioning
each of the cubes from the N -partition on another 2d equal size cubes.

Let Υ be a family of functions of the form

Υ = {

Ñ
∑

i,j=1

αij(ξ)χ
N
i (x)χNj (y) : αNi,j ∈ Cd(P), N, Ñ ∈ N},

where χNi and χNj are characteristic functions of appropriate hypercubes from

the N -partitions of Rd and Rm. By W̃ (s̄,s) we denote the closure of Υ in
W (s̄,s).

As step functions, like in ordinary Lp spaces, are dense in Bochner spaces
(cf. [15]), the family Υ is dense in the space Ls̄(Rd; Ls(Rm; Cd(P))). As by
Remark 2.2 the latter one is continuously embedded into W (s̄,s) , it follows
that W̃ (s̄,s) contains that space as well. As a consequence of that embedding,
a velocity averaged result relied on the extension of H-distributions to W̃ (s̄,s),
will incorporate results obtained under restrictive non-degeneracy condition
(1.2) proved in [8] (see the final section).

3. Extension of H-distributions to W̃

First, we need the following commutation lemma.

Lemma 3.1. Let (un) be a bounded, uniformly compactly supported se-
quence in L∞(Rd), converging to 0 in the sense of distributions. Then for
any b ∈ Ls(Rd), s > 1 arbitrary, and any symbol ψ ∈ Cd(P) it holds

(3.1) lim
n→∞

‖bAψ(un)−Aψ(bun)‖Lr(Rd) = 0, r ∈ 〈1, s〉.

Proof. The difference between the current lemma and the Tartar com-
mutation lemma [13, Lemma 28.2] is in the regularity of the function b.
Namely, in the cited one it is assumed that b ∈ C(Rd) and it is restricted
to L2 setting. However, since we have better assumptions on the sequence
(un) (in our case, it belongs to Lp(Rd) for every p ≥ 1), we can easily prove
(3.1).

Indeed, let (bε) be a family of smooth functions such that ‖bε−b‖Ls(Rd) →
0 as ε→ 0. It holds

‖bAψ(un)−Aψ(bun)‖Lr(Rd) ≤ ‖bAψ(un)− bεAψ(un)‖Lr(Rd)

+ ‖bεAψ(un)−Aψ(bεun)‖Lr(Rd)

+ ‖Aψ(bεun)−Aψ(bun)‖Lr(Rd).
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In [6, Theorem 6] it was proven that projection πP used throughout the paper
(note that Aψ stands for Aψ◦πP) satisfies conditions of the Tartar commu-
tation lemma. Thus the lemma, together with the interpolation inequality
implies the middle term on the right hand side converges to zero with re-
spect to n. Estimating other two terms by the Hölder inequality and the
Marcinkiewcz theorem we get

lim
n→∞

‖bAψ(un)−Aψ(bun)‖Lr(Rd) ≤ C‖bε − b‖Ls(Rd).

Letting ε→ 0 here, we conclude the lemma.

Now, we can prove the following theorem.

Theorem 3.2. In addition to the assumptions of Theorem 1.1 we assume
that the sequence (vn) is bounded in L∞(Rd) and uniformly supported within

the compact set K ⊂ Rd. Then the bilinear functional B : Lp̄
′

(Rd; Lp
′

(Rm))×
Cd(P) defined by (1.3) can be extended as a continuous linear functional on

the space W̃ (p̄′,p′).

Proof. According to the definition of the space W̃ (p̄′,p′), it is enough to
prove that we can extend the functional B on Υ endowed with the topology
determined by the norm (2.1).

Thus, we need to prove that for φ =
Ñ
∑

i,j=1

αij(ξ)χ
N
i (x)χNj (y)

|〈B, φ〉| ≤ C‖φ‖W (p̄′,p′) ,

for a constant C independent of φ.
According to the definition of the functional B and (the commutation)

Lemma 3.1, we have

〈B, φ〉 = lim
n→∞

∫

Rd+m

Ñ
∑

i,j=1

un(x,y)χ
N
i (x)χNj (y)Aαij

(χNi vn)(x)dxdy.(3.2)

Note that due to the uniform compactly support assumption on the sequence
(vn) the above sum with respect to i is taken just for indices i for which the
corresponding hypercube intersects the set K.

By applying the Hölder inequality, we get

|〈B, φ〉| ≤ lim sup
n

∫

Rd+m





Ñ
∑

i,j=1

|un(x,y)|
pχNi (x)χNj (y)





1/p

×

×





Ñ
∑

i,j=1

|Aαij
(χNi vn)(x)|

p′χNi (x)χNj (y)





1/p′

dxdy
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≤ lim sup
n

∥

∥

Ñ
∑

i,j=1

χNi χ
N
j un

∥

∥

Lp(Rd+m)

∥

∥

Ñ
∑

i,j=1

Aαij
(χNi vn)χ

N
i (x)χNj (y)

∥

∥

Lp′(Rd+m)

≤ lim sup
n

‖un‖Lp(Rd+m)

∥

∥

Ñ
∑

i,j=1

Aαij
(χNi vn)χ

N
i (x)χNj (y)

∥

∥

Lp′ (Rd+m)
.

Let us now estimate the Lp
′

-norm of the function

Ñ
∑

i,j=1

Aαij
(χNi vn)(x)χ

N
i (x)χNj (y).

It defines a linear functional on Lp(Rd+m) via:

(3.3) Lp(Rd+m) ∋ ρ 7→

∫

Rd+m

ρ(x,y)

Ñ
∑

i,j=1

Aαij
(χNi vn)(x)χ

N
i (x)χNj (y)dxdy

whose norm is equal to the norm of the corresponding function. Before we
start estimating its norm, let us notice that for almost every x ∈ Rd and
every a ∈ L1

loc(R
m):

∫

Rm

a(y)
∑

j

Aαij
(χNi vn)(x)χ

N
j (y)dy = A∫

Rm a(y)
∑

j αijχN
j dy

(χNi vn)(x).

Indeed, it is enough to recall that
∫

Rm

∑

j

aj(y)Aψj (ξ)v(x)dy =

∫

Rm

∑

j

aj(y) (ψj(ξ)v̂)
∨
(x)dy

=





∫

Rm

∑

j

aj(y)ψj(ξ)dy v̂





∨

(x)

:= A∫
Rm

∑
j aj(y)ψj(ξ)dyv(x).

Now, we can estimate the norm of the functional defined by

Ñ
∑

i,j=1

Aαij
(χNi vn)(x)χ

N
i (x)χNj (y).

According to the density of the step functions, it is enough to take

ρ(x,y) =

Ñ
∑

i=1

χNi (x)ρi(y) ∈ Lp(Rd+m)

in (3.3). Remark that we can take same N here as in (3.2) since we can refine
the sum either here or in (3.2) without loosing the form of the corresponding
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functions. For such chosen ρ, it holds:

∣

∣

∫

Rd+m

Ñ
∑

i,j=1

ρi(y)χ
N
i (x)Aαij

(χNi vn)(x)χ
N
j (y)dxdy

∣

∣

≤

∫

Rd





Ñ
∑

i=1

χNi χK





1/q



∑

i

∣

∣

∣A∫
Rm

Ñ∑

j=1

ρiαijχN
j dy

(χNi vn)
∣

∣

∣

q′




1/q′

dx,

where 1
q′ =

1
p + 1

p̄′ . Denote by Cv the L∞-bound of the sequence (vn). Using

the Marcinkiewicz theorem and Hölder inequality again, we obtain

∣

∣

∫

Rd+m

ρ(x,y)

Ñ
∑

i,j=1

Aαij
(χNi vn)(x)χ

N
j (y)dxdy

∣

∣

≤ Cmeas(K)1/q





∫

Rd

Ñ
∑

i=1

∥

∥

∫

Rm

Ñ
∑

j=1

ρi(y)αij(ξ)χ
N
j (y)dy

∥

∥

q′

Cd(P)
χNi |vn|

q′dx





1/q′

≤ Cv,K





∫

Rd

∥

∥

∫

Rm

Ñ
∑

i,j=1

ρi(y)αij(ξ)χ
N
j (y)χNi (x)dy

∥

∥

q′

Cd(P)
dx





1/q′

≤ Cv,K‖ρ‖Lp

∥

∥

Ñ
∑

i,j=1

αij(ξ)χ
N
j (y)χNi (x)

∥

∥

W

where Cv,K is a constant depending on ‖v‖L∞ and K. This proves the theo-
rem.

4. Application to the velocity averaging

By means of the analytical results obtained in the previous sections we
prove a velocity averaging results for a sequence of problems (1.1). Let us
first recall a corollary of the Marcinkiewicz multiplier theorem [4, Theorem
5.2.4].

Corollary 4.1. Suppose that ψ ∈ Cd(Rd\ ∪dj=1 {ξj = 0}) is a bounded
function such that for some constant C > 0 it holds

(4.1) |ξα̃∂α̃ψ(ξ)| ≤ C, ξ ∈ Rd\ ∪dj=1 {ξj = 0}

for every multi-index α̃ = (α̃1, . . . , α̃d) ∈ Nd
0 such that |α̃| = α̃1 + α̃2 + · · ·+

α̃d ≤ d. Then, the function ψ is an Lp-multiplier for p ∈ 〈1,∞〉, and the
operator norm of Aψ depends on C, p and d only.

Relying on this result, we proved the following lemma in [8], whose proof
we repeat for the sake of completeness.
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Lemma 4.2. Let α ∈ Rd
+ and let θ : Rd → R be a smooth compactly

supported function equal to one on the unit ball centred at origin.
Then for any γ > 0 the multiplier operator T γ with the symbol

T γ(ξ)(1 − θ(ξ)) =
1

|ξ|γα
(1− θ(ξ))

is a continuous Lp(Rd) → Wγα,p(Rd) operator for any p ∈ 〈1,∞〉. Specially,
due to the Rellich theorem it is a compact Lp(Rd) → Lploc(R

d) operator.

Remark 4.3. Here and in the sequel by Wα,q(Rd) we denote the
anisotropic space defined as

Wα,q(Rd) := {u ∈ Lq(Rd) : ∂αk

k u ∈ Lq(Rd), k = 1, . . . , d},

whose dual is denoted by W−α,q′(Rd) (for details on anisotropic Sobolev
spaces see e.g. [14]).

Proof. We shall first prove that the operator T γ is a continuous oper-
ator on Lp(Rd). To this effect, remark that it is enough to prove that T γ

satisfies condition of Corollary 4.1 away from the origin. Around the origin,
the operator T γ is controlled by the term (1 − θ) (which is equal to zero
on B(0, 1) and obviously satisfies conditions of Corollary 4.1). We use the
induction argument with respect to the order of derivative in (4.1).

(i) n = 1
In this case, we compute

∂kT
γ(ξ) = Ck

1

ξk
T γ(ξ)

(

πP(ξ)
)lαk

k

for some constant Ck. From here, it obviously follows |ξk∂kT
γ(ξ)| ≤ C

for ξ ∈ Rd away from the origin.
(ii) n = m

Our inductive hypothesis is that a α-order derivatives of T γ(ξ)
can be represented in the following way

(4.2) ∂αT γ(ξ) =
1

ξ
αT

γ(ξ)Pα(ξ),

where Pα is a bounded function satisfying (4.1) for |α̃| ≤ d− |α|.
(iii) n = m+ 1

To prove that (4.2) holds for |α| = m + 1 it is enough to notice
that α = ek+α′, where |α′| = m, and that according to the induction
hypothesis we have

∂αT γ = ∂k∂
α′

T γ = ∂k

(

1

ξα
′ T

γ(ξ)Pα′(ξ)

)

=
1

ξα
T γ(ξ)Pα(ξ),

where
Pα(ξ) = (Pek

Pα′ + ξk∂kPα′ − αkPα′)(ξ),
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thus satisfying conditions (4.1) as well.

From here, (4.1) immediately follows for T γ away from the origin, thus proving
that the operator T γ is a continuous operator on Lp(Rd).

It remains to prove that for any αj from the d-tuple α = (α1, . . . , αd),
the multiplier operator ∂

γαj
xj T γ is a continuous Lp(Rd) → Lp(Rd) operator.

To accomplish this, notice that its symbol is

(4.3) (1− θ(ξ))
(2πiξj)

γαj

|ξ|γα
= (1− θ(ξ))

(

πP(ξ)
)γαj

j
.

Thus, away from the origin, it is a composition of a function which is smooth
outside coordinate hyperplanes and the projection πP, and by Lemma A.1
satisfies continuity relation (1.6).

The following theorem holds.

Theorem 4.4. For a sequence of equations (1.1) assume the following:

• un ⇀ 0 in Lp(Rd+m), for p ∈ 〈1, 2].
• For some p̄ ∈ 〈1, p〉, it holds

ak ∈ Lp̄
′

(Rd; Lp
′

(Rm)), k ∈ I,
1

p
+

1

p̄′
+

1

q
=

1

p
+

1

p′
= 1,

where q = pp̄
p−p̄ , while p

′ stands for a dual index of p.

• The sequence (Gn) is strongly precompact in the anisotropic space

L1(Rm;W−α,q′(Rd)).
• the principal symbol A satisfies the following strong convergence

(4.4)

(

|A|2

|A|2 + δ

)

∣

∣K

−→ χK in W (p̄′,p′)

as δ −→ 0 for every compact K.

Then, for any ρ ∈ Cc(R
m), the sequence of averaged quantities

(

∫

Rm

ρ(y)un(x,y)dy
)

converges to 0 strongly in L1
loc(R

d).

Proof. The proof essentially follows the line of the proof of [6, Theorem
7], which provides an analogous result in L2 setting. Here we present the basic
steps adapted to the framework of this paper.

For fixed ρ ∈ Cc(R
m) and ϕ ∈ Cc(R

d), denote by V a weak-∗ L∞(Rd)
limit along some subsequence (not relabelled) of the sequence of functions

Vn =











ϕ(x)
∫

Rm ρ(y)un(x,y)dy
∣

∣

∫

Rm ρ(y)un(x,y)dy
∣

∣

,

∫

Rm

ρ(y)un(x,y)dy 6= 0,

0, otherwise.



126 M. LAZAR AND D. MITROVIĆ

Denote vn = Vn − V and remark that vn
∗
⇀ 0 in L∞(Rd).

Take a dual product of (1.1) with the test function of the form

ρ1(y)(T ◦ AψP)(ϕ1vn)(x),

where ψ, ϕ1 and ρ1 are arbitrary smooth test functions in variables ξ,x and
y, respectively, while T is a multiplier operator with the symbol essentially
equal to |ξ|−1

α . According to Lemma 4.2, T is a continuous operator Ls(Rd) →
Wα,s(Rd) for any s ∈ 〈1,∞〉.

Letting n→ ∞, taking into account the strong convergence of (Gn), and
the relation (1.3) one gets

(4.5) AB = 0,

where B is an H-distribution determined by the sequences (ρun) and (vn).
Due to their uniform support (with respect to y and x variable), the support
of B is contained within the set K = suppϕ× supp ρ.

By means of the extension of H-distributions provided by Theorem 3.2,
we can take a test function in (4.5) of the form

φ(x,y)ψ(ξ)A(x,y, ξ)

|A(x,y, ξ)|2 + δ
,

for some arbitrary δ > 0 and φ⊗ ψ ∈ Cc(R
d+m)⊗ Cd(P). By passing to the

limit as δ → 0 and using the convergence assumption (4.4), one gets B = 0.
In order to finish the proof, for the previously chosen ρ and ϕ take in

(1.3) test functions of the form ψ = 1 and φ1(x,y) = ϕ(x)ρ2(y), where
ρ2 ∈ Cc(R

m) equals to one on the support of ρ. Since B = 0, from the
definition of the sequence (vn) (keep also in mind that un ⇀ 0 in Ls(Rd+m)),
it follows

lim
n→∞

∫

Rd

|ϕ(x)|2
∣

∣

∣

∫

Rm

ρ(y)un(x,y)dy
∣

∣

∣dx = 0,

which concludes the proof (due to arbitrariness of ρ and ϕ).

5. Conclusion

In order to simplify the presentation, the results and theory within this
paper have been restricted to (pseudo)differential equations of the form (1.1),
but are easily extended to more generalised ones, containing terms with mixed
derivatives:

Pun(x,y) =
∑

k∈I

∂αk
x (ak(x,y)un(x,y)) = ∂κyGn(x,y).(5.1)

Here I stands for a finite set of indices, and ∂αk
x = ∂αk1

x1
. . . ∂αkd

xd
for a multi-

index αk = (αk1, . . . , αkd) ∈
(

R+
0

)d
. The principal symbol A of the operator
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P in that case is defined by

(5.2) A(x,y, ξ) :=
∑

k∈I′

ak(x,y)(2πiξ)
αk

where the sum is taken over all terms from (5.1) whose order of derivative αk
is not dominated by any other multi-index from I.

The coefficients ak entering equations (1.1) are assumed to belong to

the space Lp̄
′

(Rd; Lp
′

(Rm)) for some p̄ ∈ 〈1, p〉, i.e. they are almost taken
from the dual of the space Lp(Rd+m) containing the solutions. The reason
for excluding the limit, dual index p′ with respect to x variable lies in the
commutation lemma A.2 (in Appendix), which provides compactness of the
commutator only in Lq, q ∈ 〈1,∞〉 (limit cases q = 1 and q = ∞ are excluded).
The cited commutation lemma is applied in the space Rd containing the state
variable x, but not the velocity variable y.

In [7] a velocity averaging result similar to the one obtained in previ-
ous section has been obtained with coefficients satisfying the restrictive non-
degeneracy condition (1.2). As this condition implies (actually it is equivalent
to) the following strong convergence

(

|A|2

|A|2 + δ

)

∣

∣K

−→ χK in Lp̄
′

(Rd; Lp
′

(Rm; Cd(P)))

as δ −→ 0 (cf. [8]), and the last space is continuously embedded into W (p̄′,p′)

(see the end of Section 2), the result of Theorem 4.4 generalises the one
obtained in [7].

The presented velocity averaging result is obtained under convergency as-
sumption (4.4). What remains as an interesting open question is a possibility
of replacing it by a standard non-degeneracy condition (1.4). A method of
obtaining an affirmative answer would rely on the localisation principle (4.5)
and show that it locally (i.e. on each bounded subdomain) implies

(5.3) χ
A6=0

B = 0.

According to the standard non-degeneracy conditions (1.4) and the definition
of introduced W spaces, locally it holds

χ
A6=0

≡ 1 in W (p̄′,p′),

which together with (5.3) and the derived extension of H-distributions (The-
orem 3.2) would result in B ≡ 0. This would immediately imply strong
L1
loc(R

d) convergence of the velocity averages (see the comments after Theo-
rem 1.1). However, problem of proving relation (5.3) is out of our reach and
it remains open at the moment. We hope that this paper, and specially the
introduced functional spaces, pave the way for the answer, and will have a
constructive role in the future investigations of the subject.
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Appendix

Here, we provide the proof of Theorem 1.1 which lies in the essence of the
procedures used in the paper. We need the following result on Lp multipliers
arising from the Marcinkiewicz multiplier theorem.

Lemma A.1 ([5, Lemma 5]). For any ψ ∈ Cd(P), the composition ψ ◦ πP
is an Lp-multiplier, p ∈ 〈1,∞〉, satisfying bound (1.6).

We also need a generalisation of Tartar’s commutation lemma [13, Lemma
28.2] to Lp, p 6= 2 sequences.

Lemma A.2. Let B be the operator of multiplication by a continuous
function b ∈ C0(R

d). Let (vn) be a bounded sequence in L2(Rd) ∩ Lp(Rd),
p ∈ [1,∞] such that vn ⇀ 0 in the sense of distributions, and let ψ ∈ Cd(P).
Then for the commutator C = AψPB − BAψP the sequence (Cvn) converges
strongly to zero in Lq(Rd) for any q ∈ [2, p〉 if p ≥ 2, and any q ∈ 〈p, 2] if
p < 2.

Proof. Remark first that the projection ψ ◦ πP = ψP satisfies condi-
tions of the variant of the first commutation lemma [13, Lemma 28.2], more
precisely, its conditions given below:

(

∀ r, ε ∈ R+
) (

∃M ∈ R+
)

|η1 − η2| ≤ r, |η1|, |η2| > M =⇒ |ψ(πP(η1))− ψ(πP(η2))| ≤ ε.
(A.1)

Indeed, as ψ is an uniformly continuous on P, it is enough to show that for
fixed r and ε, the difference |πP(η1)− πP(η2)| is arbitrary small for M large
enough. According to the mean value theorem

|πP(η1)− πP(η2)| ≤ |∇πP(ζ)||η1 − η2|,

where ζ = ϑη1 + (1 − ϑ)η2 for some ϑ ∈ 〈0, 1〉, and the statement follows as
∇πP(η) tends to zero when |η| approaches infinity. In other words, conditions
of [13, Lemma 28.2] are fulfilled, thus ensuring that C is a compact operator
on L2(Rd).
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According to the interpolation inequality for any r between 2 and p, and
α ∈ 〈0, 1〉 we have

(A.2) ‖Cvn‖q ≤ ‖Cvn‖
α
2 ‖Cvn‖

1−α
r ,

where 1/q = α/2 + (1 − α)/r. As C is a compact operator on L2(Rd), while
C is bounded on Lr(Rd) for r ∈ 〈1,∞〉, we get the claim.

Finally, we can prove Theorem 1.1.

Proof of Theorem 1.1. First, remark that according to the commu-
tation lemma (Lemma A.2), it holds

lim
n→∞

∫

Rd+m

φ1(x,y)un(x,y)AψP

(

φ2vn
)

(x)dxdy(A.3)

= lim
n→∞

∫

Rd+m

φ1(x,y)φ2(x)un(x,y)AψP(vn)(x)dxdy.

Thus the limit in (1.3) depends only on the product φ1φ2 ∈ Lp
′

(Rm; Lp̄
′

(Rd)).
Next, consider the bilinear mapping Bn defined for every ψ ∈ Cd(P) and

φ ∈ Lp
′

(Rm; Lp̄
′

(Rd)) by

Bn(φ, ψ) =

∫

Rd+m

φ(x,y)un(x,y)Aψ(vn)(x)dxdy.

According to the Hölder inequality and Lemma A.1, it holds

|Bn(φ, ψ)| ≤ C‖ψ‖Cd(P)‖vn‖Lq(Rd)

∫

Rm

‖φ(·,y)‖Lp̄′ (Rd)‖un(·,y)‖Lp(Rd)dy,

where C is the constant from relation (1.6) depending on d and q. By using
the Hölder inequality again (now applied in the variable y), we get that

|Bn(φ, ψ)| ≤ C‖ψ‖Cd(P)‖vn‖Lq(Rd)‖φ‖Lp′(Rm;Lp̄′(Rd))‖un‖Lp(Rd+m)

≤ C̄‖ψ‖Cd(P)‖φ‖Lp′(Rm;Lp̄′(Rd)),

where C̄ depends on C, and bounds on ‖un‖Lp(Rd+m) and ‖vn‖Lq(Rd).
Thus it follows that (Bn) is an equibounded sequence of bilinear function-

als, and by [1, Lemma 3.2] and (A.3), there exists a functional B for which
(1.3) holds.

References
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