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GENERALIZED SUSPENSION THEOREM IN EXTENSION

THEORY

Leonard R. Rubin
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Abstract. A. Dranishnikov proved that for each CW-complex K

and metrizable compactum X with XτK, it is true that (X × I)τ(ΣK).
Here, ΣK means the suspension of K in the CW-category, and by XτK

we mean that K is an absolute extensor for X. We are going to generalize
this result so that X could be either a stratifiable space or a compact
Hausdorff space. Since all metrizable spaces are stratifiable, then our result
generalizes Dranishnikov’s.

1. Introduction

In [3], Dranishnikov proved (see Theorem 4) that for each CW-complex
K and metrizable compactum X with XτK, it is true that (X × I)τ(ΣK),
ΣK being the suspension of K in the CW-category. By XτK we mean that
K is an absolute extensor for X , or as we prefer to say, X is an absolute
co-extensor for K. Although Theorem 4 of [3] was stated for an arbitrary
metrizable space X , the proof that was given requires X to be compact. Here
is our main theorem.

Theorem 1.1. Let X be either a stratifiable or compact Hausdorff space

and K be a CW-complex such that XτK. Then (X × I)τ(ΣK).

As far as the class of stratifiable spaces is concerned, here are the defining
terms.
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Definition 1.2. A stratification on a space X is a sequence (sk), such
that for each k, sk is a function that assigns to every open set U ⊂ X an open

set sk(U) ⊂ X such that:

(S1) clX(sk(U)) ⊂ U ,

(S2)
⋃

∞

k=1
sk(U) = U ,

(S3) U ⊂ V ⇒ sk(U) ⊂ sk(V ).

A space is called stratified if it has a stratification and is called strati-

fiable if it is stratified and in addition is a T1-space.

This class of spaces was introduced in 1961 by J. G. Ceder [2] under the
name M3-spaces, and was renamed by C. J. Borges [1] to stratifiable spaces.
An exposition of generalized metrizable spaces, including stratifiable spaces,
is given by G. Gruenhage [4] in the Handbook of Set-Theoretic Topology.
What is important for us is that stratifiable spaces are hereditarily stratifiable,
Hausdorff, paracompact, perfectly normal, and that any countable product
of stratifiable spaces is stratifiable. They satisfy the subspace theorem in
extension theory, namely, if K is a CW-complex, X is a stratifiable space, and
XτK, then for each subspace Y ⊂ X , Y τK. This result appears as Theorem
18.12 of [6], but we will only need it in the weak form, i.e., when Y is a closed
subspace of X . Moreover, every CW-complex is an absolute neighborhood
extensor for the class of stratifiable spaces, and every metrizable space is
stratifiable. Hence Theorem 1.1 has the following corollary.

Corollary 1.3. Let X be a metrizable space and K a CW-complex such

that XτK. Then (X × I)τ(ΣK).

2. Open Sets in Products

In this presentation, map will always mean continuous function. For each
pair X , Y of spaces, let C(X,Y ) denote the set of maps of X to Y .

Definition 2.1. Let X be a space and U an open subset of X. Denote

C(X,U, I) = {f ∈ C(X, I) | (f(X \ U) ⊂ {0}) ∧ (f(U) ⊂ (0, 1])}. For each

f ∈ C(X,U, I) and t ∈ I, let f+
t : X → R be the map given by f+

t (x) = f(x)+t
and f−

t : X → R the map given by f−

t (x) = −f(x) + t.

Lemma 2.2. Let X be a space, U an open subset of X, t ∈ I, and f ∈
C(X,U, I). Then

(1) {f+
t , f

−

t } ⊂ C(X,R),
(2) for each x ∈ U , f−

t (x) < f+
t (x), and

(3) for each x ∈ X \ U , f+
t (x) = t = f−

t (x).

Definition 2.3. Let X be a space, U an open subset of X, t ∈ I, and

f ∈ C(X,U, I). When we speak of the subspace of X × R between f−

t and

f+
t we refer to {(x, y) ∈ U × R | f−

t (x) < y < f+
t (x)}. We shall denote this
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subspace of X×R betw(f, U, t), noting that betw(f, U, t) ⊂ U ×R. Let us use

Betw(X) to denote the collection of all such subsets betw(f, U, t) of X × R.

Whenever X is a space and f ∈ C(X,R), then by Gf we mean the graph
of f , a closed subset of X ×R. Recall that Gf is homeomorphic to X . In (2)
of the next lemma, the two closed subsets of X ×R are the respective graphs
of f−

t and f+
t when these maps are restricted to clX U .

Lemma 2.4. Let X be a space and W ∈ Betw(X). Then

(1) W is an open subset of X × R, and

(2) in case W = betw(f, U, t), then bdX×RW equals the union of two

closed subsets of X × R, each of which is homeomorphic to clX U .

Our interest is in spaces of the form X × I. Lemma 2.4 leads to the next
fact.

Lemma 2.5. Let X be a space, W ∈ Betw(X), and M = W ∩ (X × I).
Then

(1) M is an open subset of X × I, and

(2) bdX×I M equals the union of two closed subsets of X×I, each of which

is homeomorphic to a closed subspace of clX U .

Lemma 2.6. Let Q, U , be open subsets of a normal space X with Q ⊂
clX Q ⊂ U , and J an interval in I. Then there exists an element W ∈ BetwX
such that W ∩ (X × I) ⊂ U × J , and Q× J ⊂W . Moreover, we may choose

f ∈ C(X, I), an open subset U0 of X with U0 ⊂ U , and t ∈ J such that

W = betw(f, U0, t).

Proof. Let t be the midpoint of J , and ǫ > 0 equal half the length of
J . Choose f ∈ C(X, [0, ǫ]) ⊂ C(X, I) ⊂ C(X,R) so that f(clX Q) ⊂ {ǫ}
and f(X \ U) ⊂ {0}. Let U0 = {x ∈ U | f(x) > 0}. Thus, U0 ⊂ U is an
open subset of X , and clX Q ⊂ U0. One can see that f ∈ C(X,U0, I). Put
W = betw(f, U0, t). We ask the reader, using Definition 2.3, to check that W
meets the requirements stated above.

3. Proof of Main Theorem

Proof of Theorem 1.1. We denote the suspension of K as ΣK =
{v+, v−} ∗ K where {v+, v−} is a two-element CW-complex that is disjoint
from K. Let A be a closed subset of X×I and f : A→ ΣK a map. Designate
A+ = f−1(v+) and A− = f−1(v−). Choose an open cover E of the regular
space X × I such that if E ∈ E and E ∩ A+ 6= ∅, then (clX×I E) ∩ A− = ∅.

Fix x ∈ X . There is a finite open cover Jx of I consisting of intervals, such
that for each J ∈ Jx, there exists an element EJ ∈ E with {x} × clI J ⊂ EJ .
Now choose an open neighborhood Vx of x in X having the property that:

(∗1) Vx × J ⊂ EJ for each J ∈ Jx.
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Having done the preceding for each x ∈ X , choose a locally finite open
cover {Ux |x ∈ X} of X which is a shrinking of {Vx |x ∈ X}, i.e., for each
x ∈ X , clX Ux ⊂ Vx. Let {Qx |x ∈ X} be an open cover of X that is a
shrinking of {Ux |x ∈ X}. Hence,

(∗2) for each x ∈ X , clX Qx ⊂ Ux ⊂ clX Ux ⊂ Vx.

Making use of (∗1) and (∗2), we get:

(∗3) for each x ∈ X and J ∈ Jx, Ux × J ⊂ EJ .

Clearly, {Ux × I |x ∈ X} is a locally finite open cover of X × I. Once
again, fix x ∈ X ; fix also J ∈ Jx. Apply Lemma 2.6 with Ux, Qx respectively
in place of U and Q, to find Wx,J ∈ Betw(X) such that,

(∗4) there exist f ∈ C(X, I), an open subset U0 of X , U0 ⊂ Ux, and t ∈ J

such that Wx,J = betw(f, U0, t),

(∗5) Mx,J =Wx,J ∩ (X × I) ⊂ Ux × J , and

(∗6) Qx × J ⊂Wx,J .

Indeed, since Qx × J ⊂ X × I, then:

(∗7) Qx × J ⊂Mx,J .

Let Px = {Mx,J | J ∈ Jx}. Then Px is a finite collection of open subsets
of X× I that covers Qx× I, and

⋃
Px ⊂ Ux× I. Denote P =

⋃
{Px |x ∈ X}.

Then P is a locally finite open cover of X × I. If we apply (∗5), (∗2), and
(∗1), we find that for each P ∈ P , there is an element E ∈ E with P ⊂ E.
Therefore, if P ∩ A+ 6= ∅, then (clX×I P ) ∩A− = ∅.

Let P+ = {P ∈ P |P ∩ A+ 6= ∅}. Define W =
⋃
P+. For each P ∈ P+,

(clX×I P ) ∩ A− = ∅. Since P+ is a locally finite collection of subsets of
X × I, then A+ ⊂ W ⊂ clX×I W ⊂ X × I \ A−. Again using the fact that
P+ is a locally finite collection of subsets of X × I, one sees that bdX×I W

is a closed subset of
⋃
{bdX×I P |P ∈ P+}. The latter is a locally finite

collection of closed subsets of X × I each having the form Mx,J as in (∗5), so
an application of Lemma 2.5(2) yields that (bdX×I W )τK.

Of course, bdX×I W is a normal space, so (bdX×I W )τ R. The space
ΣK \{v+, v−} is homeomorphic to K×R, so (bdX×I W )τ(K×R). Therefore
there exists a map ϕ : bdX×I W → ΣK \ {v+, v−} ⊂ ΣK that extends the
map f |(A ∩ bdX×I W ). Let ψ = ϕ ∪ f : (bdX×I W ) ∪ A → ΣK. Certainly,
ψ is a map. Moreover, ψ((A ∩ clX×I W ) ∪ bdX×I W ) ⊂ ΣK \ v−. However,
ΣK \ v− is an open subset of ΣK, so it is an absolute neighborhood extensor
for both the class of compact Hausdorff spaces and the class of stratifiable
spaces. It is also a contractible space. So Theorem 4.7.1 (page 43) of [5]
shows that (clX×I W )τ(ΣK \ v−).

Consider the restriction ψ+ = ψ|((A∩ clX×I W )∪ bdX×I W ) with image
in ΣK \ v−. There is a map ξ+ : clX×I W → ΣK \ v− that extends ψ+.
Similarly, we can find a map ξ− : (X × I) \ W → ΣK \ v+ that extends
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ψ− = ψ|((A \W )∪bdX×I W ) whose image is in ΣK \ v+. The map ξ+ ∪ ξ− :
X × I → ΣK is an extension of f . This ends our proof of Theorem 1.1.
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