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INTRODUCTION

Variability is one fundamental feature of the Earth’s 
climate system [1, 2]. Climate fluctuations result in 
considerable interannual variability of the meteorological 
parameters like temperature, precipitation, cloud cover, 
radiation and others. Climate change research typically 

calculates meteorological parameters in annual basis 
to track global changes and patterns [3]. Percentiles as 
the measures of annual deviations from the long term 
mean are also used to quantify expected return-time of 
extreme weather events [2].
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Meteorological parameters exhibit strong intra-annual 
variability as well with extreme events like heatwaves, 
drought spells, flash floods, extreme cold periods etc. In 
meteorology, quantification of the extreme events has long 
tradition [1, 4, 5]. Climate indices are calculated typically 
from daily meteorological records to estimate e.g. strength 
of heatwaves, number of days with extreme precipitation, 
length of dry periods etc. [1, 6, 7]. 

Plant processes and productivity have strong economic 
impacts due to its direct relationship with crop yield, 
wood production, animal welfare, fodder quantity and 
quality, ecosystem services, etc. [8]. Thus, quantifying 
plant production and understanding the processes 
behind variability of plant status on annual scale is of high 
importance [9, 10]. 

Studies focusing on ecosystem processes have 
problems with the existing climate indices and annual 
means due to the complex interactions between 
meteorological parameters and the vegetation state [11]. 
Intra-annual variability of the meteorological parameters 
might exert strong impact on plant growth and productivity 
[12]. Actual vegetation state is the result of beneficial and 
negative effects from the past. In other words, vegetation 
status is the integrator of all effects from soil water status, 
temperature, variability of radiation, etc. Therefore extreme 
indices and annual means are not directly applicable to 
study plant growth and explain its interannual variability. 

One logical way to study the impact of climate 
variability on plant processes is the effect-based approach, 
where the plant response is characterized first, then the 
meteorological cause of the effect is sought (see e.g. [13, 
14]). Due to economic and political reasons these studies 
should practically focus on the country scale (see e.g. 
[15]). However, quantification of plant status on large 
spatial scales is not straightforward due to the small spatial 
representativeness and amount of observation based, in 
situ data (e.g. biomass data, phenology observations, leaf 
area index measurements, eddy covariance data, crop 
census data, etc.).  

Remote sensing (RS) provides a very convenient solution 
to this problem. Data obtained from sensors on board Earth 
Observing satellites like the Moderate resolution Imaging 
Spectroradiometer (MODIS) provides unique information 
[16] which can be linked to plant status via vegetation 
indices like Normalized Difference Vegetation Index (NDVI), 
Enhanced Vegetation Index (EVI) [17], Leaf Area Index (LAI), 
Fraction of Photosynthetically Active Radiation (FPAR) [18] 
or modelled plant production like Gross Primary Production 
(GPP), and the Net Primary Production (NPP) [19]. They are 
produced at convenient spatial scale (with finest 250 m – 
1 km), and today already comprise an exceptional 17-years-
long data record. 

The spatial resolution of the MODIS Collection 6 
products for NDVI, EVI, LAI, FPAR, GPP, and NPP is 500 m 
or finer (for NDVI and LAI with 250  m resolution) which 
is sufficiently small to isolate large number of pixels that 
contain a single land cover (LC) type. This enables that 
the analysis of plant behaviour can be studied for each 
land cover type separately, which is needed due to the 
substantially different dependence of plant functional 
types on the environmental conditions [20]. However, the 

classification of pixels into LC categories is not trivial due 
to land use change and land cover classification errors. For 
best results, other sources of land cover type are needed, 
like national/regional forest management maps, agriculture 
land use monitoring systems for payment of subsidies (e.g. 
in EU countries), or CORINE Land Cover database [21]. Here 
we propose a novel method that would enable selection and 
identification of the anomalous years based on RS data and 
RS-derived products (NFVI, EVI, LAI, FPAR, GPP, and NPP) 
according to different land cover types and spatial coverage. 
This method overcomes the issues that are related with the 
study of the meteorological anomalies alone. Based on the 
area for which the method is implemented, it could help to 
assess differences at spatial and temporal scale for a given 
LC within the area of interest. It can be applied at a national 
level to study the behaviour of each LC type as well as to 
assess the magnitude of the anomaly that has occurred in 
terms of “repeat time”. 

In the present paper country averages are studied to 
get robust results and to support future research. At smaller 
spatial scales climate is not necessarily the dominant driver 
of plant development and vigour. For example forest 
production can be adversely affected due to pathogens or 
insects [11]. Cropland management clearly affects plant 
status at smaller scales; for example winter wheat is typically 
harvested in the region by June-July which affects overall 
greenness. Management practices like fertilization, harvest 
and irrigation, and also soil type clearly modulate the effect 
of meteorological conditions in grasslands and croplands. 
Country averages by land cover types are expected to be 
driven by climate fluctuations and provide robust and clear 
signal about the overall productivity in the given country 
(see e.g. [15, 22] for such approaches).

The aim of the paper is to present a method to select 
years that can be characterized as anomalous based on 
observed plant status and greenness. Using multiple 
vegetation indices we also test the similarity/dissimilarity 
of the different vegetation metrics in terms of their usability 
to detect anomalous plant status. To get robust and easily 
interpretable results we used country-means. Bosnia and 
Herzegovina, Croatia and Hungary (and in Supplement 
Czech Republic, Slovakia and Slovenia) were selected to 
represent Mediterranean, continental and alpine climates. 
The reason behind such choice is the relatively small 
geographical extent and the fact that extreme weather 
events typically affect large areas and sometimes the 
whole country [23]. Countries with transitional economies 
are particularly vulnerable to climate extremes [10]. It 
means that understanding the cause-effect relationships 
might support the prevention of adverse effects on plant 
state and this can support economic growth and human 
welfare. 

MATERIALS AND METHODS

Study Area
The target area of this study is the broader region 

of the Carpathian Basin, determined by the coverage of 
the applied meteorological dataset (see below). Bosnia 
and Herzegovina, Croatia and Hungary were selected to 
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represent Mediterranean and continental climate as well, 
with high biodiversity and variability in the meteorological 
conditions. Results for Czech Republic, Slovakia and 
Slovenia are presented in the Supplemental Material. The 
reason behind chosen countries is the spatial domain of the 
applied meteorological database, covering fully only the 
selected countries.

Meteorological Database
To investigate the effects of weather variability on the 

vegetation activity and greenness, we used the FORESEE 
database [24]. This freely available meteorological database 
contains observed and projected daily maximum/minimum 
temperature and precipitation fields for Central Europe on a 
regular grid with a spatial resolution of 1/6° × 1/6°, covering 
the years between 1951 and 2100. For the 1951-2014 
period, FORESEE provides observation-based interpolated 
meteorological fields for the wide region of the Carpathian 
Basin. 

In order to match the temporal and spatial resolution 
of the applied remote sensing datasets and of the FORESEE, 
8-day mean temperature values and precipitation sums 
were calculated on the finer grid of the MODIS products 
based on the methodology of Kern et al. [25]. Country 
averaged mean and anomaly values were calculated for the 
above mentioned six countries within the study area.

Mean temperature and precipitation fields 
(respectively) calculated for the entire domain area of the 
FORESEE database are presented in Figure 1 and 2 for the 
study period of 2000-2014. Yearly anomaly fields, shown 
in Figure 3-6, are illustrations of years which might be 
considered as extreme from the meteorological perspective. 
Figure 3 and 4 show the anomaly maps of temperature and 
precipitation (respectively) for 2011, while Figure 5 and 6 
shows the anomaly maps of temperature and precipitation 
(respectively) for 2014 (note that the temperature and 
precipitation anomaly maps have different legends).
Vegetation Related MODIS Products

In the present study we used the latest version 
(Collection 6) MODIS NDVI, EVI, FPAR, LAI, GPP, and 
NPP with 500 × 500  m spatial resolution, as part of the 
MOD13A1, MOD15A2H, MOD17A2H and MOD17A3H 
official products [26, 27] derived from the measurements 
of MODIS sensor on board satellite Terra. The longest 
possible datasets (covering the period of 2000-2014) were 
chosen to match the availability of the MODIS products 
and the temporal coverage of the applied meteorological 
dataset. 

Quality filtering of each dataset was performed using 
the quality flag information included in the datasets, based 
on the method described by Kern et al. [25]. Besides this, 
to filter out unrealistic sudden increases and decreases in 
the state of the vegetation the so called Best Index Slope 
Extraction (BISE) method [28] was applied afterwards on 
pixel level for NDVI and EVI data [25]. While FPAR, LAI and 
GPP has the same 8-day temporal resolution, NDVI and 
EVI are 16-day composite products, therefore temporal 
resampling based on the Julian date information included 
in the MOD13 datasets was also necessary to create NDVI 
and EVI dataset with the same 8-day temporal resolution 
[25].

It has to be noted that although most of the 
MODIS products are state-of-the-art, standardized, well 
documented data sets, the quality of the model based 
products is expected to be lower and that affects their 
applicability [19]. Most notably, MODIS annual NPP 
products suffers from a major error (with large unexpected 
positive bias for the first four years (2000-2003) as it 
is presented in Figure 7 and should not be used in the 
FORESEE domain. Therefore, the anomaly values from the 
yearly NPP products were calculated relative to the period 
of 2004-2014.

Methods and Metrics for Defining Anomalous Years
From the quality (and in the case of MOD13A1 data 

BISE-filtered) 8-day temporal resolution datasets country 
averaged multiannual means and yearly anomaly values 
were calculated for the whole vegetated area of the selected 
countries within the Carpathian Basin. Land cover specific 
country averaged values were also derived for broadleaf 
and coniferous forests, croplands and grasslands. The yearly 
anomalies were calculated without the first 40 and last 40 
days of the year to avoid any misleading result originating 
from the effect of snow cover. Using the derived yearly 
anomaly values, relative anomaly values were calculated by 
dividing the yearly anomaly values by the maximum of the 
absolute anomaly values during the investigated 2000-2014 
period.

To analyse the spatial distribution of the yearly anomaly 
fields, we calculated the 0.5, 2, 9, 25, 50, 75, 91, 98 and 
99.5 percentiles values of all yearly mean anomaly values 
for all land cover specific pixels separately within a given 
country. The selected percentiles define thresholds for the 
classification of anomalies into the following 10 categories:

 
The derived percentile values are appropriate to des-cribe 
the total distribution of the anomaly values of a given 
land cover type (within a given country) during the study 
period of 2000-2014. Based on the proposed categorization 
we calculated for every year separately the number of 
the pixels (as the percentage for a given LC type) within 
all the created percentile ranges. Note that there might 
be situations when e.g. strong positive anomaly was not 
occurring in the entire time period for a given LC type at all. 
In this study the maximum anomaly is used independent of 
its magnitude. 

The advantages of the proposed categorization is the 
following: (1) the method we applied is the same for all 
LC types, but it yields LC specific results; (2) it enables the 
identification of areas within the selected geographical area 
(e.g. country), where mean anomaly is more positive or more 
negative with respect to the country average, indicating that 

<0.5p most extreme negative anomaly,
0.5p – 2p extremely negative anomaly,
2p – 9p strong negative anomaly,
9p – 25p negative anomaly,
25p – 50p } normal range50p – 75p 
75p – 91p positive anomaly,
91p – 98p strong positive anomaly,
98p – 99.5p extremely positive anomaly,
>99.5p most extreme positive anomaly.



KERN A, MARJANOVIĆ H, DOBOR L, ANIĆ M, HLÁSNY T, BARCZA Z

http://www.seefor.eu4     SEEFOR 8 (1): 1-20

FIGURE 1. Mean annual temperature (°C) during 2000-2014 FIGURE 2. Mean annual precipitation (mm) during 2000-2014

FIGURE 3. Temperature anomaly (°C) in 2011 FIGURE 4. Precipitation anomaly (mm) in 2011

FIGURE 5. Temperature anomaly (°C) in 2014 FIGURE 6. Precipitation anomaly (mm) in 2014

some areas are more/less productive, more/less prone or 
more/less sensitive to meteorological anomalies (where 
a special attention should be paid to croplands due to the 
possible yearly crop type change); (3) it is appropriate to be 
done for any other vegetation related characteristics.

In this paper we propose the following classification 
of the years, which is based on the percentage of the 
area showing positive and negative anomalies of a given 
vegetation characteristics (NDVI, EVI, FPAR, LAI, GPP, and 
NPP). Using the yearly anomaly fields of given vegetation 
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CORINE 2012 database [30] were used to identify pixels 
with high probability of being broadleaf forests, coniferous 
forests, croplands and grasslands. 

From the five types of land cover classification 
contained in the MCD12Q1 product [31] we used the 
Type-1 (International Geosphere Biosphere Programme 
- IGBP) to identify croplands and grasslands and the Type-
3 (MODIS-derived LAI/fPAR scheme) classifications for 
broadleaf and coniferous forests. The categories of the 
land cover classification for the used MODIS pixels are 
given in the translation matrix between the different LC 
schemes (Table 2). The reason behind the usage of Type-3 
for forests was that the widely used Type-1 IGBP land cover 
classification suffers from well-documented errors [32, 33] 
with 75% overall accuracy [31] including misclassification 
of the mixed forest types as well [34]. We found that the 
misclassification is especially evident for the lowland 
forests along rivers, for example like the Gemenc forest by 
the Danube in Hungary, or the river Spačva basin in eastern 
Croatia, extending also to Vojvodina in Serbia. According to 

TABLE 1. Thresholds to the selection of the anomalous years 
based on the percentage of the affected areacharacteristic, for a specific land cover type, the chosen 

year can be graded based on the thresholds presented in 
Table 1. It should be noted that the grade for a given year 
at a given location depends on the selected reference 
period (e.g. MODIS era, in our case 2000-2014) and the area 
representing a domain (e.g. region, country or a continent). 

Synergy of the MODIS and CORINE Land Cover 
Databases

In order to study the response of the various vegetation 
types to meteorological anomalies we distinguished the 
main land cover types based on the synergistic use of 
two land cover datasets. The so called MCD12 land cover 
products based on MODIS observations [29] and the 

TABLE 2. Translation matrix between the different land cover classification schemes

FIGURE 7. Country-averaged annual mean MODIS NPP 
values for the investigated countries in Central Europe (note 
that due to technical issues the first 4 years (2000-2003) are 
not applicable for further processing)

All LC types

Bosnia and Herzegovina
Croatia
Chech Republic
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Slovenia

2000	 2004	 2008	 2012
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Years

Grade for  
the year

Share of the area 
showing very 
negative and 

extremely negative 
anomaly

Share of the 
area showing 

very positive and 
extremely positive 

anomaly
Extremely bad >50% & <10%
Bad 25% - 50% & <15%
Average <25% & <25%
Good <15% & 25% - 50%
Extremely good <10% & >50%
Ambiguous does not meet any of the above criteria 

   LC classification in this paper MODIS (Type* of MODIS LC classification) CORINE Land Cover Type (CLC code)

  Broadleaf Forests Deciduous Broadleaf Forest (3)

Evergreen Broadleaf Forest (3)

Broad-leaved forest (311)

  Coniferous Forests Evergreen Needleleaf Forest (3)

Deciduous Needleleaf Forest (3)

Coniferous forest (312)

  Grasslands Grasslands (1) Pastures (231)

Natural grasslands (321)

  Croplands Croplands (1) Non irrigated arable land (211)

Permanently irrigated arable land (212)

Rice fields (213)

Annual croplands associated with permanent 
croplands (241)

Complex cultivation pattern (242)

* Type 1 - IGBP global vegetation classification scheme; Type 3 - MODIS-derived LAI/FPAR scheme [29]
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MODIS Type-1 land cover classification both forests have 
been categorized as mixed forest, while they are broadleaf 
forests in reality. In fact Spačva forest with its area of 40 
kHa size is the largest complex of pedunculate oak forest 
in Europe [35]. In contrast to this, the Type-3 classification 
doesn’t have mixed forests category, resulting in all forested 
pixels categorized as either broadleaf or coniferous category. 
We have to note that in Type‑3 classification croplands and 
grasslands are categorized together as “Grasses/Cereal 
crops”, therefore Type-3 classification cannot be used to 
discriminate croplands and grasslands. 

From the yearly MCD12Q1 land cover datasets with 
500  m × 500  m spatial resolution covering the period of 
2001-2013 we selected the pixels (hereafter called stable 
LC pixels) which had no land cover change during the entire 
period. The usage of the temporal stability selection criteria 
excluded pixels which underwent any kind of land cover 
change during the investigated period, either actual, or 
resulting from the error in classification. Implementation 
of such a strict rule resulted with dropping significant 
number of the pixels. The percentage of stable LC pixels 
was only ~56% of the whole study area based on Type-1 
classification. Specifically, 32%, 34%, 53%, 69%, and 28% of 
the pixels remained for the categories of broadleaf forests, 
coniferous forests, mixed forests, croplands, and grasslands, 
respectively. Based on Type-3 classification the percentages 
of stable LC pixels in the whole study were 48% and 42% 
for broadleaf and coniferous forests, respectively. The 
percentages were calculated relatively to the mean number 
of the pixels during the 13 years of the total dataset. 

In order to increase the reliability of the applied LC 
categorization we used the CORINE land cover dataset as 
a reference LC dataset for the year 2012. The accuracy of 
CORINE is 87.0  ±  0.7% [21], which is significantly better 
than the 75% accuracy of MODIS [31]. Using GIS software 
[QGIS 2.16], we intersected the vector-based CORINE 
layer with the grid of the MODIS pixels at 500 m × 500 m 
spatial resolution and obtained the share of every of the 

44 CORINE land cover types present within each of the 
MODIS grid-cells (i.e. pixel). Due to differences in land 
cover categorization between MODIS and CORINE, we used 
translation matrix (Table 2) to unify the classification. Based 
on the area share information of CORINE we selected so 
called CLC2012 pure pixels for deciduous forests, coniferous 
forests, croplands and grasslands, which contained at least 
90% area share from the given LC type (Table 2, column 1). 
In the case of croplands and grasslands the 90% threshold 
was applied for the sum of the area shares of the different 
CLC categories (separately for croplands and grasslands) 
listed in Table 2 (column 3).

Using the derived set of MODIS stable pixels and 
CORINE pure pixels we selected “reliable” pixels which 
were classified by both land cover database to the same 
vegetation type of broadleaf forests, coniferous forests, 
croplands and grasslands. Figure 8 shows the location of 
the remaining reliable pixels of the main land cover types 
based on MODIS IGBP (MCD12 Type-1), LAI/FPAR scheme 
(MCD12 Type-3) classifications and CLC2012 database. This 
land cover map shows the location of the pixels which were 
finally used in the present study as reliable pixels, being 
constant during the study period and having probably right 
classification. Based on the information of the CORINE 
database regarding the percentage values of the presence 
of a given land cover type the mean percentage for the 
selected broadleaf forests, coniferous forests, croplands 
and grasslands pixel was 99.0%, 99.0%, 99.3% and 98.2%, 
respectively. The problem of using the MODIS Type-
1 classification for forests is illustrated in Figure 9. The 
presented map shows the location of the pixels which are 
classified as broadleaf forests and coniferous based on the 
MODIS Type-3 and CORINE classifications, but not based on 
MODIS Type-1 classification. The number of the forested 
pixels (in the study area) which are not represented well 
in Type-1 classification is considerable: 59.5% and 66.3% 
for broadleaf and coniferous forests, respectively, relatively 
to the number of the derived reliable broadleaf and 

FIGURE 8. Reliable pixels of the main land cover types based 
on MODIS IGBP (MCD12 Type‑1) and LAI/FPAR scheme 
(MCD12 Type-3) classifications and CLC12 database

FIGURE 9. Location of the broadleaf and coniferous forests 
pixels according to both the MODIS Type-3 and CORINE 
classifications which are classified by MODIS Type-1 
classification in some other LC category
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coniferous pixels, which were selected finally to our further 
investigations. 

After the synergetic use of the two MODIS datasets 
with CORINE dataset the number of the selected pixels 
was 6.3% for broadleaf, 3.1% for coniferous forest, 17.1% 
for cropland and 0.1% for grassland pixels relative to the all 
vegetated pixels in the whole domain. It means, with the 
final pixel selection we were taking into account 26.6% of 
the whole domain in a total value. The country specific pixel 
numbers are presented in Table 3.

RESULTS AND DISCUSSION

Problems with the Selection of Extreme Years Based 
Solely on Meteorological Data 

In order to study the dependence of  the strength of 
meteorological anomalies on the selected integration 
time period, first we present country averaged mean 
temperature and precipitation anomalies in Figure 10 (left 
and right side images, respectively) during 2000-2014 for 
Bosnia and Herzegovina, Croatia and Hungary (and in 
Figure S1 in the Supplementary Material for Czech Republic, 
Slovakia and Slovenia). 

While the columns show whole year anomalies in Figure 
10, the curves indicate periods with various length (starting 
at different date and all ending with 7th of October within 
the year), representing gradually only the predominant 
part of the growing season. 7th of October was used as the 
end of the integration period as we can hypothesize that 
meteorology in the dormant season affects plant state to 
a lesser extent. The beginning was varied with ~2 weeks 
periods and ranging from 1st January to 26th June.

The figure shows that even if there is an extreme 
temperature or precipitation anomaly for a given year, it 
does not necessarily mean that the vegetation was exposed 
to similar meteorological anomalies during the growing 
season. A good example is 2003, when the country-
averaged annual temperature anomaly was negative in the 
presented countries (especially for Hungary), but a strong, 
mostly positive anomaly was detectable for the growing 
season. On the contrary, year 2004 or 2005 (with similar 
negative annual temperature anomalies) showed only 
negative temperature anomalies during the shorter time 
periods until the end of the growing season. In terms of 
annual temperature anomaly year 2007 was very similar to 

year 2000 for all three selected countries, but with much 
higher intra-annual variability, on average having cooler 
than usual period in summer and early autumn. On the 
contrary, in 2012 (with annual temperature anomaly similar 
to the one in 2007) the summer-early autumn period was 
characterized with the highest positive anomaly during 
the year, when the mean temperature of the countries 
was continuously higher than the average. Finally, year 
2014 is worth mentioning as well. Though it had the 
largest annual anomaly, its temporal evolution was not 
consistent. Precipitation showed similar features, however 
the intra-annual variability was much lower. It is important 
to mention the two consecutive years of 2010 and 2011, 
which was characterized by very strong positive (2010) and 
then negative precipitation anomaly (2011) all over the 
Carpathian-Basin.

These results illustrate the problems in defining 
temperature and precipitation anomalies as they strongly 
depend on the selected integration period. In other words, 
we cannot unambiguously select extreme years based on 
the yearly (or monthly/seasonal) mean meteorological 
conditions that can be related with e.g. vegetation state, 
crop yield, forest productivity, outbreak of insects or other 
phenomena. To find the extreme years in plant greenness 
and describe the response of the vegetation greenness, it 
is more straightforward to study anomalous behaviour of 
the plant state (or other phenomena that is related with 
ongoing climate anomalies).

Selection of Anomalous Years Based on the Overall 
Impact on Vegetation

Yearly relative anomalies of the vegetation related 
characteristics (such as NDVI, EVI, FPAR, LAI, GPP, and NPP) 
during 2000-2014 are presented in Figure 11 for croplands 
and grasslands. Figure 12 shows the same for broadleaf and 
coniferous forests for Bosnia and Herzegovina, Croatia and 
Hungary (Figure S2 and S3 in the Supplementary Material 
illustrate results for the Czech Republic, Slovakia and 
Slovenia). The yearly, land cover specific anomalies of the 
meteorological variables (temperature and precipitation) 
are also presented in Figure 11 and 12.

Based on the results, the relative anomalies for the 
different vegetation characteristics could be described as 
quite consistent for croplands and grasslands, showing the 
same direction of relative anomaly in most of the cases. It is 
also notable that GPP and NPP show opposite character for 

TABLE 3. Number of the pixels at 500 m × 500 m spatial resolution which complied with the selection criteria separately to the 
main LC types and countries (selection criteria: MODIS LC type for a given pixel did not change during 2001-2013 and its LC 
classification with 90% share corresponds to that of CORINE 2012 - see Table 2)

Country Broadleaf  
Forests

Coniferous  
Forests Grasslands Croplands

Bosnia and Herzegovina 26 252 2 825 200 2 039
Croatia 35 302 421 1 067 21 928
Czech Republic* 2 855 24 925 2 48 869 
Hungary 21 699 58 16 137 246
Slovakia* 26 369 6 218 13 38 027
Slovenia* 7 178 1 922 4 1 479

* Figures and additional information for these counties are in the Supplement.
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FIGURE 10. Temperature (left side images) and precipitation (right side images) anomalies of time periods with different length 
within the years during 2000-2014 based on the FORESEE database for Bosnia and Herzegovina, Croatia and Hungary (curves 
represent the selected time periods ending in 7th October, while columns indicate anomalies for the entire year)
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some years compared to other indexes. (Anomalies of NPP 
for the year 2000-2003 are not shown; see section 2.4. in 
the Materials and Methods for the explanation). 

For a given land cover type in some area (country) 
within the reference period 2000-2014, the calculated 
relative anomalies facilitate straightforward comparison 
between years, as well as between different land cover 
types within the same year. For example, we can select 
years when croplands and grasslands were both anomalous 
(like 2000, 2003 and 2012 with negative anomalies, or 
2010 and 2014 with positive anomalies), but in some years 
(such as 2001 and 2004) croplands and grasslands showed 
different response to the environmental conditions. These 
differences might be related to land cover type specific 
features, species distribution and human disturbances 
(harvest, fertilization), and maybe other factors like soil 
water holding capacity, etc. Additionally, croplands in some 
countries cover C4 plants with higher drought resistance, 
which might affect the results. Also, croplands and 
grasslands might exhibit different critical time periods when 
the ongoing weather affects their productivity [36]. Clearly, 
it is not only the yearly anomalies of the meteorological 
parameters that affect the plant status, but the within-year 
temporal pattern of the meteorological elements. Note that 
the number of pixels (see Table 3) was low for grasslands 
in all countries except Bosnia and Herzegovina and Croatia, 
which can affect the reliability of the results for grasslands 
in those countries. 

While in the case of croplands and grasslands the 
vegetation related characteristics are mostly consistent, 
forests reveal different behaviour (Figure 12). As it is 
obvious from the figure, in the case of forests the different 
characteristics are not showing similarity for the anomalies, 
as it was found for croplands and grasslands. It is especially 
true for GPP and NPP, which are in fact models and not 
indices that are derived directly from the reflectance data 
[19]. It means that GPP and NPP results must be treated 
with caution. For example, in 2012 the reason behind the 
large disagreement between the mean anomaly of NDVI, 
EVI, LAI and FPAR, and the mean behaviour of GPP and 
NPP might be related with the extreme meteorological 
conditions during the growing season, causing significant 
drought in the Carpathian-Basin and a consequently 
simulated lower productivity by the GPP-model. In addition, 
forests with typically deeper root zone do not react in the 
same way to changing meteorological conditions as the 
shallow-rooted croplands and grasslands [16]. Forest 
productivity depends on the available soil water content in 
the topsoil to a lesser extent, because deeper groundwater 
supplies can be accessible to trees. Trees store a relatively 
large amount of non-structural carbohydrate – which is the 
product of the previous year – to mitigate negative effect 
of shortage in nutrients and photosynthetic carbon uptake. 
Therefore they are likely to be less affected by the shorter 
term weather anomalies, but showing stronger exposure 
to the longer term changes. Based on the observed results, 
we could not select the same years as anomalous years for 
herbaceous vegetation, which were highlighted in the case 
of croplands and grassland over the studied countries. The 
role of the carbohydrate reserves seems to be important 

which might impose lagged effect [13]. This can be 
recognised in 2013 as the effect of the previous, extreme 
year (evident in strong negative anomaly for croplands, see 
Figure 11) which has contributed to a negative anomaly in 
broadleaf forests (see Figure 12).

Co-variation between the meteorological and 
vegetation anomalies does exist and it can give us some 
basic information at the annual scale. However, the main 
aim of the present study was not to execute in-depth 
analysis of cause-effect of environmental variables on the 
detectable plant state anomalies, but to select anomalous 
years. In order to quantify their co-variance Pearson’s 
r values (correlation coefficients) were calculated and 
compared. The correlation coefficients between the yearly 
anomalies of the vegetation characteristics and the yearly 
meteorological anomalies were calculated for the different 
plant types separately. Table 4 present the correlation 
coefficients calculated between the NDVI anomalies and 
the temperature and precipitation anomalies, where the 
statistically significant (P<0.05) values are indicated. In 
the case of temperature, the calculated r values show the 
strongest correlation for forests (especially with broadleaf 
forests), while in the case of precipitation the largest 
correlation is present for croplands and grasslands. Both 
the direction and the strength of the correlation depend 
strongly on the land cover type, indicating complex 
relationship between the vegetation and meteorological 
conditions. It also implies that large scale and land cover 
specific studies should not be made together, but separately 
and at finer temporal and spatial scale.

Selection of Anomalous Years Based on the Magnitude 
and Spatial Extent of NDVI Anomalies

The investigation of the country averaged mean yearly 
anomaly does not provide information about its spatial 
distribution. Therefore, pixel-level investigations were 
performed using percentiles analysis for the area of a given 
land cover type affected with severe anomaly (see Section 
2.4 in the Materials and Methods). Here we present the 
results based only on the NDVI, while the results for all 
other metrics are provided in the Supplementary material 
(S6, S8, S10, S12). 

Different land cover types react with varying intensity 
to meteorological anomalies as it can be inferred by careful 
inspection of Figure 13. It shows that, for example, broadleaf 
forests (top left) maintain rather stable mean annual NDVI 
and the corresponding anomalies are in the range of +/- 
0.05 of the mean in 99% of the cases. Coniferous forests 
(Figure 13, top right), on the other hand, show higher 
variability of the mean NDVI compared to broadleaf forests, 
but the magnitude is still lower than for grasslands (Figure 
13, bottom right), and considerably lower than in the case of 
croplands (Figure 13, bottom left). 

Differences between countries exist, but they are rather 
small, with increasing discrepancies toward the extremes 
(2p and less or 98p and more). However, this could be the 
result of relatively small number of pixels with extreme 
values and should be interpreted with caution. This is 
particularly the case for grasslands, where the number of 
pixels was large enough only for Bosnia and Herzegovina and 
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FIGURE 11. Yearly relative anomalies of the vegetation related characteristics (such as NDVI, EVI, FPAR, LAI, GPP and NPP) and 
of the meteorological variables (temperature and precipitation) during 2000-2014 for croplands and grasslands of Bosnia and 
Herzegovina, Croatia and Hungary
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FIGURE 12. Yearly relative anomalies of the vegetation related characteristics (such as NDVI, EVI, FPAR, LAI, GPP and NPP) 
and of the meteorological variables (temperature and precipitation) during 2000-2014 for broadleaf and coniferous forests of 
Bosnia and Herzegovina, Croatia and Hungary
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Croatia (see Table 3). We would also like to point out the 
differences among countries in the case of the croplands, 
and in particular to Slovenia. It can be seen that the high 
values for the anomalies in NDVI are occurring in Slovenia 
less frequently than e.g. in Slovakia or in Czech Republic. 
The reason behind this could be climate (relatively large 
amount of precipitation in Slovenia - see Figure 2) but also 
it could be due to the differences in crop type or cultivation 
method. Somewhat similar behaviour can be observed also 
for the coniferous forests in Hungary, where the observed 
magnitude of their positive anomaly is apparently lower 
than for coniferous forests in the other countries. However, 
here the caution is needed, because it could be an artefact 
due to the modest number of available pixels and this 
would require further investigation. In any case, these 
results corroborate the logic of country level analysis, where 

the considered area is large enough to reduce the effects 
of random noise (caused e.g. by species or management 
differences), but small enough to retain the information on 
the exiting differences among the countries. The relatively 
uniform distance between the values of the mean anomalies 
for the shown percentiles (Figure 13) indicates that the 
choice of the percentiles, representing the border between 
the classes of anomalies (see Section 2.4 in the Materials 
and Methods for the list) has been made properly.  

In an effort to identify specific years that can be 
characterized as extremes according to a given RS 
characteristic, we performed a land cover and country 
specific analysis. The results for Bosnia and Herzegovina, 
Croatia and Hungary based on NDVI are given in Figures 
14-16 and Table 5 while the results for other countries and 
other RS characteristics are available in the Supplementary 

FIGURE 13. Categorization of mean annual NDVI anomalies according to the land cover for the selected countries and 
for the whole FORESEE domain (numbers at the top are percentiles (p; left of 0.5p  -  most extreme negative anomaly; 
0.5p - 2p - extremely negative anomaly; 2p - 9p - very negative anomaly; 9p - 25p - negative anomaly; 25p - 75p - normal 
range; 50p - median; 75p - 91p positive anomaly; 91p - 98p very positive anomaly; 98p-99.5p extremely positive anomaly 
normal; right of 99.5p - most extreme positive anomaly); BIH - Bosnia and Herzegovina, CZE - Czech Republic; HRV- Croatia; 
HUN - Hungary; SVK - Slovakia; SVN - Slovenia).
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materials (Figures S7, S9, S11, S13 and Tables S2-S5). 
Distribution of shares of NDVI anomalies by categories 
according to the land cover and years (Figures 14-16) clearly 
shows the dominant effects of meteorological conditions. 
However, the responses of various land cover types differ 
significantly. What immediately strikes the attention is the 
fact that croplands and grasslands have almost unanimous 
agreement on which year was the worst (2003) and which 
one was the best (2014). However, year 2003 cannot be 
classified as extreme for croplands and grasslands in all 
countries, although they are relatively close geographically 
(e.g. compare Hungary and Croatia). When we focus on 
forests, the situation is rather clear regarding the best year 
(2014 was the best for all forest type and in all countries 
except for coniferous forest of Hungary and Slovenia). 
Here the case of Slovenia is somewhat easier to interpret. 
Namely, in January-February 2014 large part of Slovenia 
and part of Croatia was experiencing severe case of freezing 
rain that caused extensive damage to forests of the affected 
region [37, 38]. 

 Regarding the negative extreme in the case of forests, 
the situation is more complex. Unlike for croplands and 
grasslands, year 2003 was not the worst in all cases except 
for broadleaf forests in Hungary and coniferous forests in 
Hungary and Croatia. Interestingly, year 2004 and 2005 are 
indicated as worst or second worst years for forests in different 
countries. This could imply that the negative effects of year 
2003 (which was in fact an extremely warm and dry year all 
over Europe [39] on forest ecosystems were not immediately 
visible, but the consequences of the unfavourable weather 
was “remembered” by the ecosystem and manifested 
itself in the following years. This “dampening” effect of the 
negative anomalies in the case of forests is very important. 
It shows how difficult is to make straightforward conclusions 
based only on the current observation without taking into 
account the events of the past.

Table 6 shows the summary of country-specific 
extreme years for the different land cover types and 
different vegetation indices (based on the approach given 
in Table 1). Note that NPP is not used here due to problems 
with the temporal coverage of the dataset (see Section 
2.3). The table shows that for herbaceous vegetation 
and for coniferous forests in Central Europe year 2003 
is undoubtedly the most important year that affected 
vegetation status adversely. Besides year 2003, year 2000 

is also notable. Meteorological conditions during those 
years need deeper evaluation. In contrast, for broadleaf 
forests year 2005 and 2012 might be notable, but as it was 
mentioned earlier, there is no clear evidence for unanimous 
selection of extremely unfavourable year in terms of overall 
forest development status. Considering above-average 
plant performance year 2014 is clearly noticeable for 
herbaceous vegetation and coniferous forests (to a lesser 
extent). For broadleaf forests the situation is similar to 
the bad year case, namely there is no unambiguous single 
good year. 2009, 2011 and 2014 might be studied in some 
countries to gain deeper understanding of the cause of the 
positive anomalies. The presented results corroborate that 
the different vegetation characteristics provide relatively 
consistent results in terms of anomalous plant behaviour.  

CONCLUDING REMARKS

In this study we do not attempt to discriminate 
the different RS-based indices, which means that the 
indices are not ranked or qualified in any way. NDVI, 
EVI, LAI and FAPAR are all related to plant greenness 
and leaf development status, which is in turn related to 
photosynthetic capacity and plant productivity. GPP and 
NPP are based on a series of model assumptions and they 
provide measures that are directly related to productivity. 
Therefore, we assume that they all serve as proxies of 
plant processes, and as such we can expect from them to 
respond to the climate fluctuations. The selection of the 
relatively large number of indices was done due to their 
different complexity in their algorithm and assumptions 
which were used during their calculations.

For example, NDVI and EVI are indices obtained 
directly from reflectances provided by the polar orbiting 
MODIS instrument, which can already be related to the 
potential plant productivity. On the other hand, FPAR 
and LAI (which are also obtained from remotely sensed 
data) are also related to plant productivity and plant 
development status, but unlike the former two, FPAR and 
LAI are calculated taking into account the biome type 
derived from the land cover information [18]. Thus they 
embedded additional information but possibly additional 
errors as well (either random due to e.g. misclassification 
of the pixel, or bias due to the possible bias in biome 

TABLE 4. Correlation coefficients (r) between the yearly NDVI and meteorological (temperature and precipitation) anomalies 
for the main land cover type in the case of the different countries (note, for Czech Republic and Slovenia the number of the 
selected grassland pixels were less than 5 (Table 2))

Country
Broadleaf Forests Coniferous Forests Croplands Grasslands
temp. prec. temp. prec. temp. prec. temp. prec.

 Bosnia and Herzegovina 0.58* 0.18 0.58* 0.24 -0.11 0.83* -0.02 0.70*
 Croatia 0.63* -0.10 0.53* 0.00 -0.07 0.44 0.20 0.11
 Czech Republic 0.75* -0.06 0.60* 0.40 0.35 0.79* 0.21 0.76*
 Hungary 0.66* -0.00 0.24 0.38 -0.03 0.76* 0.00 0.73*
 Slovakia 0.74* -0.19 0.54* -0.26 0.19 0.60* 0.52* -0.43
 Slovenia 0.69* -0.19 0.47 -0.30 0.03 0.71* 0.35 0.44 

* Statistically significant values (P < 0.05)
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TABLE 5. Overview of the best and worst years and the degrees (percentage of the pixels) of the NDVI anomaly with respect to 
different land cover categories and countries

TABLE 6. Summary of country-specific extreme years for the different land cover types and different vegetation indices (based 
on the approach given in Table 1). Note that NPP is not used here due to problems with the temporal coverage of the dataset 
(see Section 2.3). 

LC
Country Worst year 2nd worst year Best year 2nd best year

(Share of pixels with very 
 negative anomaly or worse)

(Share of pixels with very  
positive anomaly or better)

Broadleaf BIH 2005 (26.7%) 2004 (25.7%) 2014 (61.5%)+ 2007 (28.0%)
forests CZE 2010 (25.4%) 2004 (24.1%) 2014 (68.1%)+ 2011 (26.8%)

HRV 2004 (31.5%) 2005 (19.0%) 2014 (50.3%)+ 2011 (44.4%)
HUN 2003 (28.0%) 2004 (22.7%) 2014 (69.2%)+ 2009 (24.6%)
SVK 2010 (28.6%) 2000 (23.8%) 2014 (65.5%)+ 2011 (15.4%)
SVN 2004 (35.3%) 2013 (19.8%) 2014 (47.1%) 2011 (39.2%)

Coniferous BIH 2000 (43.6%) 2005 (27.3%) 2014 (67.6%)+ 2011 (32.6%)
forests CZE 2006 (38.0%) 2004 (22.7%) 2014 (48.8%) 2011 (26.0%)

HRV 2003 (26.8%) 2000 (24.7%) 2014 (42.8%) 2002 (17.1%)
HUN 2003 (51.7%)$ 2000 (25.9%) 2011 (32.8%) 2006 (19.0%)
SVK 2006 (28.6%) 2000 (22.5%) 2014 (45.4%) 2011 (34.4%)
SVN 2004 (35.4%) 2013 (27.8%) 2002 (38.7%) 2001 (24.8%)

Croplands BIH 2003 (46.7%) 2000 (35.7%) 2014 (52.8%)+ 2001 (36.2%)
CZE 2003 (70.8%)$ 2006 (12.9%) 2014 (40.9%) 2013 (23.3%)
HRV 2003 (50.2%)$ 2000 (37.1%) 2014 (31.7%) 2001 (23.6%)
HUN 2003 (46.5%) 2000 (36.8%) 2014 (37.9%) 2004 (18.8%)
SVK 2003 (47.5%) 2000 (31.8%) 2014 (46.2%) 2001 (17.0%)
SVN 2003 (74.0%)$ 2000 (34.8%) 2014 (38.4%) 2001 (15.4%)

Grasslands BIH 2003 (56.0%)$ 2000 (42.0%) 2014 (79.5%)+ 2010 (25.0%)
CZE # # # #
HRV 2003 (51.3%)$ 2000 (41.5%) 2014 (79.7%)+ 2013 (19.8%)
HUN 2000 (81.3%)$ 2003 (56.3%) 2014 (68.8%)+ 2010 (43.8%)
SVK # # # #
SVN # # # #

BIH - Bosnia and Herzegovina, CZE - Czech Republic; HRV- Croatia; HUN - Hungary; SVK - Slovakia; SVN - Slovenia; # - insufficient number of 
pixels; $ - extremely bad year; + - extremely good year

Land cover NDVI EVI FPAR LAI GPP

Extremely BAD years (very negative and extremely negative anomaly)

Broadleaf none none 2005 (BIH, HRV) none 2012 (SVN, SVK)

Coniferous 2003 (HUN) 2003 (HUN) 2003 (HUN) none 2003 (HRV, HUN)

Cropland 2003 (CZE, HRV, SVN) 2003 (BIH, CZE, HRV, HUN, 
SVN)

2003 (CZE, HRV, HUN, 
SVN)

2003 (BIH, CZE, HRV, 
SVN)

2003 (HRV, HUN, 
SVN)

Grassland 2003 (BIH, HRV, HUN) 2000 (HUN), 2003 (BIH) 2000 (BIH, HUN) 2000 (BIH, HUN) 2003 (BIH, HRV, 
HUN)

Extremely GOOD years (very positive and extremely positive anomaly)

Broadleaf 2014 (BIH, CZE, HRV, 
HUN, SVK) none 2011 (SVN) 2011 (BIH, HRV, SVN) 2009 (CZE) 2014 

(BIH, HRV)

Coniferous 2014 (BIH) 2013 (CZE) 2014 (CZE) none 2014 (BIH, HRV)

Cropland 2014 (BIH) 2014 (BIH) 2014 (BIH) none 2001 (HRV), 2014 
(BIH)

Grassland 2014 (BIH, HRV, HU) 2010 (HUN), 2014 (BIH, HRV, 
HUN)

2010 (HUN), 2014 
(BIH, HRV, HUN) 2014 (BIH, HRV, HUN) 2014 (BIH, HRV, 

HUN)

BIH - Bosnia and Herzegovina, CZE - Czech Republic; HRV- Croatia; HUN - Hungary; SVK - Slovakia; SVN - Slovenia
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FIGURE 14. Distribution of shares of NDVI anomalies by categories according to the land cover and years for Bosnia and 
Herzegovina.
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FIGURE 15. Distribution of shares of NDVI anomalies by categories according to the land cover and years for Croatia.
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FIGURE 16. Distribution of shares of NDVI anomalies by categories according to the land cover and years for Hungary.
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parameters used in FPAR and LAI calculation). Finally, 
MOD17 products, namely GPP and NPP, are likewise not 
independent from FPAR [19] but they also carry additional 
information (and probably additional errors) due to the 
meteorology information used for their calculation. 

Considering the above, it is clear that all of the indices 
or metrics potentially have advantages and setbacks and 
it is difficult to select the best one. Therefore, in our 
work we decided to investigate all and treat them as an 
ensemble, similarly to the ensemble technique used in 
numerical weather prediction.

The selection of land cover specific anomalous 
years highlighted that plant response to unusual climate 
conditions strongly depend on the land cover type. Intra-
species differences also exist but in this study this was 
not addressed. The advantage of the country-mean 
studies is the robustness which was demonstrated earlier 
in other studies [15, 22]. Using country means the spatial 
differences are most likely diminished to some extent, 
and in fact regions with considerably higher anomalous 
behaviour might exist within the countries that might 
require further studies.  

We need to mention that in the present approach 
anomalies were defined for the entire growing season. It 
is clear that the growing season (from start of season to 
cessation) might be split into different time periods that 
needs further investigation. These anomalies associated 
with smaller temporal scale might provide additional 
information on the nature of anomalies and their 
meteorological driver. 

The presented results might provide invaluable 
information for researchers associated with plant 
production (ecologists, agronomists, foresters, etc.). As 
ecosystem services are closely tied to plant productivity 
[8], stakeholders might also find the presented 
information useful. With the availability of additional 
years, the time series should be extended and thus 
the trend in the strength of the anomalies might be 
estimated. 

The present study highlighted the difficulties related 
with the selection of appropriate time periods and climate 
indices to define extreme weather from the point of view 
of ecosystems. The effect-based approach relying on RS 
data resolves this difficulty as the observed anomalies act 
as integrators of the past environmental conditions thus 

they are good indicators of unusual conditions. Explicit 
selection of anomalous years indicated that the unusual 
plant state is not independent of the plant functional 
type. It is also clear that large differences exist between 
herbaceous and woody vegetation, where the latter is 
also associated with legacy effect from the previous year 
[40]. This legacy effect is one major issue which needs 
further research. In any case, legacy effect (which is well 
documented) alone questions the pure meteorological 
approach for the selection of anomalous years, as climate 
anomalies in the last year might exert stronger impact 
on the current plant growth than the present year. We 
propose to further refine the effect-based approach 
separately for the different land cover types to better 
understand the main drivers of plant growth in Central 
Europe and also worldwide. 
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