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Abstract: This paper presents the ‘discrete lattice model’, or, simply, the ‘lattice model’, developed for rock failure 
modeling. The main difficulties in numerical modeling, namely, those related to complex crack initiations and 
multiple crack propagations, their coalescence under the influence of natural disorder, and heterogeneities, are 
overcome using the approach presented in this paper. The lattice model is constructed as an assembly of 
Timoshenko beams, representing the cohesive links between the grains of the material, which are described by 
Voronoi polygons. The kinematics of the Timoshenko beams are enhanced by the embedded strong discontinuities 
in their axial and transversal directions so as to provide failure modes I, II, and III. The model presented is suitable 
for meso-scale rock simulations. The representative numerical simulations, in both 2D and 3D settings, are provided 
in order to illustrate the model’s capabilities. 
 
Keywords: discrete model; lattice model; embedded strong discontinuity  

DISKRETNI PRISTUP ZA MODELIRANJE SLOMA U STIJENI 
 
Sažetak: U ovome radu predstavljen je diskretni rešetkasti model razvijen za simuliranje sloma u stijeni. Poteškoće 
koje se javljaju u numeričkim modelima kontinuuma, kao što su inicijacija pukotine, propagacija više pukotina, 
njihovo srastanje i utjecaj heterogenosti stijene na mehanizam sloma, uspješno su implementirane u prezentirani 
model. Model je baziran na Timoshenkovim gredama koje predstavljaju kohezivne veze između zrna stijene koji su 
modelirani Voronoi ćelijama. Formulacija Timoshenkovih greda je poboljšana ugradnjom jakih diskontinuiteta u 
uzdužnom i poprečnom smjeru grede za simulaciju sloma zbog otvaranja u vlaku ili klizanja u posmiku. 
Predstavljeni model je razvijen za simulacije stijene na mezoskali. Numeričke simulacije 2D i 3D uzoraka prikazane 
su u prezentiranome radu. 
 
Ključne riječi: diskretni model; rešetkasti model; jaki diskontinuitiet 
  



Number 14, Year 2017         Page 1-7 
 
Discrete lattice element approach for rock failure modeling  
   

 

Nikolić, M, Ibrahimbegovic, A, Miščević, P 

https://doi.org/10.13167/2017.14.1  2 

1 INTRODUCTION 

Rock is a natural geological composite material composed of grains held together by cohesive forces. The resultant 
grainy structures in rock can be clearly observed (Figure 1). This configuration often results in rocks having 
heterogeneities, anisotropies, discontinuities, inelasticity, and commonly, weaknesses and defects. Mechanical 
failure can be triggered by initial weaknesses, resulting in crack propagations.  

 

 

Figure 1 The grainy structure of different rocks: a) Breccia, b) conglomerate, c) limestone, d) gneiss, e) 
granite, f) quartz-diorite [1] 

 
Failure of this kind of material is clearly complex as it involves crack initiations, multiple crack propagations, 

coalescence under the influence of natural disorder, and heterogeneities. Providing a numerical solution for 
localized failure mechanisms with respect to softening, which typically results in a mesh-dependent response, 
presents additional difficulty. All these aspects are not easily tackled using a continuum of finite elements 
implemented in finite element method codes [2]. Thus, many different approaches have been developed to deal 
with the discontinuous nature of rocks. Of these approaches, discrete element models (DEM) [3-5] have been 
widely used to simulate rock behavior. The combination of finite and discrete element models has proved to be an 
efficient method for dealing with rock failure and other similar applications [6-7]. A review of different numerical 
methods for tackling various problems in rock mechanics and rock engineering can be found in the literature [8-9]. 
Lattice models, as a class of discrete models, can be used to capture important peculiarities in rock failures [10]. A 
lattice model, constructed from a Delaunay triangulation of the domain where the geometry of the Delaunay edges 
can be used to define the lattice elements, is presented here. Voronoi cells, as convex polygons, can be derived 
as a corresponding dual network to the Delaunay triangulation (Figure 2). These polygons represent the grainy 
structure of the material, along with the corresponding units of the heterogeneous material. The lattice elements, 
however, are represented by the Timoshenko beams, which act as cohesive links for each grain of rock. Lattice 
models, typically constructed like this, offer the benefit of incorporating the grainy and discontinuous structure of 
the material resembling the lattice, considering heterogeneities naturally, and simulating the failure mechanism by 
reducing the strength of the cohesive links (lattice elements) when a certain failure criterion is reached. All these 
aspects are important for capturing the effects on a fine meso-scale, to obtain the response at the macro-scale. 
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Figure 2 Voronoi polygons derived from Delaunay triangulation. A lattice element keeping together two 
neighboring Voronoi cells 

 
It is important to properly compute the geometrical and material lattice element parameters that correspond 

to the material properties of the rock. This means that the geometrical properties of the Timoshenko beams need 
to be computed, as they provide the correct response for the linear regime, together with the material constants (E, 
ν). This is achieved by Voronoi scaling the lattice stiffness terms such that the cross section of each lattice element 
is computed using two neighboring cells [10].  

 

 

Figure 3 A 3D Timoshenko beam with its degrees of freedom  

2 EMBEDDED STRONG DISCONTINUITIES IN THE LATTICE ELEMENT MODEL 

This paper presents simulations of the 2D and 3D versions of the model, while the formulae are provided for the 
more general (3D) case. The typical way to simulate crack propagations in lattice models is by checking a certain 
failure criterion on every lattice element in a mesh; if the criterion is satisfied, the element can soften and its 
deformation can increase with decreasing stress. Thus, as the grains separate, the Voronoi cells provide the 
localized failure mechanism. Each lattice element is represented as a single finite element that contributes to the 
finite element assembly across the whole specimen. However, finite element formulation usually leads to a mesh-
dependent softening response in the localized softening failure regime. One way of stabilizing the localized zone, 
which leads to a mesh-independent response, is by using embedded strong discontinuities [2] inside the lattice 
elements [10]. Embedded strong discontinuities offer the benefit of providing the displacement field of the 
heterogeneities by introducing a displacement jump inside the element, usually represented via the Heaviside 
function. The formulation of a single lattice element can then begin, with the Timoshenko beam strains given as 
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where the degrees of freedom of each Timoshenko beam are as shown in Figure 3. Here, 𝜀, 𝛾𝑦, 𝛾𝑧 are the 

axial strain and two shear strains, respectively. The curvature is denoted by 𝜅𝑥 , 𝜅𝑦, 𝜅𝑧; displacements by 𝑢, 𝑣, 𝑤; 

and rotations by 𝜑, 𝜓, 𝜃. Introducing embedded strong discontinuities, combined with the Heaviside function, 𝐻𝑥𝑐
, 

into the beam displacement field results, with an enhanced displacement field, results in 
 

𝑢(𝑥) = �̅�(𝑥) + 𝛼𝑢𝐻𝑥𝑐

𝑣(𝑥) = �̅�(𝑥) + 𝛼𝑣𝐻𝑥𝑐

𝑤(𝑥) = �̅�(𝑥) + 𝛼𝑤𝐻𝑥𝑐

 

𝜑(𝑥) = �̅�(𝑥)

𝜓(𝑥) = �̅�(𝑥)

𝜃(𝑥) = �̅�(𝑥)

 

 

where �̅�, �̅�, �̅�, �̅�, �̅�, �̅� are the standard beam displacements; 𝛼𝑢, 𝛼𝑣 , 𝛼𝑤 are additional unknowns related 
to the opening of the discontinuity; and 𝑥𝑐 is the position of the discontinuity. The enhanced strain fields can be 
derived from the displacement fields above: 

 

𝜀(𝑥) = 𝜀(̅𝑥) + 𝛼𝑢𝛿𝑥𝑐

𝛾𝑦(𝑥) = 𝛾�̅�(𝑥) + 𝛼𝑣𝛿𝑥𝑐

𝛾𝑧(𝑥) = 𝛾�̅�(𝑥) + 𝛼𝑤𝛿𝑥𝑐

 

𝜅𝑥(𝑥) = 𝜅𝑥̅̅ ̅(𝑥)

𝜅𝑦(𝑥) = 𝜅𝑦̅̅ ̅(𝑥)

𝜅𝑧(𝑥) = 𝜅𝑧̅̅ ̅(𝑥)

 

 
where 𝛿𝑥𝑐

 is a Dirac delta function, equal to one at the position of the discontinuity and zero outside. Rewriting 

the equations above leads to the interpolation functions M(x) and G(x), which are used to interpolate the 
discontinuity in the finite element solution (Figure 4). It can be seen that the embedded strong discontinuity is 
activated in the longitudinal and transversal directions of the beams, leading to the failure openings in mode I 
(tensile opening) and mode II (shear sliding), respectively. Additionally, mode III (out-of-plane tearing) is included 
in the 3D version of the model. The constitutive model, related to the discontinuity, should also be defined. Here, 
the exponential softening law is used. The computation of discontinuity-related parameters 𝛼𝑢, 𝛼𝑣 , 𝛼𝑤 is 
conducted locally with an element-wise approach using a return mapping algorithm. The enhanced weak form can 
be established from the enhanced strain fields, eventually leading to the formulation of the embedded discontinuity, 
along with a condensed stiffness matrix and a residual vector that incorporates traction at the discontinuity.  
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Figure 4 Interpolation functions for the discontinuity 
 

 

Figure 5 Macroscopic responses for the 2D uniaxial tension test with three different specimens 
 
 The full explanation of the 2D and 3D models presented can be found in the literature [11-12]. The presented 
lattice element model can also be used to solve problems brought about by the failure of fluid-saturated, fractured, 
poro-plastic materials, using the Biot porous media approach [13], or even to examine the influence of rock 
specimen shape deviations on uniaxial compressive strength [14].  
 

 

Figure 6 Specimen contours of the uniaxial tension test with three different specimens 
 



Number 14, Year 2017         Page 1-7 
 
Discrete lattice element approach for rock failure modeling  
   

 

Nikolić, M, Ibrahimbegovic, A, Miščević, P 

https://doi.org/10.13167/2017.14.1  6 

3 NUMERICAL SIMULATIONS 

The presented model is implemented in the research version of the computer program “FEAP,” which was 
developed at UC Berkeley [15]. This section provides the results of two different numerical simulations, in both 2D 
and 3D. For the 2D setting, the uniaxial tension test on the 2D Timoshenko beam lattice is chosen to represent the 
rock specimen [11]. The capabilities of the 3D model are shown using a uniaxial (an unconfined) compression test 
[12].  

The 2D rock specimens (10 x 10 cm) are composed of two phases, where phase I represents the intact rock 
and phase II represents the weaker parts of the material. The three different heterogeneous specimens are 
constructed using a different volumetric ratio of phases, while the mechanical characteristics of the two phases are 
as follows: E = 70GPa, ν = 0.2 (phase I); and E = 10GPa, ν = 0.2, 𝜎𝑢 = 2.2𝑀𝑃𝑎, 𝜏𝑢 = 1.15𝑀𝑃𝑎, 
𝐺𝑓,𝑢 = 10𝑁/𝑚, 𝐺𝑓,𝑣 = 1.5𝑁/𝑚 (phase II). Here, 𝜎𝑢 and 𝜏𝑢 are the failure threshold values, and 𝐺𝑓,𝑢 and 𝐺𝑓,𝑣 

are the fracture energies for tension and shear failure, respectively. Each specimen is tested by imposing the 
displacement on the upper side of the specimen and monitoring the sum of the reactions, which provide the 
macroscopic responses (Figure 5). The macroscopic responses show that, with the increase of phase II, the 
specimen becomes more ductile. The failure patterns in the uniaxial tension test for these specimens are presented 
in Figure 6, where the broken lattice elements are colored in red, identifying the dominant crack that propagated 
throughout the specimen. Namely, the stresses in each lattice element are checked against the ultimate values that 
might lead to the activation of the embedded discontinuity and resultant softening behavior. It is clear from Figure 
6 that the failure mechanism is influenced by heterogeneities, leading to a different crack propagation in each 
specimen.  

 

Figure 7 Uniaxial (unconfined) compression test on an intact rock specimen 
 
 The uniaxial (unconfined) compression test on a 3D cylindrical limestone specimen with a diameter and height 
of 5.5 and 13 cm, respectively, is presented next. The specimen is constructed as described in Section 1, using the 
computed geometric parameters for the lattice elements from the Voronoi polygon. The material characteristics of 
the lattice elements are given as E = 50.3GPa, ν = 0.25 ,𝜎𝑢 = 12.8𝑀𝑃𝑎, 𝜏𝑢 = 25.3𝑀𝑃𝑎, 𝐺𝑓,𝑢 = 20𝑁/

𝑚, and 𝐺𝑓,𝑣,𝑤 = 600𝑁/𝑚. Heterogeneities are also incorporated into the model, along with the variability of the 

material failure parameters that obey a Gaussian curve. The upper values are taken as mean values, while the 
standard deviation is 4 %. Additionally, the Mohr–Coulomb law is implemented in the model using a friction 
coefficient of 0.7. The simulation is conducted using an imposed displacement on the upper side of the specimen, 

causing a state of compression, and the reaction is monitored. The macroscopic response, shown in Figure 7, 
reveals that the failure of the specimen is brittle and that the numerical result closely matches the experimentally 
obtained limestone curve for a specimen with equal geometric properties [12]. The numerical specimens are also 
provided as three different versions with respect to mesh size (type A-coarse: 1407 elements, type A-fine: 4398 
elements, and type A-finest: 6508 elements). The contour of the lower parts of the broken specimen, where the 
damage accumulated, is presented in Figure 7. Moreover, failures in modes I, II, and III are also presented. The 
failure pattern is irregular and depends on introduced heterogeneities.  
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4 CONCLUSIONS 

A discrete lattice element model for 2D and 3D rock failure is presented in this paper. The main strength of a lattice 
model is in the successful representation of the complex failure mechanisms that occur within rock. The insertion 
of embedded strong discontinuities results in a mesh-independent response of localized failures. The simulation of 
a uniaxial tension test showed that a dominant crack formed and led to the complete failure of the specimen; 
however, many more cracks were present in the unconfined compression test, making the failure pattern more 
complex; namely, all failure modes were present. It is shown that heterogeneities influence the macroscopic 
responses and failure mechanisms in all cases and that the model is able to predict this nonlinear behavior with 
respect to these heterogeneities.  
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