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SUMMARY 

The present study determines the common cycle time for a multi-product finite production rate 

(FPR) model with rework and an improved delivery policy [1] by an alternative approach. 

Conventional method to the multi-product FPR problem employs the differential calculus to first 

prove convexity of the system cost function, then to derive the optimal common production cycle 

time that minimizes the long-run average system cost per unit time; whereas the proposed 

approach obtains the optimal cycle time without the need to reference the differential calculus. 

Such a simplified method may help those practitioners who have insufficient knowledge of 

calculus to effectively manage the real-life multi-product FPR problem. 

KEY WORDS: finite production rate model, algebraic approach, optimization, multi-product 

system, common production cycle time, rework, improved delivery policy. 

1. INTRODUCTION 

In real-life manufacturing environments, production managers often plan to fabricate multiple 

products in sequence on a single machine under the common production cycle time policy in 

order to maximize machine utilization [2]. Dixon and Silver [3] determined lot-sizes for a 

group of products which are produced at a single work centre. They assumed that the 

requirements for each product are known period by period, until the end of some common 

time horizon. For each product, there is a fixed production setup cost, separate linear 

production and pertaining holding costs. All costs and production rates can vary from product 

to product. Their objective is to determine lot-sizes so that (1) costs are minimized; (2) no 

backlogging occurs; and (3) capacity is not exceeded. They proposed a simple heuristic to 

derive a feasible solution and, through examples, demonstrated that their heuristic can usually 
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generate a very good solution with a relatively small amount of computational effort. Tamura 

[4] proposed an approximation procedure used for solving a production planning problem for 

a multistage production system which produces many different components and assembles 

them into finished products under capacity limitations. A generalized production planning 

model was built using mixed-integer programming. The solution procedure was approximated 

by a linear programming method. Different algorithms were developed in detail for a two-

stage production problem. Numerical example was provided so as to examine the validity and 

efficiency of proposed algorithms. Denizel-Sivri and Selcuk Erenguc [5] considered a linear 

programming model for production planning in certain manufacturing environments where 

demand is not periodic. Their model was modelled after a T-period planning horizon and could 

be used for determining lot sizes and planned due dates for N products in a production order 

set. A polynomial time algorithm was developed for solving the linear program. The algorithm 

found an optimal solution to the linear program after solving most of T knapsack problems and 

had a worst case computational bound of O(NT). They also discussed the links between the 

model and the classical single machine static scheduling problem. Federgruen and Katalan [6] 

studied periodic base-stock policies for stochastic economic lot scheduling problems. Under 

periodic base-stock policies, items are produced according to a given periodic item-sequence. 

Their paper derived effective heuristics for the design of a periodic item-sequence minimizing 

system-wide costs. This sequence was constructed based on desirable production frequencies 

for the items, obtained as the solution of lower bound mathematical programs. An extensive 

numerical study gauges the quality of the proposed heuristics. Sambasivan and Schmidt [7] 

presented a heuristic procedure for solving multi-plateau, multi-item, capacitated lot sizing 

problems with inter-plant transfers. The solution procedure used the solution for the un-

capacitated problem as a starting point. A smoothing routine has been employed to remove 

capacity violations. The smoothing routine consists of two modules. Extensive 

experimentation has been conducted comparing the heuristic solution procedure and LLNDO. 

The heuristic has been implemented on IBM 3090 mainframe using FORTRAN. Chiu et al. [8] 

derived the optimal common production cycle time for a multi-item finite production rate 

model with rework and multi-shipment policy. They focused on a multi-item production-

delivery integrated system under a common cycle time policy, a rework process of all 

nonconforming items, and deliveries of n fixed quantity instalments of the finished lots upon 

completion of reworks, respectively. As a result, a closed-form optimal cycle time that 

minimizes the long-run average system cost is obtained. Studies of various different aspects of 

multi-item production planning and optimization issues can also be found in Refs. [9-11]. 

Multi-delivery policy for transporting finished goods is another commonly adopted inventory 

issuing policy in real life production-shipment systems. Schwarz et al. [12] examined the fill-

rate of a one-warehouse N-identical retailer distribution system. An approximation model was 

adopted from a prior study to maximize system fill-rate subject to a constraint on system 

safety stock. As a result, properties of fill-rate policy were suggested to provide management 

when looking into system optimization. Sarker and Khan [13] studied a manufacturing system 

that procures raw materials from suppliers in a lot and processes them into finished products 

which are then delivered to outside buyers at fixed points in time. They formulated a general 

cost model considering both raw materials and finished products and developed a simple 

procedure accordingly to determine an optimal ordering policy for procurement of raw 

materials as well as the manufacturing batch size. Abdul-Jalbar et al. [14] examined a multi-

echelon inventory system in which one vendor supplies an item to multiple buyers. It was 

assumed that the vendor produces the item at a finite rate and customer demand occurs for 
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each buyer at a constant rate. Their goal is to determine the order quantities for the buyers 

and the production and shipment schedule for the vendor in order to minimize the average 

total cost per unit time. The problem was formulated in terms of integer-ratio policies, 

followed by the development of a heuristic procedure. Both solution procedures were 

illustrated with a numerical example. Performance of the heuristic for computing integer-ratio 

policies was demonstrated. With the purpose of cutting down producer’s inventory holding 

cost in [8], Chiu et al. [1] incorporated an improved n+1 shipment policy into model of [8]. 

Under the n+1 policy, one extra delivery of finished items is made during producer’s uptime to 

satisfy customer’s product demands during the periods of producer’s uptime and rework 

times. Then, n fixed quantity instalments of finished items are delivered to buyers at the end of 

rework when the rest of the production lot is quality assured. They derived the optimal 

common production cycle time that minimizes the long-run average system cost per unit time, 

and investigated effects of rework and the improved delivery policy on the optimal cycle time 

and system costs. Additional studies that addressed various aspects of periodic or multiple 

deliveries issues in vendor-buyer integrated systems can also be found in Refs. [15-20]. 

In a recent study, Grubbström and Erdem [21] presented an algebraic approach to the 

economic order quantity model with backlogging, and derived the optimal lot size without 

reference to derivatives, i.e., by neither applying the first- nor second-order differentiations. A 

few studies used similar method to solve various different aspects of production-inventory 

and/or vendor-buyer integrated problems [22-25]. This paper extends such an algebraic 

approach to re-examine the problem in Chiu et al. [1], and shows that the optimal common 

production cycle time in their model can be obtained with derivatives. 

2. MODELLING AND ANALYSIS 

Reconsidering the multi-item finite production rate model with rework and an improved 

delivery policy [1] as follows: a production plan for L products has been made on a single 

machine in turn under the common production cycle policy. In the production process, for each 

product i (where i = 1, 2, … , L), an xi portion of nonconforming items is randomly produced at a 

rate d1i. All items produced are screened with an inspection cost that is included in unit 

production cost Ci. It is assumed that all nonconforming items can be repairable at a rate of P2i 

when regular production ends in each cycle, with unit reworking cost CRi. In order to prevent 

shortages, it is assumed that constant production rate for product i, P1i must satisfies (P1i – d1i – 

λi) > 0, where λi is the annual demand rate for product i, and d1i, can be expressed as d1i = xiP1i. 

With the intention of reducing inventory holding cost, an improved n+1 multi-shipment policy 

is considered. Under such a policy, an initial finished goods delivery is made to meet the 

customers’ product demands during producer’s uptime and reworking time. Once the rework 

process ends, n fixed quantity instalments of the finished products are distributed to 

customers at a fixed time interval tn (Figure 1). 
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Fig. 1  On-hand inventory of perfect quality items for product i in the proposed FPR model [1] 

Additional cost related variables used in the proposed cost analysis include: unit holding cost 

hi, holding cost h1i per reworked item, the production setup cost Ki, the fixed delivery cost K1i 

for product i per delivery, and unit shipping cost CTi for each product i. Other notation used in 

the modelling and analysis of this paper is listed as follows: 

Qi = production lot size per cycle for product i, 

n = number of fixed quantity instalments of the finished batch to be delivered to buyers 

in each cycle, it is assumed to be a constant for all products, 

T = common production cycle length - the decision variable, 

H1i = level of on-hand inventory in units for meeting demand of product i during 

producer’s uptime t1i and reworking time t2i, 

H2i = maximum level of on-hand inventory for product i when the regular production ends, 

Hi = maximum level of on-hand inventory in units for product i when the rework process 

ends, 

t1i = production uptime for product i, 

t2i = the reworking time for product i, 

t3i = the delivery time for product i, 

ti = time required for producing items to meet demand of product i during producer’s 

uptime t1i and reworking time t2i, 

tni = fixed interval of time between each instalment of finished product i being delivered 

during t3i, 

I(t) = on-hand inventory of perfect quality items at time t, 

TC(Qi) = total production-inventory-delivery costs per cycle for product i, 

E[TCU(Qi)] = expected total production-inventory-delivery costs per unit time for L products in 

the proposed system, 

E[TCU(T)] = expected total production-inventory-delivery costs per unit time in the proposed 

system using common production cycle time T as decision variable. 

For multiple product i, where i = 1, 2, … , L, the following formulas can be obtained directly 

from Figure 1: 
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Variable holding costs for finished items of product i during t3i are [17]: 
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Fixed and variable transportation costs for product i in a production cycle are: 

 ( ) 1i Ti in 1 K C Q+ +  (13) 

Total TC(Qi) for L products (as shown in Eq. (14)) consists of production setup cost, variable 

manufacturing and reworking costs, total transportation costs, holding cost in the periods of t1i 

and t2i, and holding cost for finished goods in t3i.  
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Since we assume that the defective rate x is random variable with a known probability density 

function, in order to cope with the randomness, the expected value of x is employed. 

Substituting all related system variables in Eq. (14) and with further derivations, E[TCU(Qi )] is 

obtained [1] as: 
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Suppose we let Eji (where j = 1, 2, and 3) [1] denote the following: 
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3. OPTIMAL CYCLE TIME BY ALGEBRAIC APPROACH 

Instead of using conventional differential calculus method, this study proposes an alternative 

algebraic approach. From Eq. (16) it can be seen that in the right-hand side (RHS) of Eq. (16) 

the decision variable T is in different forms as T0, T-1, and T1. Let z1, z2, and z3 denote the 

following: 
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Eq. (16) can be rearranged as: 
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One can further rearrange Eq. (20) as: 
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Substituting Eqs. (18) and (19) in Eq. (25) one obtains the optimal common production cycle 

time T* as: 
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It is noted that Eq. (26) is identical to that obtained by using conventional differential calculus 

method in Ref. [1]. Finally, by applying the optimal T* (i.e., substituting Eq. (24) in Eq. (23)) the 

following simplified formula of E[TCU(T)] can be obtained: 

 ( ) 1 2 3E TCU T z 2 z z  = +   (27) 

3.1 VERIFICATION WITH NUMERICAL EXAMPLE 

In this section, in order to verify the aforementioned result we use the same numerical 

example as in Chiu et al. [1]. Consider that a production plan is to manufacture five products in 

turns on a single machine under the common production cycle policy. For each production i, 

where i = 1, 2, …, 5, the production rates P1i are 58000, 59000, 60000, 61000, and 62000, and the 

annual demand λi for five different products is 3000, 3200, 3400, 3600, and 3800, respectively. 

Defective rates xi in production uptime for each product i follow a Uniform distribution over 

the intervals of [0, 0.05], [0, 0.10], [0, 0.15], [0, 0.20] and [0, 0.25], respectively. All defective 

items are assumed to be repairable at the reworking rates P2i of 1800, 2000, 2200, 2400, and 

2600, respectively. The additional unit cost for rework is $50, $55, $60, $65, and $70. Other 

parameters in the system include: 

Ki = the production set up costs are $3800, $3900, $4000, $4100, and $4200, respectively. 

K1i = fixed costs per delivery are $1800, $1900, $2000, $2100, and $2200, respectively. 

CTi = unit transportation costs are $0.1, $0.2, $0.3, $0.4, and $0.5, respectively. 

n = number of shipments per cycle, in this study it is assumed to be 3 (i.e., n+1 = 4). 

Ci = unit production costs are $80, $90, $100, $110, and $120, respectively. 

hi = unit holding costs are $10, $15, $20, $25, and $30, respectively. 

h1i = unit holding costs per reworked are $30, $35, $40, $45, and $50, respectively. 

Applying Eq. (26), one obtains optimal common production cycle time T*=0.7238 (years). 

Substituting Eqs. (17) to (18) in Eq. (27) one obtains the expected total production-inventory- 
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delivery costs per unit time E[TCU(T*=0.7238)] = $1,975,584. Both the aforementioned results 

are identical to that obtained in Chiu et al. [1]. 

4. CONCLUDING REMARKS 

A simplified algebraic approach is proposed in this study to re-examine the multi-product FPR 

problem with rework and an improved delivery policy [1]. As a result, it is demonstrated that 

the optimal common production cycle time can be derived without using the derivatives. Such 

an alternative approach may help those practitioners who have insufficient knowledge of 

calculus to manage more effectively the real-life multi-product FPR problems. 
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