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SUMMARY

This paper investigates the effect of variable shipping frequency on production-distribution policy in a vendor-
buyer integrated system. In a recent article Chiu et al. [1] derived the optimal replenishment lot size for an economic
production quantity problem with multi-delivery and quality assurance, based on an assumption that the number of
shipment is a given constant. However, in a vendor-buyer integrated system in supply chain environment, joint
determination of replenishment lot size and number of shipments may help such a system to gain significant
competitive advantage in terms of becoming a low-cost producer as well as having tight linkage to customer. For
this reason, the present study extends the work of Chiu et al. [1] by considering shipping frequency as one of the
decision variables and incorporating customer’s stock holding cost into system cost analysis. Hessian matrix equations
are employed to certify the convexity of cost function that contains two decision variables, and the effect of variable
shipping frequency on production-distribution policy is investigated. A numerical example is provided to demonstrate

practical usage of the research result.

Key words: variable shipping policy, production-distribution system, supply chains, vendor-buyer system, lot size,

rework.

1. INTRODUCTION

The finite production rate (FPR) model [2]
employs a mathematical technique to describe an
important trade-off between fixed production setup
cost and inventory holding cost, and to derive the
optimal batch size that minimizes the long-run average
cost per unit time. The FPR model is also known as
the economic production quantity (EPQ) model or the
economic manufacturing quantity (EMQ) model [3-
4]. It is often used in the manufacturing sector when
products are produced in-house (with non-
instantaneous inventory replenishment rate) instead of
being acquired from outside suppliers (with unloading
treated as instantaneous replenishment rate). The
classical FPR model assumes that all items produced
are of perfect quality. However, in real world
production systems, due to process deterioration or
other factors, generation of imperfect quality items

during a production run is inevitable. Studies [5-13]
have been carried out to enhance the classic FPR
model by addressing the issue of imperfect quality
items produced.

The nonconforming items, sometimes, can be
reworked and repaired; hence total production-
inventory costs can be reduced [14-24]. Gopalan and
Kannan [14] considered manufacturing, inspections,
and rework activities as a two-stage transfer-line
production system. They analyzed some of the
transient state characteristics of such a two-stage
production system subject to an initial buffer of infinite
capacity, inspection at both the inter- and end-stages
and rework. A stochastic model was developed to
investigate the system. Explicit analytical expressions
for some of the system characteristics have been
obtained using the state-space method and regeneration
point technique. Grosfeld-Nir and Gerchak [17]
examined multistage production system where
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defective units can be reworked repeatedly at every
stage. The yield of each stage is uncertain, so several
production runs may need to be attempted until the
quantity of finished products is sufficient. The trade-
off at each stage is between using small lots, possibly
necessitating repeated rework set-ups and large lots,
which may result in costly overproduction. They
showed that a multistage system where only one of
the stages requires a set-up (a “single-bottleneck
system™) can be reduced to a single-stage system.
They also proved that it is best to make the “bottle-
neck” the first stage of the system and they also
developed recursive algorithms for solving two- and
three-stage systems, where all stages require set-ups,
optimally.

Another unrealistic assumption of the classic FPR
model is “continuous” inventory issuing policy for
satisfying product demand. In real life vendor-buyer
integrated production-inventory system, at customer’s
request, multiple or periodic deliveries of finished
products are commonly used [25-37]. Goyal [25] first
studied the integrated inventory model for a single
supplier-single customer problem. He proposed a
method that is typically applicable to those inventory
problems where a product is procured by a single
customer from a single supplier. He gave example to
illustrate his proposed method. Hill [26] studied a model
in which a manufacturing firm purchases a raw material,
manufactures a product (at a finite rate) and ships a
fixed quantity of the product to a single customer at
fixed and regular intervals of time, as specified by the
customers. The objective is to determine a purchasing
and production schedule which minimizes total cost of
purchasing, manufacturing and stockholding.
Diponegoro and Sarker [30] determined an ordering
policy for raw materials as well as an economic batch
size for finished products that are delivered to customers
frequently at a fixed interval of time for a finite planning
horizon. The problem was then extended to compensate
for the lost sales of finished products. A closed-form
solution to the problem was obtained for the minimal
total cost. A lower bound on the optimal solution was
also developed for problem with lost sale. It was shown
that the solution and the lower bound were consistently
tight. Chiu et al. [1] derived the optimal replenishment
lot size for an economic production quantity problem
with multi-delivery and quality assurance, based on an
assumption that the number of shipment is a given
constant.

However, in a vendor-buyer integrated system in
supply chain environment, joint determination of
replenishment lot size and number of shipments may
help such a system to gain significant competitive
advantage in terms of becoming a low-cost producer
as well as having tight linkage to customer. For this
reason, the present study extends the work of Chiu et
al. [1] by considering shipping frequency as one of
the decision variables and incorporating customer’s
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stock holding cost into system cost analysis, and
investigates effect of variable shipping frequency on
production-distribution policy in supply chain
environment.

2. PROBLEM DESCRIPTION AND
MATHEMATICAL MODELING

Consider a production-distribution system where the
manufacturing process may randomly produce a portion
x of defective items at a production rate d. All items
produced are screened, and inspection cost per item is
included in the unit production cost C. Among these
defective items, a 6 portion is assumed to be scrap and
the other portion can be reworked and repaired at a rate
P4, in each cycle when regular production ends. In order
to avoid shortage from occurring, the constant
production rate P has to be larger than the sum of
demand rate A and production rate of defective items d.
That is: (P-d-A) > 0 or (1-x-A/P) > 0; where d = Px. It
is assumed that the finished items can only be delivered
to customers if the whole lot is quality assured at the
end of rework. Fixed quantity n installments of the
finished batch are delivered to the customer at a fixed
interval of time during production downtime tz (see
Figure 1).

Time

Fig. 1 On-hand inventory of perfect quality items in an
integrated finite production rate model with multi-shipment
policy, scrap and rework

The cost parameters considered in proposed model
include: fixed delivery cost K; per shipment, unit
delivery cost Cy per item shipped, setup cost K, unit
holding cost h, unit production cost C, disposal cost
per scrap item Cg, unit rework cost Cg, holding cost hy
for each reworked item, holding cost h, for each item
kept by customer. Additional notation used in this paper
is listed in Appendix A. From Figure 1, the following
parameters and derivations can be obtained directly:

th=— 1)
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H =H; +Pt, =Q(1-6x) (3) K, +Cq (ﬂj 9)

T=t1+t2+t3 (4) ) )
Total distribution costs for n shipments in a cycle

The maximum level of defective items dty, the time are:

needed for rework t, and the time needed for delivery

aare: n| K CT[H) nKy +CrH =nK; +CrQ(1-6x)
+ —||= + = -

dt; = Pxt; = xQ. (%) ! n ! !

(10)
xQ(1-9) o .
t, =5 (6) Total production-inventory-delivery cost per cycle
1 TC(Q,n) consists of variable production cost, setup
cost, variable rework cost, disposal cost, fixed and
(1-6x) 1 x(1-0) ) . . : i

ty=nt, =T —(t, +t,)=Q = (7) variable delivery cost, holding cost during uptime t;
A P R and rework time t,, holding cost for items reworked,
A 6 portion among nonconforming items is and holding cost for finished goods kept by both
assumed to be scrap and can be obtain as: manufacturer and customer during t3, when n fixed-
quantity installments of the finished batch are delivered
gdt; = OPxt; = 6xQ (8) to customer at a fixed interval of time. Therefore,
The other repairable portion (1-6) is reworked right TC(Q.n) is (see Appendix B for the computation of
after the production uptime t; ends. customer’s holding cost and see Appendix in Ref. [1]
The delivery cost per shipment is: for the computation of manufacturer’s holding cost; i.e.

the last two terms of Eq. (11)):

TC(Q.n)=CQ+K +Cr [ X(1-0)Q]+Cs [x0Q]+nK; +Cr [Q(1-0X) | +hy - P12't2 (tp)+

+h[H1 erdtl (t)+ H, +H (tz)}r h(nz—_nl) Ht, +h?2[%t3 +T(H —itg)} (11)

2

It is noted [1] that Eq. (11) now contains two decision variables and incorporates customer’s stock holding cost,
and the objective here is to jointly derive the optimal production lot size Q* and the optimal number of delivery n*.

The proportion x of defective items is assumed to be a random variable with a known probability density
function. In order to take the randomness of defective rate into account, the expected values of x can be used in the
inventory cost analysis. Substituting all related parameters from Egs. (1) to (10) in TC(Q,n), the expected production-
inventory-delivery cost per unit time E[TCU(Q,n)] can be obtained:

_E[Tc(@n)]  ca (K+nK{)2 CrE[x](1-0)4 CgE[x]oA

E[T] _1—9E[x]+Q(1—9E[x])+ (1-6E[x]) +(1—9E[x])+

+2P<1h—Q;E[x])*2p1(<gf_Ee[§[x]){“[<2‘E[X]‘QE[XW—@)}hlE[x]<1—e>2}+

e R S Y 02

E[TCU (Q.n)]

3. JOINTLY DETERMINING PRODUCTION-DISTRIBUTION POLICY

For the proof of convexity of E[TCU(Q,n)], one can use Hessian matrix equations [38] and obtain the following
(see Appendix C for detailed computation):

o°E[TCU(Q.n)] &*E[TCU(Q.n)]

Qo Q2 oQén .[Q}:Lﬂ) .
OE[TCU(Qn)] &%E[Tcu(Qn)]| LN Q(1-0E[x])
oQén on?
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Equation (13) is resulting positive, because K, A, Q, and (1-6E[x]) are all positive. Hence, the expected integrated
costs E[TCU(Q,n)] is a strictly convex function for all Q and n different from zero. It follows that for the optimal
production lot size Q* and the optimal number of delivery n*, one can differentiate E[TCU(Q,n)] with respect to Q and
with respect to n, and solve the linear system of Egs. (14) and (15), by setting these partial derivatives equal to zero:

GE[TCU(Qn)]  A(K+nKy) . hA +(1_1J(hz—h)i{i+E[x](l—a)}r
oQ  Q?(1-6E[x]) 2P(1-6E[X]) n) 2 |P P
AE[X](1-6)

{h[z E[x]- 0E[x]]+ ME[X](1-0)} + (l_ng[X]){th(h?r:h)} (14)

2P, (1-0E[x])

GE[TCU(QN)] KA _(h2—h){Q(l—HE[x])_%_QE[X](l—H)/I] )

an CQ(1-¢E[x])  n? 2 2P 2R
By setting Eq. (14) equal to zero, one has:

(K+nKp)d y) {{ E[ ][2 € [x] - 6E[x]](1- } hl(E[x])z(la)z}Jr

Q?(1-06E[x]) 2(1-6E[X]) g
+(n2_—nlj{h(l_aE[X])+(h2 _h)(#m}%@_eqx}) (16)

After rearrangement, one obtains the following optimal production lot size Q*:

o- ] 2(K+nK,)2 (17)
r:j-r}“E[XLfl_a)[h(Z—E[x]—HE[x])+hlE[x](1—9)} {h+(h - hﬂ(i 0E[x])’
( - j(h h)(é IE[](;_H)/lJ(l—HE[X])
By setting Eq. (15) equal to zero, one has:
Q? 1 -1) (1~ 0EL) - (1- o) £ DI
2 P
"= 2K A (18)
Substituting Eq. (17) in Eq. (18), one obtains:
(e ) (1oL - (1- o) £ IO
n? = ! (19)

hi ha

o F[ZE[X] (E[x])2—H(E[x])z}(l—9)+h(l—aE[x])z+
+(h2—h)(ﬁ+E[X](él‘mj(l_aE[x])+hl(E[X])zl(l‘a)z

R

Ky

After rearrangement one obtains the optimal number of delivery n* as:

K(hz—h){(l 6E[x])- (ﬁ E[X](P)H
Kl{( MEL] {9+(1_E[X])(l_a)}h(l—aE[x])+hl(E[X])Z/I(l_g)2 +h2(ﬁ+Wj}

1-0E[x])| P P P, (1-6E[x])

(20)

14 ENGINEERING MODELLING 24 (2011) 1-4, 11-20



Y.-Sh.P. Chiu, Ch.-Y. Chang, Ch.-K. Ting, S.W. Chiu: Effect of variable shipping frequency on production-distribution policy

3.1 The special case with x=0

Analysis of the similar model without considering random defective rate: If all items produced are of perfect
quality, then the proposed model becomes the same as classic finite production rate model with multi-delivery
policy. When x=0, the total cost per cycle is:

H n-1 h, [ H
TC,(Q.n)=CQ+K+C;Q+nK; + h?(tl)+ h T Ht, = th +T(H-aty) (21)
The expected production-inventory-delivery cost per unit time for this special model can be derived as follows:
K+nK;)4 -
E[TCUl(Q,n)] = C;HFMJFCTQ +hQ_i+[n_1j[h_Q_hQ_/1j+(1jhz_Q+(l_ljhzﬂ (22)
Q 2P n 2 2P n/ 2 n/ 2P

Convexity of E[TCU;(Q,n)] can also be proved and the optimal solutions to this special model can be obtained
as follows:

o _ [ 2(K +nKy; )2 23)
hA n-1 A 1
—+| ——||h+(h, =h)] = [|+]| = |k
({2 o eon(E )
o K(h,—h)[1-(2/P)] 24)
Ki[h+hy(2/P)]

4. NUMERICAL EXAMPLE WITH %Ilultllllgcuxl—cuslumrr .lel!l} cost: rework & serap
FU RTHER DlSCUSSlON E[TCUQ. 1) gI;nljiini‘r:=>l-I'm:m.nl'::rlnrcrH”l Tatal delivery cost
Suppose that a product has a flat demand rate of :75:‘$ P

710,35 o

3,400 units per year. This item can be produced at a
rate of 60,000 units per year. During the manufacturing 606,500 el
process, a random nonconforming rate x is assumed, s
which follows a uniform distribution over the interval
[0, 0.3]. Among the defective items, a portion 6=0.1 is
considered to be scrap and the other portion can be
reworked and repaired, at a rate P;=2,100 units per
year. Additional values of parameters include:

h = $20 per item per year,

hy = $40 per item reworked per unit time (year),

E[TCU(Q*,n*)|=5490.585|

$578,500F
s534,500F
5490.500f - %
$446,500

$402,500

$358,500
271 1287 2303 3319 4335 5351 6367 7383 8399 9415 10430

hy = $8_0 per item kept at the customer’s end per Fig. 2 Variation of lot size effects on the cost function
unit time, E[TCU(Q,n*=2)] and on the various components of
K = $20,000 per production run, E[TCU(Q,n*=2)]
C = $100 per item,
Ct = $0.1 per item delivered, T oo o os ———
Ky = $4,350 per shipment, a fixed cost, _ o e W
Cg = $60 repaired cost for each item reworked, EITCUQD] | B notding cost - enstomer
Cs = $20 disposal cost for each scrap item. T
From Egs. (20), (17) and (12), one obtains: the $170,000
optimal number of delivery n*=2, the optimal Sidiie
production lot size Q*=1,707, and the long-run
average cost E[TCU(Q*,n*)]= $490,585. The effects e
of variation of production lot size on the expected costs $80,000
E[TCU(Q,n*=2)] and on the components of $50,000
E[TCU(Q,n*=2)] are illustrated in Figure 2.
The effect of variation of shipping frequency n on 320000 L 2 3 4 s 6 78 9 10 11 1213
the E[TCU(Q*,n*)] and on various components of -
E[TCU(Q*,n*)] are analyzed and depicted in Figure Fig. 3 Variation of shipping frequency n on the
3. It may be seen that as shipping frequency n E[TCU(Q*,n*)] and on the various components of
E[TCU(Q*,n*)]

increases, total delivery cost goes up significantly.
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Similarly, for the special case (i.e. situation when
all items produced are of perfect quality), the optimal
number of delivery n*=3 (is rounded off from 3,257),
the optimal lot size Q*=2,276, and the long-run
average cost E[TCU1(Q*,n*)]=$439,101 can also be
obtained by using Egs. (24), (23) and (22).

5. CONCLUSIONS

The present paper extends the work of Chiu et al.
[1] by considering shipping frequency as one of the
decision variables and incorporating customer’s stock
holding cost into system cost analysis. Hessian matrix
equations are employed to certify the convexity of cost
function that contains two decision variables, and the
effect of variable shipping frequency on production-
distribution policy is investigated. As a result, the
closed-form solutions in terms of the optimal
replenishment lot size and the optimal number of
shipments are derived. It may be noted that without an
in-depth investigation and robust analysis of such a
production-distribution system, the optimal inventory
replenishment and delivery policy cannot be obtained.
Neither can the insight regarding the effects of variable
shipping frequency and other system parameters be
clearly gained (Figures 2 and 3). For future research,
one can study effect of backlogging on the operating
policy of the system.
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APPENDIX A

Notation:

H; — maximum level of on-hand inventory in units
when regular production process ends,

H — the maximum level of on-hand inventory in
units when rework process finishes,

t; —the production uptime for the proposed finite
production rate model,

t, —time required for reworking of defective items,

t3 —time required for delivering all quality assured
finished products,

T - cycle length,

Q —production lot size, to be determined for each
cycle,

D — number of finished items (fixed quantity) to
be distributed to customer per delivery,

n — number of fixed quantity installments of the
finished batch to be delivered to customer, to
be determined for each cycle,
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t, — a fixed interval of time (between each
installment of finished products to be
delivered to customer during production
downtime t3),

I(t) — on-hand inventory of perfect quality items
at time t,

I4(t) —on-hand inventory of defective items at time t,

I.(t) —on-hand inventory at the customer’s end at
time t,

TC(Q,n) — total production-inventory-delivery
costs per cycle for the proposed model,
TC4(Q,n) —total production-inventory-delivery per
cycle when no defective items produced (i.e.
special case: the classic finite production rate

model with multi-delivery policy),

E[TCU(Q,n)] — the long-run average costs per unit

time for the proposed model,

E[TCU,(Q,n)] — the long-run average costs per

unit time for model in the special case.

APPENDIX B

Computations of the customer’s holding cost during
t are as follows.

Because n installments (fixed quantity D) of the
finished lot are delivered to customer at a fixed interval
of time t,, one has the following:

p-H (B-1)
n
t

th=" (B-2)

At the customer’s end, the demand between
shipments is (At,), and let | denote number of items
that will be left over after satisfying the demand during
each fixed interval of time t,, (see Figure 4), then:

I =D - At, (B-3)
AU
D-jt =I o

i S TN\ T

T 1 T >
-—-vl-—hrq—-l | — —pa—p
Lb L :t1_.!tz:
p————— e - i
T S
T g

Fig. 4 On-hand inventory at the customer’s end when n
installments of the finished batch are delivered

From Figure 4 one can calculate the average
inventory as follows:
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D;‘jtn}[(lﬁ 1)+[(D+ I)—itn}tn}+|:(D+2l)+[(D+2I)—ﬂtn]tn}+

Average inventory = [(

2 2
. +[[D+(n_1)'}[[Zm(n_l)I}M”Jtn]{%j(tl+t2) (B-4)

Substituting Eq. (B-3) in Eq. (B-4), the average inventory becomes:

Average inventory :(D—gtnjtn +(D+ I —gtnjtn +(D+2I —%tnjtn +...+(D+(n—1)| —%tnjtn +

+(”2—'j(tl+t2)=

A n(n-1 nl
:n(D—Etnjtn-F (2 )ltn +?(t1+t2) (B'S)

Substituting Eq. (B-1) through (B-3) in Eq. (B-5), the following general term for average inventory at the
customer’s end can be obtained:

: H 2 n(n-1)(H n(H
Average inventory =n| — ——t, |t, + — = At |t = ——At, (4 +1) =
g y (n 2n)n 5 [n njn 2([1 nJ(l 2)

-1 -1
=th—ﬂtn2+th(n )—n(n2 )/1'[,12+%(t1+t2)—g(ﬂdn)(tl+t2):
CHt at? (n=DHtg (n-1)at® H Aty _
" 20 on g rl) )=
1[ Hty
= 24T (H-At -
2[ bl 3)} (B-6)

Hence, the holding cost for items kept at the customer’s end is (i.e. the last term in Eq. (11)):
h_Z[ﬂﬂ(H _ ztg)} (B-7)
21 n
APPENDIX C

Computational procedures for Eq. (13) are as follows:
From Eqg. (12), the following partial derivative can be obtained:

GE[TCU@m]  A(K+nKy) +(1 1j(h2—h),1{1 E[x](l—e)}+

n

oQ Q*(1-6E[x]) 2P(1-6E[x])

%{h[z —E[x]-6E[x]]+ ME[X](1-0)} + (1_92E[X])[h + (hzn_ h)} (C-1)

2 |pP P,

O°E[TCU(QN)]  2(K +nKy)2

0Q? Q% (1-6E[x]) €2

cE[TCU@QN)] K4 (h-h)|Q(1-¢E[x]) Qi QE[X](1-0)4 3
on T Q(1-6E[x]) 2 2 2P 2R (€3)
aZE[TZ; (@) - (h, - h){Q(l—ﬁE[x])—Q—ﬁ——QE[X]ﬁl (- 9)} (c-4)
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GE[TCU(Q.n)]
oQén -

Kid 1
Q*(1-¢E[x]) n’

Substituting Egs. (C-1) through (C-5) in Hessian matrix, Eqg. (13), one obtains:

o°E[TCU(Q.n)] S°E[TCU(Q.n)]

CI oo
o°E[TCU(Q.n)] &°E[TCU(Q.n)]
aQén on®

2(K+nK;)4  (hy—h)

_ Q(1-6E[x]) T
2nK4 - (hp—h)
Gheep]  r {Q(I—QE[X])
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EFEKT PROMJENJIVE OTPREMNE UCESTALOSTI NA POLITIKU PROIZVODNJE I
DISTRIBUCIJE U INTEGRIRANOM SUSTAVU PRODAVAC-KUPAC

SAZETAK

Ovaj clanak istrazuje efekt promjenjive otpremne ucestalosti na politiku proizvodnje i distribucije u integriranom
sustavu prodavac-kupac. U nedavno objelodanjenom c¢lanku Chiu et al. [1] su izveli optimalno nadopunjavanje
kolicine robe za problem ekonomicne proizvodnje kolicine s visestrukom dostavom i osiguranjem kvalitete
utemeljeno na pretpostavci da je broj otprema zadana konstanta. Medutim, u integriranom sustavu prodavac-kupac
unutar okruzenja distributivne mreze, zajednicka odlucnost o nadopunjavanju kolicine robe i broj otprema mogu
pomoci takvom sustavu da dobije znacajne kompetitativne prednosti u smislu da postane jeftiniji proizvodac kao i da
uspostavi uske veze s kupcem. Iz tog razloga, ovaj ¢lanak prosiruje istrazivanja koja su proveli Chiu et al. [1]
uzimajuci u obzir otpremnu ucestalost kao jednu od odlucujucih varijabli kao i ukljucujuci troSkove drzanja zaliha
korisnika usluge u sistemsku analizu troSkova. Za potvrdu konveksnosti funkcije troSka koja sadrzi dvije odlucujucée
varijable koriStene su Hessove matrice, a ujedno je istraZen i efekt promjenjive otpremne ucestalosti na politiku
proizvodnje i distribucije. Jednim numerickim primjerom pokazana je prakticna primjena rezultata istrazivanja.

Kljuéne rije¢i: ~ promjenjiva otpremna politika, sustav proizvodnja-distribucija, distributivne mreze, sustav
prodavac-kupac, kolic¢ina robe, ponovni rad.
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