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SUMMARY
A method for calculating displacements and stresses of prestressed tensile cable structures is presented. The

developed numerical model takes into account the material and geometric nonlinearities. The behavior of the
structure under an increasing load, from zero up to the final value is described. The load is usually applied in two
phases: the first phase is prestressing, and the second phase is loading by dead and live gravity loads. An incremental
approach with the successive application of the Total Lagrange formulation with small displacements is used to
solve the problem of large displacements. The spatial discretization of the system is performed by two-noded beam
elements. The fiber discretization of the cross-section is performed by triangular elements, where the mechanical
properties of each fiber are presented by the stress-strain curve. The described model represents a practical way of
implementing the large displacements theory for finding the appropriate form and stresses in prestressed cable
structures.
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1. INTRODUCTION

Many models for the computation of form-finding
in cable structures are developed from its beginning
[1]. Nowadays, many system analyses are aimed at
structural optimization. As a result, lightweight flexible
structures, especially cable ones, are being intensively
developed in the last decades [2-4]. Generally, they are
used in roof structures of stadiums, sports halls,
exhibition halls and bridges. The development of
structural theories, computers, as well as new materials
with good performances, provides fast and accurate
analysis with graphical representation of the shape and
response of the structures.

In the analysis of flexible cable structures, it is
necessary to take into account the geometric
nonlinearity (due to large displacements) and very
often the material nonlinearity. The daily practice is
that, after complex analyses and comparison of many

versions with many drafts, the final shape of such
structures is selected.

It is necessary to know the behavior of a structure
under various load conditions. Generally, flexible cable
structures may exhibit very different shapes of failure,
depending on the load types.

A structural analysis usually starts with a known
finite geometry of the structure but in case of cable
structures the appropriate shape of structures has to be
found. Particularly, the shape of flexible cable
structures can not be predefined. Instead, it has to be
obtained from the equilibrium condition with respect
to the boundary conditions, structural topology and
internal force distribution.

For the static and dynamic analyses of cable
structures, there already exist several techniques. The
purpose of this paper is to illustrate the relative
complexity found by previous researchers of this
problem.
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The dynamic relaxation method presents an
approach to the design of prestressed cable networks
through the use of the D’Alembert principle [5, 6].
The stiffness matrix approach is solved iteratively by
Newton-Raphson method [7], and by incremental
loading for situations where error accumulation is too
large. The theoretical approach of minimizing the total
potential energy has been described [8-10] with the
same theoretical approach but with a different choice
of the minimization algorithm. An approximate linear
approach to geometric nonlinearity can be used by
observing that a general load on a cable net can be
decomposed into two parts (one part with extensional
displacements, and the other without them) [11, 12].
Some researchers have applied a more general finite
element method approach, for example, curved
member for shallow cable nets [13], hyper cable (a
cable connected to intermediate pulleys along its length
[14]), and two-link structure [15].

The starting point of the procedure, in presented
numerical model of cable structures, assumes a known
initial geometry (the initial coordinates of points and
initial positions of elements).

The analysis is than performed in two phases. The
first phase is with pretension, if applicable, leading to a
new geometry. In the second phase, other loads (such
as the gravity load) are added on to the new geometry.

The finite geometry and finite internal and external
forces in the system are obtained by applying the large
displacements theory.

2. LARGE DISPLACEMENTS THEORY

Large displacements are obtained by the
incremental application of the small displacements
theory. The small displacements theory follows the
Total Lagrange formulation. The updating of the
geometric configuration from increment to increment
is implemented by a special procedure called the Null
Configuration Principle [16, 17]. The updating of the
effects on the structure includes the updating of the
basic and geometric stiffness matrices of small
deformations, and then the updating of the loads and
their influences on the internal forces.

Space cable structures are modeled by linear finite
elements. The updating of large translational
deformations in the incremental procedure follows
from their vector summation from increment to
increment. The condition of large translations, with the
application of linear elements, is approximated such
that each element, for the purpose of interpreting the
geometry, is considered as a rigid body which accepts
large rotations. Formally, a discontinuity in rotations
is introduced. This assumption is acceptable if the
length of the element is small enough, and the stress in
the element is expressed within the small deformations
of each increment.

The governing global equilibrium equation for a
structure gives:

( ) ( ) ( ) ( )b g Lu u u u⎡ ⎤+ + =⎣ ⎦K K K u F (1)

where Kb(u) is the basic stiffness matrix, Kg(u) is the
geometric stiffness matrix, KL(u) is the geometric
stiffness matrix due to the large displacements, u is
the vector of unknown displacements and F(u) is the
vector of nodal forces. Matrix KL(u) may be defined
as a change of the basic stiffness matrix under the
new coordinates.

Considering only large translation displacements,
the procedure of successive application of the Total
Lagrange formulation is applied. For practical
purposes, an incremental-iterative procedure is
developed into computer program [18]. The changes
in configuration and structural stiffness are included
in each increment.

Under arbitrary load level, as shown in Figure 1, in
the secant stiffness method relationship between
displacements and loading is:

1−=u K F% (2)
where K is the total stiffness of structure.

Variation of displacement on current load level is
given by:

1 1δ δ δ− −= +u K F K F% (3)
The first member has an impact on variation due to

changing the flexible matrix (inversion of the stiffness
matrix) and the second member has an impact under
changes in load. In the case of large displacement
geometric nonlinearity, the impact of the first member
cannot be omitted.

It represents the impact of the previously applied
load on displacement, due to changes of position. That
position is caused by changes in geometry and presents
the actual position of total load.

Fig. 1  Symbolic description of large displacements of single
degree-of-freedom system
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In the case of finite increments, Eq. (2) is given by:
1 1∆ ∆ ∆− −= +u K F K F (4)

hence:

( )1 1 1
i i 1 i i 1 i i∆ ∆− − −

− −= − +u K K F K F (5)

what can be written as:
0 F

i i i∆ ∆ ∆= +u u u (6)
Subsequently:

i i 1 i∆−= +u u u% (7)
Thereafter, in the incremental procedure, an update

of the internal forces and stresses within the structural
model based on the achieved displacements, is
required:

( )i i i=S S u (8)
Afterwards, the next increment step may be applied.
The solution of Eq. (1) is performed by the

incremental-iterative procedure which is implemented
in a developed computer program [18].

3. NUMERICAL MODEL OF SPACE
CABLE STRUCTURES

3.1 Basic hypotheses

For practical usage of this numerical model it is
necessary to adopt some hypotheses:
- The analysis of space structures is assumed.
- The structural dimensions, cross-sections, and

types of materials are predefined, and the necessary
discretization is implemented.

- This model includes analyses by implementing the
large displacements theory and the assumption of
the follower load type, taking into account the
geometric nonlinearity.

- This model takes into account the material
nonlinearity which is assumed by an uni-axial
stress-strain relationship that is given numerically.

- Load combinations have to be calculated because
the geometric and material nonlinearities are taken
into account.

- Certain initial imperfection is taken into account by
the initial geometry.

3.2 Structural discretization

In the model of form-finding for cable structures,
as presented in this paper, linear, ideal straight two-
noded finite elements are used (Figure 2). All the nodes
have six degrees of freedom (three translations and
three rotations). It is necessary to pay attention to the
size of each individual element, because large
differences may cause significant numerical errors.

Finite elements are connected at nodes, and every
node is necessary for the finite element mesh.

Fig. 2  Tensile two-noded space finite element

3.3 Modeling of cross-section

A cross-section of the element is discretized by
quadrilateral and/or triangular elements (Figure 3a),
which is represented by filament. Such filament
discretization enables the monitoring of the normal
stresses in the element and hence the state of the cross-
section under the general action of the longitudinal
forces.

Figure 3  Modeling of cross-section:
a) Cross-section discretization;

b) Stress-strain relationship for steel

The material properties for uniaxial stress-strain
relationship are given numerically in a polygonal form
(Figure 3b). The equilibrium of the cross-section is
obtained by an iterative procedure.

3.4 Two-phase loading model

The model presented in this paper is solved in two
phases. The first phase includes self-weight and
pretension load (Figure 4a). In most cases, the
influence of self-weight is negligible as compared to
the pretension forces in cables between two nodes.
Afterwards, the cable structure, under the load from
the first phase, obtains a new geometry. In the second
phase, the gravity load is applied as point or
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concentrated loads (Figure 4b). In both phases the load
can be a point load on a node or a distributed load on
an element. The load increases from zero up to the
failure level.

The displacements for 10 elements discretization
(Figure 6) and for different load increments are
presented in Table 2.

Fig. 4  The load phases:
a) self-weight and pretension load;

b) gravity load

4. NUMERICAL SOLUTION ACCURACY

Generally, the equilibrium equation (1) is solved by
an incremental-iterative method. The accuracy of the
numerical solution depends on: (i) The discretization
of the model by linear elements and the choice for the
basis functions, (ii) The cross-section discretization;
(iii) The equilibrium of the cross-section; (iv) The
nonlinear material properties; (v) The number of
iterations per increment; (vi) The increment size.

A study of the numerical error is presented using a
specific example from the literature [19]. The
geometric properties are shown in Figure 5. Area of
the cable is A=500 mm2, the modulus of elasticity
E=105 kN/mm2 and the initial unstrained lengths of
cable is 15.00 m. The first phase is the gravity loading
of 0.01 kN applied at each node from 2 to 5, and the
second phase is the gravity loading of 1.0 kN also
applied at each node from 2 to 5. A study of the
behavior of this structure by different discretizations
and load increments is presented below.

Fig. 5  Structure discretized by 5 elements

The displacements for 5 elements discretization and
for different load increments are presented in Table 1.

Fig. 6  Structure discretized by 10 elements

The results obtained by this example with different
structural discretizations and load increments are quite
satisfactory.

For studying the convergence, the same example is
selected, except that in the second phase the gravity
load of 2.0 kN is also applied to nodes from 2 to 5.

A study of numerical errors conditioned by large
displacements, which are implemented as a series of
small displacements, through the effects of the
increment size and the density of discretization, is
presented. At any increment, one equilibrium iterative
step is applied, and the equilibrium criterion per force
norm is 0.05. For studying the effect of the increment
size, the load increment for both discretizations is
accepted between 0.5% and 9.5% of the specific load.

The results are presented in an accession curve
diagram (Figure 7), which represents the numerically
obtained characteristic load factor f with respect to
the relative increment size δf. The relative increment
size δf is the ratio between the incremental load ∆Finc
and the total applied load (i.e., the load corresponding
to unit characteristic load factor f=1.00):

( )

inc

f 1.00

F
f

F
∆

δ
=

= (9)

Fig. 7  Accession curves

The accession curves are approaching with decreased
increment size, especially under 3% of the specific load,
in the numerical convergence zone. The increment size
of 0.5% is a limit, because in this case the solution is
diverging. The minimal increment size of 0.5% to the
specific load reaches an accuracy level of 1%.
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The presented model is applied to a few more examples, where a faster convergence is observed when the initial
load is sufficiently low as compared to the breakdown load. Hence, it is more sensitive to define the time and place
of the breakdown when the load increment is lower.
Table 1 Nodal displacements for structure discretized by 5 elements

 Horizontal displacement (mm) Vertical displacement (mm) 

Node Millar and 
Barghian This paper Millar and 

Barghian This paper 

 [19] 10 load 
increment 

100 load 
increment 

[19] 10 load 
increment 

100 load 
increment 

2 -0.0200 -0.023 -0.0225 -8.4597 -8.1835 -7.9899 
3 -0.0099 -0.012 -0.0121 -12.5320 -12.7480 -12.4430 
4 0.0099 0.012 0.0121 -12.5320 -12.7480 -12.4430 
5 0.0200 0.023 0.0225 -8.4597 -8.1835 -7.9899 

 

 Horizontal displacement (mm) Vertical displacement (mm) 

Node Millar and 
Barghian This paper Millar and 

Barghian This paper 

 
[19] 10 load  

increment 
100 load 
increment 

[19] 10 load  
increment 

100 load 
increment 

2 -0.0200 -0.0225 -0.0221 -8.4597 -8.1201 -7.9295 
3 -0.0099 -0.0121 -0.0110 -12.5320 -12.5590 -12.3580 
4 0.0099 0.0121 0.0110 -12.5320 -12.5590 -12.3580 
5 0.0200 0.0225 0.0221 -8.4597 -8.1201 -7.9295 

 

5. NUMERICAL EXAMPLES

The model presented in this paper is verified with
results from the literature. The experimental results [5]
and the results of the numerical model with geometric
nonlinearity [15] are attached.

5.1. Flat net

The flat net example consists of a cable net lying
on a 3×3 square grid with a cell side length of 0.4 m,
as shown in Figure 8. The cables have cross-sectional
stiffness EA=97.97 kN.

Table 2 Nodal displacements for structure discretized by 10 elements

Fig. 8  Flat net (3 × 3) in three-dimensional space
(The first phase)

In the first phase, all the cables have a pretension
of 200 N, and the analysis is achieved within 100
incremental steps. Then in the second phase, all the
cables are anchored at their ends and weighted by a
vertical force of 150 N as is shown in Figure 9.

Fig. 9  Flat net (3 × 3) in three-dimensional space
(The second phase)

The equilibrium path for the second phase loading
for the marked node in Figure 9 is presented in Figure
10, which clearly shows the effect of geometric
nonlinearity due to large displacements (F is the
current load and F0 is the ultimate load). The structure
is hardening as the load increases.
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The intensities of the cable internal forces and
displacements are 12.5 % of the second phase load,
and are shown in Figure 11.

5.2 Hyperbolic paraboloid network

The model presented in this paper is verified on
the hyperbolic paraboloid network shown in Figure
12a. The characteristics of the geometry and material
parameters are given in Ref. [15].

The system is discretized by 31 elements (with
EA=100.72 kN). In the first phase all the cables have a
pretension force of 200 N, and the analysis is achieved
within 100 incremental steps. Then in the second
phase, all the cables are anchored at their ends and
weighted by a vertical force of 15.7 N as is shown in
Figure 12b. The second phase is completed within 10
incremental steps.

a)Fig. 10  Equilibrium path for node N (marked in Figure 9)

Fig. 11  Comparison with results from the literature:
a) Tension cable forces (N);

b) Nodal displacements in x, y, z directions (mm)

b)

Fig. 12  Hyperbolic paraboloid network:
a) Geometry of network and first phase loading;

b) Second phase loading

Table 3 shows the results given by different authors
[5, 7, 9, 15, 20] and the results obtained by the application
of the large displacements theory. The results shown in
Table 3 reveal an analogy of the numerical model presented
in this paper and the results given by Ref. [15].

5.3 Saddle net

The saddle net presented in Figures 13 and 14
consist of 201 elements with 132 nodes.

The cross-section is circular and discretized by
10×10 quadrilateral elements with area A = 19.63 cm2.
In this example a linear-elastic material is used with
Young’s modulus E = 2.1×105 MPa.

In the first phase some cables have a pretension
force of P = 30 kN as shown in Figures 13 and 14. In
the second phase all the cables are anchored, and the
free nodes are weighted by a vertical force F = 90 kN.
Figure 14 shows the z - deflections of each node after

 

 

 

 

 



A. Mihanovi}, B. Trogrli}, N. @ivalji}: A two-phase loading model of the cable structures

ENGINEERING MODELLING 23 (2010) 1-4, 13-21 19

the ultimate load. The first phase is completed within
500 incremental steps, and the second phase within
435 incremental steps.

 

    Deflection (mm)    

Node Load (kN) Experiment 
Lewis 

[5] 

Numerical 
Krishna 

[7] 

Numerical 
Sufian 

[9] 

Numerical 
Lewis 
[20] 

Numerical 
Kwan 
[15] 

Numerical 
Kwan 
[15] 

Numerical 
(this paper) 

5 
6 
7 
10 
11 
12 
15 
16 
17 
20 
21 
22 

0.0157 
0.0157 
0.0157 
0.0157 
0.0157 
0.0157 
0.0157 
0.0157 
- 
0.0157 
- 
- 

19.5 
25.3 
22.8 
25.4 
33.6 
28.8 
25.2 
30.6 
21.0 
21.0 
19.8 
14.2 

19.6 
25.9 
23.7 
25.3 
33.0 
28.2 
25.8 
31.3 
21.4 
22.0 
21.1 
15.7 

19.3 
25.5 
23.1 
25.8 
34.0 
29.4 
25.7 
31.2 
21.1 
21.1 
19.9 
14.3 

19.3 
25.3 
23.0 
25.9 
33.8 
29.4 
26.4 
31.7 
21.9 
21.9 
20.5 
14.8 

19.38 
25.62 
22.95 
25.57 
33.79 
29.32 
25.43 
31.11 
21.28 
21.16 
19.79 
14.29 

19.52 
25.35 
23.31 
25.86 
34.05 
29.49 
25.79 
31.31 
21.42 
21.48 
20.00 
14.40 

19.00 
25.30 
22.80 
25.70 
34.40 
29.50 
25.50 
31.50 
21.50 
20.80 
19.90 
14.10 

 

 

 

 

Table 3 Comparison of experimental and theoretical results for the hyperbolic net

Fig. 13 Saddle net - isometric view with first phase loading

Fig. 14  Saddle net: startup geometry and first phase loading

Fig. 15  Saddle net: values of displacement in global z direction
(m) for the ultimate load

The equilibrium path for the second phase loading
for the node marked in Figure 15 is shown in Figure
16, which also clearly shows the geometric nonlinearity
effect due to large displacements.

Fig. 16  Equilibrium path for node N (marked in Figure 15)
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6. CONCLUSIONS

The presented numerical large displacements model
can solve the problem of form-finding for cable
structures with known initial geometry and total gravity
load.

This model includes two phases of loading. It is
possible to introduce the pretension and self-weight in
the model in the first phase, while in the second phase
point and distributed gravity loads are introduced. By
this model, the analysis up to the failure or stability
loss point is performed. The presented examples show
a good convergence of the incremental-iterative
method, and a good agreement with their experimental
results.

The equilibrium paths for some nodes clearly show
the effect of geometric nonlinearity due to large
displacements. The structure is hardening as the load
increases, which is typical for cable structures.
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MODEL DVOFAZNOG OPTERE]ENJA ZA PRORA^UN KONSTRUKCIJA OD U@ADI

SA@ETAK

Prikazana je metoda prora~una pomaka i naprezanja konstrukcije od prednapregnutih kablova. Razvijeni
numeri~ki model uklju~uje materijalnu i geometrijsku nelinearnost. Prati se ponašanje konstrukcije pri pove}anju
optere}enja od nultog do slomnog. Optere}enje se nanosi u dvije faze: prva faza je prednaprezanje, a druga faza je
optere}enje vlastitom te`inom i dodatnim optere}enjem gravitacijskog tipa. Rabi se inkrementalni postupak sukcesivne
Lagrange-ove obnovljive metode u rješenju problema velikih pomaka. Primijenjena je prostorna diskretizacija sustava
dvo~vornim kona~nim elementima. Popre~ni presjek se diskretizira trokutnim elementima, a mehani~ko ponašanje
vlakana u te`ištu elemenata se zadaje dijagramom naprezanje-deformacija. Prikazani model predstavlja prakti~an
put primjene teorije velikih pomaka u tra`enju oblika i prora~unu naprezanja konstrukcija od u`adi.

Klju~ne rije~i: u`adi, vla~ne konstrukcije, nelinearna analiza, prostorne konstrukcije, tra`enje oblika.


