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SUMMARY

The ability of using carbon nanotubes as the strongest and stiffest elements in nanoscale composites remains a
powerful motivation for research in this area. This paper describes a finite element modelling appropriate for the
numerical prediction of the mechanical behaviour of polypropylene which is reinforced with single-walled carbon
nanotubes. A multi-scale representative volume element is proposed for modelling the tensile behaviour of carbon
nanotube reinforced composites. Within the representative volume element, the reinforcement is modelled according
to its atomistic microstructure. A model based on the modified Morse interatomic potential is used for simulating the
isolated carbon nanotube. In this work, the matrix is modelled as a medium in a form of a continuum by utilizing
solid elements and in order to describe its behaviour, an appropriate non-linear material model is adopted. A
cohesive zone model is assumed between the nanotube and the matrix with an ideal bonding until the interfacial
shear stress exceeds the corresponding strength. By using the representative volume element, a unidirectional nanotube/
polymer composite was modelled and the results were compared to the corresponding rule-of-mixtures predictions.
The effect of interfacial shear strength on the tensile behaviour of the nanocomposite was also studied. The influence
of adding a single-walled carbon nanotube to the polymer is discussed and the results show that Young’s modulus
and tensile strength of the polymer significantly increase in the presence of carbon nanotubes.

Key words: carbon nanotube, reinforced polymer composite, multi-scale, finite element method, Morse interatomic
potential.

studies have been done to measure the interfacial
strength between CNT and polymer matrix. Since most

1. INTRODUCTION

Among various nanomaterials, carbon nanotubes
(CNTs) have gained widespread attention owing to
their superior properties, good chemical stability, and
large surface areas [1]. CNTs are extremely thin
tubes and feature an enviable combination of
mechanical, thermal, electrical, and optical
properties [2]. Their size, shape, and properties
constrain them as prime contenders in exploiting the
growth of a potentially revolutionary material for
diverse applications. Therefore, in many studies,
CNTs have been used as reinforcements in polymer
matrix composites [2-5].

Obtainment of the optimum load transfer across the
CNT-polymer matrix interface is one of the issues that
emerge in CNT reinforced polymers. Many research

of the studies are impeded by the technical difficulties
involved in the manipulation of the nanotubes, the use
of theoretical and computational approach to predict
the load transfer ability of the nanocomposites might
be one of the solutions to the problem [6]. Lau et al.
[7] studied theoretically the stress transfer properties
between single-/multi-walled nanotubes and polymer
matrix. They used local density approximation, elastic
shells and conventional fiber pullout models. Lordi and
Yao [8] used force-field based molecular mechanics to
study the binding energies and sliding friction between
the nanotubes and different polymer matrices. They
found out that helical polymer conformations play
significant role in the strength of the interface. They
suggested that the strength of the interface may result
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from molecular-level entanglement of the two phases
and forced long-range ordering of the polymer. Liao
and Li [9] studied the interfacial characteristics of the
CNT/polystyrene composite system in the absence of
atomic bonds between nanotubes and polymer matrix
using molecular mechanics. Results showed that the
interfacial shear stress of the nanotube/polystyrene
composite system is about 160 MPa, which is
significantly higher than most carbon fiber-reinforced
polymer composites.

Frankland et al. [10] studied the matrix-nanotube
shear strength using molecular dynamics simulations.
It was concluded that the shear strength of a polymer/
nanotube interface with weak non-bonded interactions
could be increased by over an order of magnitude with
the introduction of a relatively low density (<1%) of
chemical bonds between the nanotube and polymer.
Tan et al. [11] studied the effect of van der Waals-
based interface forces on the CNT-polymer composite.
They incorporated a non-linear cohesive law
introduced by Jiang et al. [12] in the micromechanical
model of the composite. The results showed that CNTs
improve the mechanical behaviour of a composite only
at the small strains. Tserpes et al. [13] proposed a
multi-scale representative volume element (RVE) for
modelling of the tensile behaviour of carbon nanotube-
reinforced composites. A perfect bonding was
assumed between the nanotube and the matrix until
the interfacial shear stress exceeded the corresponding
strength which simulated debonding effect. It was
found out that the tensile strength significantly
increases by increasing interfacial shear strength.

Since computational models usually over-predict the
tensile modulus of composites, Bhuiyan et al. [14] built
a RVE to investigate the effect of polymer-filler contact
properties. While assuming perfect filler—polymer
interfacial contact leads to over-predicted tensile
modulus of the CNT/PP composites by 85% for 5 wt%
CNT/PP composites, more accurate data were obtained
by assuming imperfect CNT/PP contact, CNT
agglomerates and alignment in the composites.

In this paper, a multi-scale RVE for CNT-reinforced
composites is proposed to investigate the non-linear
behaviour of composite under tension. Finite element

Ux=Uy=Uz=0

simulations were performed to simulate the pullout of a
single-walled carbon nanotube (SWCNT) from the
polypropylene (PP) matrix. The PP resin model was
constructed by incorporating three-dimensional solid
elements. In this study, the chemical bonding between
SWCNTs and the PP was not considered because
SWCNTs have less defects and more chemical stability
compared to MWCNTSs. Only the influences of non-
bonded interactions on interfacial stress transfer were
studied. A cohesive law for interfaces between the CNT
and polymer was established characterized by the van
der Waals' force.

2. FINITE ELEMENT MODELLING

Acylindrical RVE consisting of CNT, PP matrix and
contact interface was modelled using ANSY'S software.
In the FE modeling, CNTs were assumed to be solid
structures. A three-dimensional (3D) RVE with the
applied boundary conditions was investigated under
uniform extension to determine the tensile behaviour of
CNT/PP composites. Figure 1 shows the FE model of
RVE and CNT. For each model, one end was
constrained in all directions and the other end (z=L),
where L is the length of RVE, was free to move in the
z direction. An axial displacement was applied to all the
nodes at the edge of the RVE. A higher order 3D
structural solid element (SOLID186 element with three
degrees of freedom per node) was used for both matrix
and SWCNT. A cohesive zone material model was used
atthe CNT/PP interface. An optimum mesh density that
guarantees a fully converged solution with a minimum
computational time was determined based on a
parametric study. Perfect bonding was assumed
between the phases and all the phases were assumed to
be homogeneous, isotropic, and linearly elastic. The
material properties and dimensions used for the RVE
are shown in Table 1. The stress—strain relationship of
the composite was calculated as the ratio of the average
stress to the applied strain. The average stress generated
in the RVE was calculated using the nodal stresses
obtained from the FEA by accounting for all phases
present in the RVE.

Polymer
(matrix)

CNT

Ux=Uy=0

Fig. 1 A 3D RVE with the applied boundary conditions
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Table 1 Material properties and geometrical dimensions of the RVE

Young's modulus Interfacial shear strength Poiss_on‘s Inner diameter Outer diameter Length (A)
(GPa) (MPa) ratio A) (A)
CNT 880 - 0.3 - 6.78 200
PP 0.751 - 0.3 6.78 30 200
Interface - 30 - - 6.78 200

2.1 Carbon nanotube

Anarmchair SWCNT with chiral index of (5,5) was
chosen for the model. The CNT properties were
obtained from previous study conducted by present
authors based on the Modified Morse potential
equations [15]. A correlation between inter-atomic
molecular potential energies and strain energies of a
beam has been established by using equivalence of
energies. Figure 2 shows the non-linear stress—strain
curve of armchair (5,5) SWCNT under axial tension.
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Fig. 2 Stress-strain curve of armchair (5,5) SWCNT under
axial tension [15]

2.2 Polymer matrix

Since the volume fraction of CNTs is about 5% in
the RVE, subsequently, the volume of polymer matrix
is much higher than that of CNTs at molecular scale.
As a reasonable compromise, surrounding polymer is
taken into account as a continuum medium and solid
elements are used to construct the thick resin. A higher
order 3D 20-node solid element, SOLID186, was
employed for this purpose. The element has three
degrees of freedom per node which are translations in
X, y and z directions. This element supports non-linear
material behaviour and is well suited to model curved
boundaries. The simulated resin was treated as an
nonlinear isotropic material with Young’s modulus of
0.751 GPa and 0.3 as Poisson’s ratio according to the
experimental data.

2.3 Nanotube/matrix interface

Fundamental to the reinforcing effectiveness are the
interfacial characteristics between the nanotube and the
matrix. Upon this issue, a considerable number of
works have been reported previously [11, 14]. Since
CNTs usually agglomerate due to the van der Waals'
force [17], they are extremely difficult to disperse and
align in most of the common polymer matrices [18].
Moreover, carbon nanotubes usually do not bond well
to polymers, as a consequence their interaction exhibits
the van der Waals' force [19] which is much weaker
than covalent bonds. This leads to sliding of CNT in
polymer matrix when subjected to loading.

McCarthy et al. [20] studied the interaction between
carbon nanotubes and a conjugated polymer to gain a
better understanding of the binding. A good wetting
between the conjugated polymer and nanotubes has
been observed. Wagner et al. [21] reported the stress
transfer ability of nanotubes-polymer interfaces of the
order of 500 MPa. Schadler et al. [22] studied
mechanical behaviour of multi-walled carbon nanotube
(MWCNTSs)/epoxy composites in tension and
compression. It was found that the compression
modulus is higher than the tensile modulus, indicating
that load transfer to the nanotubes in the composite is
much higher in compression. Later on, Cooper et al.
[23] used a scanning probe microscope tip to measure
the interfacial strength of an individual SWCNT ropes
and MWCNTSs bridging across holes in an epoxy
matrix. Based on these experiments, the interfacial
shear strength between the MWCNTSs and the epoxy
matrix was calculated to be in the range of 35-376
MPa, whereas most of SWCNT ropes were fractured
instead of being pulled out of the epoxy matrix. Barber
et al. [24] also directly measured adhesive interactions
between the MWCNT and the polyethylene-butene
matrix by performing reproducible nano-pullout
experiments using atomic force microscopy. The result
showed a relatively high interfacial debonding stress
of 47 MPa. Wagner [25] used a traditional force
balance approach which was modified for a hollow
tube. He applied an expanded form of Kelly-Tyson
model to calculate the interfacial strength between the
SWCNT and polymer. It was shown that high values
of the interfacial strength are attainable.

As CNTs are represented by solid elements, the
interfacial shear stress cannot be computed directly.
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To overcome this obstacle, an approach described by
Tserpes et al. [13] was considered. Figure 3 shows a
free-body diagram of CNT in the RVE. From the FE
analysis, the normal stresses o; and o, at nodes 1 and
2, respectively, are computed. If constant shear stress
7 along the element is assumed, then the equilibrium
formulation can be written as:

|0'1 —0'2|A: Dl Q)

where, D is the outer nanotube diameter and | is the
CNT length. From Eq. (1) 7 will be computed and
compared to the interfacial shear strength (ISS) value.
If < ISS, the interface has failed leading to load-
carrying disability of the specific element, which is
modelled by a cohesive material model (CZM). The
above procedure was repeated at each load step.
According to the experimental studies, a very small
ISS (=30 MPa) was chosen for the present interface
model.

Node 1

Fig. 3 Schematic diagram of the beam representing the
nanotube

In RVE proposed here, simulation of nanotube/
matrix debonding was incorporated. The debonding
refers specifically to the separation of bonded contact.
Bilinear material behaviour with tractions and separation
distances was defined according to Ref. [16]. A
cohesive zone material has been defined to simulate
the traction separation behaviour of the CNT/polymer
interface by adopting augmented Lagrangian method.
Figure 4 shows the interface elements.
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MER 22 2012
14:27:42

Fig. 4 Contact elements representing CNT/polymer interface
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3. RESULTS AND DISCUSSION

A unidirectional nanotube/polymer composite was
modelled in the RVE. The armchair (5,5) nanotube
spanning the length of the matrix was used as
reinforcement. The nanocomposite specimen was
subjected to an axial tension by fully constraining the
nodes of one end and applying an incremental
displacement at the nodes of other end. Figures 5(a) and
5(b) shows the RVE deformation under tensile loading.
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Fig 5. Von Mises stress distribution in: (a) polymer matrix;
(b) CNT

For a composite under uniaxial loading, the
dependence of elastic modulus on the nanotube volume
fraction can be estimated by the rule-of-mixtures.
Under constant strain conditions, the longitudinal
elastic modulus of the composite E¢ is given by:

E. = EV, + EpVin (2)
where Ej, and E,,, are the longitudinal elastic modulus of
the nanotube and the matrix, respectively, and vy, is the
matrix volume fraction. For V,, = 5% in (5,5) chiral
index, with E, and E,, values of 0.88 TPa and 0.751
GPa, respectively, the E¢ value equals to 44.7 GPa.

Figure 6 compares the tensile stress—strain curves
predicted by the multi-scale model with the results
from the rule-of-mixtures. In these initial analyses, as
can be seen, the stiffness of the matrix was enhanced
significantly by the addition of carbon nanotubes. The
result of the simulation of pure PP under tension is also
added to the graph. While the initial stiffness of pure
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PP is almost 0.768 GPa, by adding the CNT to the
RVE, the stiffness increased significantly to 1.35 GPa.
Such an increment, by 75%, clearly shows the
reinforcement effect of CNT on the composites even
at an ISS value as low as 30 MPa. Indeed, at low
strains, the predicted stress—strain curve is much
closer to linear behaviour given by the rule-of-mixtures.
The deviation observed at larger strains is due to the
non-linear behaviour of different phases involved in the
RVE consisting of CNT, PP, CNT/polymer interface.
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Fig. 6 Stress—strain curves for pure PP, composite and
rule-of-mixture

4. CONCLUSIONS

ARVE finite element model for predicting the tensile
behaviour of carbon nanotube-reinforced composites
has been proposed. The continuum FE method has
been employed for building the RVE and performing
the analysis while the data regarding the behaviour of
the nanotube are drawn from Morse potential, enabling
thus the investigation of the impact of interfacial failure
on the mechanical properties of the composite.

The simulation results have shown a significant
enhancement in the stiffness of the polymer due to the
addition of the nanotubes. The prediction of
composite’s initial stiffness was verified by the rule-
of-mixtures and the initial stiffness value was 44.7
GPa. The result also shows that stiffness has been
increased over 75% when inserting CNT into the RVE.
This study of interfacial bonding of CNT/PP indicated
that there could be an effective stress transfer from
the PP resin to the nanotube even at ISS being as low
as 30 MPa.
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NELINEARNA, VISESKALNA METODA KONACNIH ELEMENATA ZA PREDVIPANJE
VLACNOG PONASANJA POLIMERNIH KOMPOZITA OJACANIH UGLJICNIM
NANOCIJEVIMA

SAZETAK

Mogucnost koristenja ugljicnih nanocijevi kao najjacih i najkrucih elemenata medu kompozitima nano velic¢ina
i dalje predstavija snaznu motivaciju za daljnja istraZivanja. U ovome se radu opisuje proces modeliranja primjenom
metode konacnih elemenata koji je prikladan za numericko modeliranje mehanickog odgovora polipropilena ojacanog
ugljicnim nanocijevima s jednostrukom stijenkom. Ponuden je viseskalni reprezentativni elementarni volumen za
modeliranje viacnog ponasanja kompozita ojacanih ugljicnim nanocijevima. Unutar reprezentativnog elementarnog
volumena spomenuto pojacanje je modelirano u skladu sa svojom atomskom mikrostrukturom. Takoder, model
temeljen na modificiranom Morseovom meduatomskom potencijalu koristen je za simuliranje individualne ugljicne
nanocijevi. Matrica je modelirana kao prostor u formi kontinuuma koristenjem prostornih elementata te je u svrhu
opisa ponasanja prostornog elementa koristen pripadajuci nelinearni materijalni model. Kohezijska zona je simulirana
izmedu nanocijevi i matrice s idealnim spojem sve dok povrsinsko posmicno naprezanje ne prekoraci odgovarajucu
¢vrstocu. Koristeci reprezentativni elementarni volumni element, modeliran je jednosmjerni kompozit koji se sastoji
od nanocijevi i polimera, a rezultati su usporedeni s odgovarajuéim predvidanjima zadanima tzv. "pravilom
mjesavina". Ucinak povrsinske posmicne ¢vrstoce na vliacno ponasanje nano-kompozita je takoder razmotren. Utjecaj
dodavanja ugljicne nanocijevi s jednom stijenkom polimeru je raspravijen, a rezultati pokazuju da se vlacna cvrstoca
i modul elasticnosti polimera znatno poveéavaju u prisutnosti ugljicnih nanocijevi.

Kljucéne rijeci: ugljicna nanocijev, ojacani polimerni kompozit, viseskalna metoda, metoda konacnih elemenata,
Morseov meduatomski potencijal.
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