
ENGINEERING MODELLING 27 (2014) 3-4, 85-100 85

L. Kiss, et al.: Vibrations of fixed-fixed heterogeneous curved beams loaded by a central force at the crown point

SUMMARY
This paper addresses the vibrations of heterogeneous curved beams under the assumption that the load of the

beam is a dead one and is perpendicular to the centroidal axis. It is assumed that: (a) the radius of curvature is
constant, and (b) Young’s modulus and the Poisson’s number depend on the cross-sectional coordinates. As for the
issue of fixed-fixed beams, the objectives are the following: (1) to determine the Green’s function matrices provided
that the beam is under radial load; (2) to examine how the load affects the natural frequencies given that the beam
is subjected to a vertical force at the crown point; (3) to develop a numerical model which makes it possible to
determine how the natural frequencies are related to the load. The computational results are presented graphically.

Key words: curved beams, heterogeneous material, natural frequency as a function of the load, Green’s function
matrices.
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1. INTRODUCTION

Curved beams are used in various engineering
applications. Arch bridges, roof structures and stiffeners
in aerospace applications are some of them. Research
into the mechanical behaviour of curved beams began in
the 19th century – see book [1] by Love for further
details. The free vibrations of curved beams have also
been extensively investigated. Three survey papers are
worth mentioning: Refs. [2], [3] and [4]. A Ph.D. Thesis
[5] is also worth mentioning in this context. The thesis
clarifies, within the frames of the linear theory, how the
extensibility of the centerline affects the free vibrations
and stability of circular beams subjected to constant
radial load (a dead load). Solutions to the natural
frequencies were computed utilizing different numerical
models. One of these is based on the use of the Green’s
function matrix that belongs to the corresponding
boundary value problem. Unfortunately, the results of
Ref. [5] have not been published in English. Paper [6]

takes shear deformations into account provided that the
beam vibrates under the action of a constant vertical
distributed load.

Free vibrations of spatial curved beams made of
functionally graded material are presented in Ref. [7],
while laminated curved beams are investigated in Ref.
[8]. Paper [9] by Kovacs deals with the vibrations of
layered arches assuming perfect or imperfect bonding
between any two adjacent layers. Forced vibrations of
curved beams on elastic foundation are considered in
Ref. [10].

Lawther addresses the problem of how a
prestressed state of the body affects the natural
frequencies [11]. He studies finite dimensional
multiparameter eigenvalue problems and comes to the
conclusion that, for such problems, the eigenvalue part
of the solution is described by interaction curves in an
eigenvalue space, and every such eigenvalue solution
has an associated eigenvector. If all points on a curve
have the same eigenvector, then the curve is necessarily
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a straight line, but the converse situation is far more
complex.

In the light of these results, a question arises: how
do natural frequencies change if a curved beam is
subjected to radial (vertical) load at the crown point.
In our research, it is assumed that the curved beam is
made of heterogeneous, isotropic and linearly elastic
material. As regards heterogeneity, it is assumed that
the elastic parameters can be varied arbitrarily over the
beam's cross-section but they are independent of the
coordinate perpendicular to the cross-section. Under
these assumptions our main objectives are as follows:
(1) derivation of boundary value problems which make
it possible to understand how the radial load affects
the natural frequencies; (2) determination of the
Green’s function matrices which can be used to reduce
the eigenvalue problem set up for the natural
frequencies (which depend on the load) to an
eigenvalue problem governed by systems of Fredholm
integral equations; (3) to reduce the eigenvalue problem
to an algebraic one i.e. to a one that can be solved
numerically. The corresponding computational results
are presented in a graphical format and are verified
against the experimental results.

The paper is organized in eight sections. Section 2
is a summary of the governing equations. In Section 3,
having defined the Green’s function matrices, we
reduced the eigenvalue problem to an eigenvalue
problem governed by Fredholm integral equations.
Section 4 gives an outline of the solution algorithm.
Calculation of the Green’s function matrices are
detailed in Section 5. Relationship between the axial
strain on the centroidal axis and the load are presented
in Section 6, which also contains a formula for the
critical value of the strain. Computational and
experimental results are shown in Section 7.
Conclusions are presented in Section 8.

2. BASIC ASSUMPTIONS AND
GOVERNING RELATIONS

2.1 Equations valid for distributed load

Based on article [12], the governing formulae of
the dynamical problem are presented hereinafter. In
Figure 1(a) a part of the beam is illustrated with the
applied curvilinear coordinate system (ξ = s,η,ζ) and
Figure 1(b) shows the investigated fixed-fixed beam.
The cross-section of the beam is uniform and
symmetric with respect to the axis ζ. The material
parameters, such as Young’s modulus, E, and the
Poisson number, ν, can depend on the cross-sectional
coordinates in such a way that: E(η,ζ) = E(−η,ζ);
ν(η,ζ) = ν(−η,ζ).

Notice that the coordinate line ξ = s coincides with
the so-called E - weighted centroidal axis (or centroidal
axis for short). This axis intersects the cross-section

Fig. 1 (a) The coordinate system; (b) Fixed-fixed beam under
concentrated load

For our further considerations we shall introduce
the the quantities Ae and Ieη defined by equations:

2
e eA A

A E( , )dA , I E( , ) dA .ηη ζ η ζ ζ= =∫ ∫ (2)

These are referred to as the E - weighted area and
the E - weighted moment of inertia, respectively.

Subsequently, we separate the load-induced, and
otherwise time-independent quantities from those in
relation with the vibrations of the loaded beam. The
latter are the time-dependent increments and are
denoted by a subscript b. Let uo, wo and R be the
tangential and radial displacements and the constant
radius of the centroidal axis. The relation between the
coordinate line s and the angle coordinate ϕ  is s=Rϕ.

The axial strain εoξ and the rotation ψoη on the
centroidal axis can be expressed in terms of the
displacements via relations:

o o o o
o o

du w u dw, .
ds R R dsξ ηε ψ= + = − (3)

Application of the principle of virtual work (details
are omitted) yields that the axial force N and the
bending moment M should satisfy equilibrium
equations:

o t
dN 1 dM MN f 0 ,
ds R ds R ηψ⎡ ⎤⎛ ⎞+ − + + =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

(4a)

o n
d dM M NN f 0 ,
ds ds R Rηψ⎡ ⎤⎛ ⎞− + − + =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

(4b)

where ft and fn are the intensity of the distributed load
in the tangential and normal directions. The Hooke’s

at the point C and its position can be obtained from the
condition:

e A
Q E( , ) dA 0 ,η η ζ ζ= =∫ (1)

which means that the E - weighted first moment of the
cross section with respect to the axis η  vanishes there.

(a)

(b)
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law yields the connection between the inner forces and
the displacements [12]:

e o

2
o o

e 2 2

MN A ,
R

d w w
M I ,

ds R

ξ

η

ε= −

⎛ ⎞
= − +⎜ ⎟⎜ ⎟

⎝ ⎠

(5)

e
o2

IMN .
R R

η
ξε+ = (6)

Let us now introduce the dimensionless
displacements and a consistent notation for the
derivatives:

o o
o o

n
( n )

n

u w
U , W ;

R R
d ( )( ) , n 1,2, .

dϕ

= =

= =
…… …

(7)

Substituting Hooke’s law, Eq. (5), and, after that,
the kinematical quantities, Eq. (3), into equilibrium Eqs.
(4), we get the system of differential equations:

( )

where

( 4 ) ( 2 )
o o

oo o
(1 )

o o

o oo

23
t e

ne e

m 0U U0 0
0 2 mW W0 1

0 0U U0 m
W W0 1 m 1m 0

f A RR , m 1 .
fI I

ξ

ξ

η η

ε

ε

−⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤
+ +⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤− ⎡ ⎤ ⎡ ⎤⎡ ⎤
+ + =⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ + −⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤
= = −⎢ ⎥

⎣ ⎦
(8)

Assume now that the strain has a negligible effect
on the equilibrium, i.e. εoξ = 0. In this respect, the
previous equation simplifies into the form:

( 4 ) ( 2 )
o o

o o
( 1 ) 3

o o t

o o ne

U U0 0 m 0
W W0 1 0 2

U U f0 m 0 0 R .
W W fm 0 0 1 m I η

−⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
+ +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

− ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
+ + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

(9)

2.2 Governing equations for the increments

It can be demonstrated that the increment in the
axial strain and in the rotation field have a similar
structure to Eqs. (3):

ob ob
mb o b o o b o b

u w,
R sξ η η ηε ε ψ ψ ψ ∂

= + = −
∂

(10)

ob ob
o b

u w
s Rξε ∂

= +
∂

. (11)

It can, in addition, be verified that the differential

equations the increments in the inner forces should
satisfy are of the following forms:

b
b o b tb

M 1 MN N f 0 ,
s R R R ηψ∂ ⎛ ⎞ ⎛ ⎞+ − + + =⎜ ⎟⎜ ⎟∂ ⎝ ⎠⎝ ⎠

(12a)

and:

2
b b

o b2

b
b o nb

M N MN
R s Rs

M
N f 0 .

R

η

η

ψ

ψ

∂ ∂ ⎡⎛ ⎞− − + +⎜ ⎟⎢∂ ⎝ ⎠∂ ⎣
⎤⎛ ⎞+ + + =⎥⎜ ⎟

⎝ ⎠ ⎦

(12b)

Since the investigated process is dynamical − and
in this case there is no change in the initial load − it
follows that the increments ftb and fnb are actually
forces of inertia, therefore:

2 2
ob ob

tb a nb a2 2
u wf A , f A .
t t

ρ ρ
∂ ∂

= − = −
∂ ∂

(13)

Here A is the area of the cross-section and ρa is the
average density over the cross-section. Based on the
aforementioned, recalling Hooke’s law, we obtain:

e b
b o b2

2
ob ob

b e 2 2

eb
b o b2

I MN m ,
RR

w wM I ,
s R

IMN m .
R R

η
ξ

η

η
ξ

ε

ε

= −

⎛ ⎞∂
= − +⎜ ⎟⎜ ⎟∂⎝ ⎠

+ =

(14)

A comparison of Eqs. (10), (12) and (14) results in
the equations of motion:

( )

( 4 ) ( 2 )
ob ob

oob ob
( 1 )

ob ob

ob obo

3
tb

nbe

m 0U U0 0
0 2 mW W0 1

0 0U U0 m
W W0 1 m 1m 0

fR .
fI

ξ

ξ

η

ε

ε

−⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤
+ +⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤− ⎡ ⎤ ⎡ ⎤⎡ ⎤
+ + =⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ + −⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
(15)

Observe that we have linearized the problem:
(a) we neglected the quadratic term εoξ εoξ b in (12a);
(b) we considered the validity of the inequalities
εoξ b >> (εoξbψoη)(1) and 1 >> εoξ in (12b) when
utilizing Hooke’s law.

If we assume harmonic vibrations and denote the
dimensionless displacement amplitudes by obÛ  and

obŴ  then we have:
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( )

( 4 ) ( 2 )
ob ob

oob ob
( 1 )

ob ob

oob ob

3
2ob

a
eob

ˆ ˆm 00 0 U U
ˆ ˆ0 2 m0 1 W W

0 0ˆ ˆ0 m U U
ˆ ˆ0 1 m 1m 0 W W

Û R; A .ˆ IW

ξ

ξ

η

ε

ε

λ λ ρ α

−⎡ ⎤ ⎡ ⎤⎡ ⎤⎡ ⎤
+ +⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤−⎡ ⎤
+ + =⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ + −⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤
= =⎢ ⎥

⎣ ⎦
(16)

Here λ and α are the eigenvalue and sought natural
frequency.

For an unloaded beam, i.e. when εoξ = 0 − we obtain
the equations which govern the free vibrations;
compare equation:

( 4 ) ( 2 )
ob ob

ob ob
( 1 )

ob ob ob

ob ob ob

ˆ ˆ0 0 m 0U U
ˆ ˆ0 1 0 2W W

ˆ ˆ ˆ0 m 0 0U U U
ˆ ˆ ˆm 0 0 m 1W W W

λ

⎡ ⎤ ⎡ ⎤−⎡ ⎤ ⎡ ⎤
+ +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤−⎡ ⎤ ⎡ ⎤
+ + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

(17)
to Eq. (11) in Ref. [13]. Depending on the supports,
the above system is associated with appropriate
boundary conditions. Note that the left side of Eq.
(16) − or that of Eq. (15) − can be rewritten in the
form:

( )
4 2 1 0( 4 ) ( 2 ) ( 1 ) (0 )

o

ob

ob

, ,

Û .
Ŵ

ξϕ ε⎡ ⎤ = + + +⎣ ⎦
⎡ ⎤
⎢ ⎥
⎣ ⎦

K y P y P y P y P y

y = (18)

Ordinary differential equations (ODEs), Eqs. (17),
(or which is the same, Eqs. (18)) and the
corresponding homogeneous boundary conditions
together constitute eigenvalue problems.

Observe that the i-th eigenfrequency αi in these
eigenvalue problems depends on the magnitude of the
concentrated force Pζ, or what is the same, on the
dimensionless load P = Pζ R2ϑ / (2Ieη) through the
axial strain: εoξ = εoξ (P). Also note that heterogeneity
in the material appears in the formulation via the
parameters m and ρa.

3. GREEN’S FUNCTION MATRIX

Differential equations (18) is degenerated as the
matrix:

4 0 0
0 1

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
P (19)

has no inverse. Let r(ϕ) be a prescribed inhomogeneity.
Consider the boundary value problem defined by the

ordinary differential equations:

4
( )

0
3

( ) ( ) ( ) ( ) ,

( )

ν
ν

ν

ϕ ϕ ϕ

ϕ

=

= =

=

∑K y P y r

P 0
(20a)

and the homogeneous boundary conditions valid for
fixed-fixed beams (the displacements and the rotations
are zero at the ends):

( 1 )
ob ob ob

ˆ ˆ ˆU W W 0
ϑ ϑ ϑ± ± ±

= = = . (20b)

Solution to the homogeneous part of equations
(20a) depends on whether the axial strain εoξ  is positive
or negative. Let:

if
o o2

o o

1 m m 1

m 1 m 1.
ξ ξ

ξ ξ

ε ε
χ

ε ε

− <⎧⎪= ⎨ − >⎪⎩
(21)

If mεοξ < 1, solution to the homogeneous part
assumes the form:

( ) ( )

4

i i2 2 2 2 ( 2 1 )i 1
,

× × ×
=

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
∑y Y C e (22a)

where:

1 2

3 4

cos 0 sin 0
, ,

sin 0 cos 0
cos sin 1

, .
sin 1 cos 0

ϕ ϕ
ϕ ϕ

χϕ ϕ χϕ
χ χϕ χ χϕ

−⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
−⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

Y Y

Y Y
M

(22b)

It can be verified that if  mεοξ > 1, Y3 and Y4
change into:

3 4
cosh sinh 1

, .
sinh 1 cosh 0

χϕ ϕ χϕ
χ χϕ χ χϕ

−⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

Y Y
M

(22c)

In the above equations, Ci are arbitrary constant
matrices, e is an arbitrary column matrix and:

( )o

m 1 .
m 1 ξε

+
=

+
M (22d)

Solution to the boundary value problem governed
by (20a) and (20b) is sought in the form:

11 12

21 22

( ) ( , ) ( )d ,

G ( , ) G ( , )
( , ) ,

G ( , ) G ( , )

ϑ

ϑ
ϕ ϕ ψ ψ ψ

ϕ ψ ϕ ψ
ϕ ψ

ϕ ψ ϕ ψ

−
=

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

∫y G r

G
(23)

where G(ϕ,ψ) is Green’s function matrix defined by
the following properties [5]:
1) The Green’s function matrix is a continuous

function of ϕ and ψ in each of the triangles
−ϑ ≤ ϕ ≤ ψ ≤ ϑ and −ϑ ≤ ψ ≤ ϕ ≤ ϑ. The functions
(G11(ϕ,ψ), G12(ϕ,ψ)) [G21(ϕ,ψ), G22(ϕ,ψ)] are
(2 times) [4 times] differentiable with respect to ϕ,
and the derivatives:
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( )

( )2i
2i

( , ) ( , ) ( 1,2 ) ,

G ( , )
G ( , ) ( 1,2,3,4; i 1,2 )

ν
ν

ν

ν
ν

ν

ϕ ψ ϕ ψ ν
ϕ

ϕ ψ
ϕ ψ ν

ϕ

∂
= =

∂

∂
= = =

∂

G G

(24)
are continuous functions of ϕ and ψ.
2) Let ψ be fixed in [−ϑ,ϑ]. Although the function

and the derivatives:

( 1 )
11 12
( )
21
( )
22

G ( , ), G ( , ) ,

G ( , ) ( 1,2,3 ) ,

G ( , ) ( 1,2 )

ν

ν

ϕ ψ ϕ ψ

ϕ ψ ν

ϕ ψ ν

=

=

(25a)

are continuous everywhere, the derivatives
( 1 )
11G ( , )ϕ ψ  and ( 3 )

22G ( , )ϕ ψ  have a jump at ϕ=ψ:

2( 1 ) ( 1 )
1111 110

lim G ( , ) G ( , ) 1 / P ( ),
ε

ϕ ε ϕ ϕ ε ϕ ϕ
→

⎡ ⎤+ − − =⎣ ⎦

(25b)
4( 3 ) ( 3 )

2222 220
lim G ( , ) G ( , ) 1 / P ( ).
ε

ϕ ε ϕ ϕ ε ϕ ϕ
→

⎡ ⎤+ − − =⎣ ⎦

(25c)
3) Let ααααα  be an arbitrary, otherwise constant vector.

For a fixed ψ ∈ [−ϑ, ϑ ], the vector G(ϕ,ψ)     ααααα, as
a function of ϕ(ϕ≠ψ), should satisfy
the homogeneous differential equations
K     [     G(φ,ψ)     ααααα     ] = 0.

4) The vector G(ϕ,ψ)     ααααα, as a function of ϕ, should
satisfy the boundary conditions in Eq. (20b). In
addition, a one, unique Green’s function matrix
belongs to the boundary value problem considered
here.
If Green’s function matrix exists, then vector (3)

satisfies differential equation (20a) and boundary
conditions (20b).

Consider now differential equations of the form:
K[y] = λ y (26)

where K[y] is given by Eq. (18) and λ is a parameter
(the eigenvalue sought). The system of ordinary
differential equations (26) is associated with
homogeneous boundary conditions (20b) to constitute
a boundary value problem.

The vectors uT = [u1⏐u2] and vT = [v1⏐v2] are
comparison vectors, if they are different from zero,
satisfy the boundary conditions and are differentiable
as many times as required.

The eigenvalue problem given by Eqs. (26) and (20b)
is self-adjoint if the product ( ) T

M, dϑ
ϑ ϕ−= ∫u v u Kv  is

commutative, i.e. (u,v)M = (v,u)M over the set of
comparison vectors and it is positive definite if
(u,u)M > 0 for any comparison vector u.

If the eigenvalue problem given by Eqs. (26) and
(20b) is self-adjoint, then Green’s function matrix is
cross-symmetric: G(ϕ,ψ) = GT(ψ,ϕ).

4. NUMERICAL SOLUTION TO THE
EIGENVALUE PROBLEMS

Employing Eq. (3), the eigenvalue problem given by
Eqs. (26) and (20b) can be replaced by a homogeneous
integral equation system, which has the following form:

( ) ( , ) ( )d .
ϑ

ϑ
ϕ λ ϕ ψ ψ ψ

−
= ∫y G y (27)

Numerical solution to the eigenvalue problem
determined by Eq. (27) can be sought by quadrature
methods [14]. Consider the integral formula:

n

j j
j 0

j

J( ) ( )d w ( )

[ , ] ,

ϑ

ϑ
φ φ ψ ψ φ ψ

ψ ϑ ϑ

−
=

= ≡

−

∑∫
∈

(28)

where ψj(ϕ) is a vector and the weights wj are known.
Having utilized the latter equation, we obtain from Eq.
(27) that:

n

j j j
j 0

j

w ( , ) ( ) ( ) ,

1 / [ , ]

ϕ ψ ψ κ ϕ

κ λ ψ ϑ ϑ
=

=

= −

∑ �� �

��

G y y

∈
(29)

is the solution, which yields an approximate  eigenvalue
1 /λ κ=� �  and a corresponding approximate

eigenfunction ( )ϕ�y . After setting ϕ to
ψi(i=0,1,2,...,n) we have:

n

j i j j i
j 0

i j

w ( , ) ( ) ( )

1 / , [ , ]

ψ ψ ψ κ ψ

κ λ ψ ψ ϑ ϑ
=

=

= −

∑ �� �

��

G y y

∈
(30)

or:

,κ=� ��GDY Y (31)

where i j[ ( , )]ψ ψ= GG  is symmetric when the
problem is self-adjoint. Moreover:

0 0 n n

n 2 n 2

diag( w ,...,w | ...| w ,...,w )
= =

= ��	�
 ��	�
D

and T T T T
0 1 n[ ( )| ( )| ...| ( )]ψ ψ ψ=� � �y y yY . After

solving the generalized algebraic eigenvalue problem (31)
we have the approximate eigenvalues rλ�  and

eigenvectors r
�Y , while the corresponding eigenfunction

is obtained by a substitution into Eq. (29), so that:

n

r r j j r j
j 0

( ) w ( , ) ( )

r 0,1,2, ,n .

ϕ λ ϕ ψ ψ
=

=

=

∑�� �

…

y G y

(32)

Divide the range [−ϑ,ϑ] into equidistant
subintervals of length h and apply the integration
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formula to each subinterval. By repeating the line of
thought leading to Eq. (32), one can show that the
algebraic eigenvalue problem obtained has the same
structure as Eq. (32).

It is also possible to consider the integral equation
(27) as if it were a boundary integral equation and
apply isoparametric approximation on the
subintervals, i.e. on the elements. If this is the case,
one can approximate the eigenfunction on the e-th
element (the e-th subinterval, which is mapped onto

the interval γ ∈ [−1,1] and is denoted by eL ) by:
e e e e

1 2 31 2 3( ) ( ) ( ) ,γ γ γ= + +y N y N y N y (33)

where quadratic local approximation is utilized with
Ni = diag(Ni),  N1 = 0.5 γ (γ−1),  N2 = 1−γ2,
N3 = 0.5 γ (γ+1), 

e

iy  is the value of the eigenfunction
y(ϕ) at the left endpoint, the midpoint and the right
endpoint of the element, respectively. Upon the
substitution of approximation given by Eq. (33) into Eq.
(27) we have:

be

e

e
1

n e
2

e 1 e

3

( ) ( , ) ( )d ,ϕ λ ϕ γ γ γ
=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∑∫��

y

y G N y

y
L

(34)

in which [N(γ )] = [N1(γ ) ⏐ N2(γ ) ⏐ N3(γ )] is the
number of elements (subintervals). Using Eq. (34) as a
point of departure and repeating the line of thought
leading to Eq. (31), once again we obtain an algebraic
eigenvalue problem.

5. GREEN’S FUNCTION MATRICES FOR
THE VIBRATIONS

5.1 Introductory remarks

Relying on the definition presented in Section 3,
the calculation of Green’s function matrices for loaded
fixed-fixed beams is presented here. With regard to
property (3) in the definition, the Green’s function
matrix can be given in the following form:

4

j j j
j 1( 2 2 )

( , ) ( ) ( ) ( ) ,ϕ ψ ϕ ψ ψ
=×

⎡ ⎤= ±⎣ ⎦∑��	�
G Y A B (35)

where: (a) the sign is [positive] (negative) if [ϕ ≥ ψ]
(ϕ ≤ ψ); (b) the matrices Aj and Bj have the following
structure:

j j
11 12

j j1 j2j j
21 22

j j
11 12

j j1 j2j j
21 22

A A
,

A A

B B
j 1,...,4;

B B

⎡ ⎤
⎢ ⎥ ⎡ ⎤= =⎢ ⎥ ⎣ ⎦
⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥ ⎡ ⎤= = =⎢ ⎥ ⎣ ⎦
⎢ ⎥⎣ ⎦

A A A

B B B

(36)

(c) the coefficients in matrix Bj are independent of the
boundary conditions.

Since the matrices Y3 and Y4 are different for the
two cases of loading, these have to be addresses
individually.

5.2 Calculation of Green’s function matrix when mεoξ<1

For the sake of brevity, let us now introduce the following notational conventions:
1 2 3 3 4 4

1i 1i 1i 2i 1i 2ia B , b B , c B , d B , e B , f B .= = = = = = (37)

We observe that 
1 2 1 2

21 21 22 22B B B B 0= = = = , see Section 3. The equation systems for the unknowns a, ..., f can
be set up by fulfilling the continuity and discontinuity conditions for Green’s function matrix at ϕ =ψ, on the basis
of equations (25) − see properties (1) and (2). If i=1 we have:

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

2 2

3 3

4 4

cos sin cos sin 1 a
sin cos sin 1 cos 0 b
sin cos sin cos 0 c
cos sin cos 0 sin 0 d

esin cos sin 0 cos 0
fcos sin cos 0 sin 0

ψ ψ χψ ψ χψ
ψ ψ χ χψ χ χψ
ψ ψ χ χψ χ χψ

ψ ψ χ χψ χ χψ

ψ ψ χ χψ χ χψ

ψ ψ χ χψ χ χψ

⎡ − − ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥⎢ ⎥− − − − ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥− − ⎢ ⎥⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦− −⎢ ⎥⎣ ⎦

M

M 1
2m

0
0

,
0
0
0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

(38)

from which it follows that:
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( )( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 21 2
11 112 2

23 3
11 2132

4 4
11 212

sin cosa B , b B ,
2 21 1 m 1 1 m

sin 1c B , d B ,
2 1 m21 1 m

1 cos 1e B , f B .
2 2 m 11 1 m

χ ψ χ ψ

χ χ

χ χψ
χχ

χψ ψ

χ χ

= = = =
− − − −

= = − = = −
−− −

= = − = =
−− −

M M

MM

M
MM

(39)

If i=2 then:

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

2 2

3 3

4 4

cos sin cos sin 1 a
sin cos sin 1 cos 0 b
sin cos sin cos 0 c
cos sin cos 0 sin 0 d

esin cos sin 0 cos 0
fcos sin cos 0 sin 0

ψ ψ χψ ψ χψ
ψ ψ χ χψ χ χψ
ψ ψ χ χψ χ χψ

ψ ψ χ χψ χ χψ

ψ ψ χ χψ χ χψ

ψ ψ χ χψ χ χψ

⎡ − − ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥⎢ ⎥− − − − ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥− − ⎢ ⎥⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦− −⎢ ⎥⎣ ⎦

M

M

1
2

0
0
0
0
0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
−⎢ ⎥⎣ ⎦

(40)

is the equation system and the solutions are:

( ) ( ) ( )

( )

1 2 3
12 12 122 2 2 2

3 4 4
22 12 22 22 2

1 cos 1 sin 1 cosa B , b B , c B ,
2 2 21 1 1

1 sin 1d B 0 , e B , f B .
2 21

ψ ψ χψ

χ χ χ χ

χψ
χχ χ

= = = = − = = −
− − −

= = = = = =
−

(41)

As regards the matrices Aj, or which is the same, the unknown scalars:
3 41 2 3 4

1i 1i 1i 2i 1i 2iA , A , A , , , A i 1,2( ) ( ) ( ) A ( ) A ( ) ( ) ; [ , ]ψ ψ ψ ψ ψ ψ ψ ϑ ϑ= −∈

(
1 2 1 2

21 21 22 22A A A A 0= = = = ), property (4) in Section 3, and boundary conditions given by Eq. (20b) yield the
following system:

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

1
1i

2
1i

3
1i

3
2i2 2

4
2 2 1i

4
2i

A
cos sin cos sin 1

Acos sin cos sin 1
sin cos sin 1 cos 0 A
sin cos sin 1 cos 0

A
cos sin cos 0 sin 0

Acos sin cos 0 sin 0

A

ϑ ϑ χϑ ϑ χϑ
ϑ ϑ χϑ ϑ χϑ
ϑ ϑ χ χϑ χ χϑ
ϑ ϑ χ χϑ χ χϑ

ϑ ϑ χ χϑ χ χϑ

ϑ ϑ χ χϑ χ χϑ

⎡
⎢
⎢−⎡ ⎤
⎢⎢ ⎥− − ⎢⎢ ⎥
⎢⎢ ⎥− − −
⎢⎢ ⎥

− ⎢⎢ ⎥
⎢⎢ ⎥
⎢⎢ ⎥
⎢⎢ ⎥− −⎣ ⎦ ⎢

⎣

M
M

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

2 2

2 2

a cos b sin c cos d e sin f
a cos b sin c cos d e sin f

a sin bcos c sin d e cos
a sin bcos c sin d e cos

acos b sin c cos e sin

acos b sin c cos e sin

ϑ ϑ χϑ ϑ χϑ
ϑ ϑ χϑ ϑ χϑ

ϑ ϑ χ χϑ χ χϑ
ϑ ϑ χ χϑ χ χϑ

ϑ ϑ χ χϑ χ χϑ

ϑ ϑ χ χϑ χ χϑ

⎤
⎥
⎥
⎥
⎥
⎥
⎥ =
⎥
⎥
⎥
⎥
⎥

⎢ ⎥
⎦

− − − + − −⎡
⎢ − + + − +

− + + −
= + + − +

− − − −

− + −⎣

M
M

.

⎤
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎦

(42)
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( )

( ) ( )( )
( )

( ) ( )

1 2
1i

21
2 2 3 2

1i
21

3
1i

21
3 2 2

2i
21

1A b sin sin cos cos d cos e ,
D

1A a sin sin cos cos a 1 cos sin c f sin ,
C

1A b e sin sin cos cos d cos ,
D
1A a 1 sin c 1 sin f cos sin

C

ϑ χϑ χ ϑ χϑ χ χϑ χ

χϑ χ ϑ χϑ ϑ χϑ χ ϑ χϑ ϑχ χ χϑ

χ χ ϑ χϑ ϑ χϑ ϑ
χ

χ χϑ χ χ ϑ χ χ ϑ χ

⎡ ⎤= + − +⎣ ⎦

= + − − + +

= − + + −⎡ ⎤⎣ ⎦

= − − + − −

M M

( )

( ) ( )

( ) ( )

( ) ( )

4 2
1i

21
4 2

2i
21

2 2

sin cos ,

1A a c cos cos sin sin c 1 sin cos f sin ,
C

1A b 1 cos d sin cos cos sin
D

d 1 cos cos e 1 cos .

ϑ ϑ χϑ

ϑ χϑ χ ϑ χϑ ϑ χϑ χ ϑ χϑ ϑ

χ χϑ χϑ χ ϑ χϑ ϑ χϑ
χ

χ ϑ χϑ χ χ ϑ

⎡ ⎤−
⎣ ⎦

⎡ ⎤= − + + + − +
⎣ ⎦

⎡= − + − −⎣

⎤− − + −
⎦

M M

M

(44)

5.3 Calculation of Green’s function matrix if mεoξ >1

As regards 
1 4

1i 2iB , ,B… , on the basis of Eq. (38), it is not too difficult to verify that for i=1 the following
equations should be solved:

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

2 2

3 3

4 4

cos sin cosh sinh 1 a
sin cos sinh 1 cosh 0 b
sin cos sinh cosh 0 c
cos sin cosh 0 sinh 0 d

esin cos sinh 0 cosh 0
fcos sin cosh 0 sinh 0

ψ ψ χψ ψ χψ
ψ ψ χ χψ χ χψ
ψ ψ χ χψ χ χψ

ψ ψ χ χψ χ χψ

ψ ψ χ χψ χ χψ

ψ ψ χ χψ χ χψ

⎡ − ⎤ ⎡⎢ ⎥ ⎢− − −⎢ ⎥ ⎢⎢ ⎥− − ⎢⎢ ⎥ ⎢⎢ ⎥− − − ⎢⎢ ⎥
− − − −⎢ ⎥

⎢ ⎥ ⎣− − −⎢ ⎥⎣ ⎦

M

M 1
2m

0
0

,
0
0
0

⎡ ⎤⎤
⎢ ⎥⎥
⎢ ⎥⎥
⎢ ⎥⎥
⎢ ⎥=⎥
⎢ ⎥⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎦ ⎣ ⎦

(45)

for which:

( )( ) ( )( )

( )( ) ( )

( )( ) ( )

2 21 2
11 112 2

3 3
11 212

4 4
11 212

sin cosa B , b B ,
2 21 1 m 1 1 m

1 sinh 1c B , d B ,
2 2 1 m1 1 m

1 cosh 1e B , f B
2 2 1 m1 1 m

χ ψ χ ψ
χ χ

χψ

χ χ

χψ ψ
χ χ

= = − = = −
+ − + −

= = − = = −
−+ −

= = = =
−+ −

M M

MM

M
MM

(46)

are the solutions. If i=2:

Let us introduce the constants:

( ) ( )2
21

21

C 1 sin sin cos sin sin cos ,

D sin cos cos s in

χ ϑ χϑ χϑ χ ϑ χϑ ϑ χϑ

χ ϑ χϑ ϑ χϑ

= − + −

= −

M
(43)

with which we can manipulate the solutions to Eq. (42) into these forms:
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( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

2 2

3 3

4 4

cos sin cosh sinh 1 a
sin cos sinh 1 cosh 0 b
sin cos sinh cosh 0 c
cos sin cosh 0 sinh 0 d

esin cos sinh 0 cosh 0
fcos sin cosh 0 sinh 0

ψ ψ χψ ψ χψ
ψ ψ χ χψ χ χψ
ψ ψ χ χψ χ χψ

ψ ψ χ χψ χ χψ

ψ ψ χ χψ χ χψ

ψ ψ χ χψ χ χψ

⎡ − ⎤ ⎡⎢ ⎥ ⎢− − −⎢ ⎥ ⎢⎢ ⎥− − ⎢⎢ ⎥ ⎢⎢ ⎥− − − ⎢⎢ ⎥
− − − −⎢ ⎥

⎢ ⎥ ⎣− − −⎢ ⎥⎣ ⎦

M

M

1
2

0
0
0
0
0

⎡ ⎤⎤
⎢ ⎥⎥
⎢ ⎥⎥
⎢ ⎥⎥
⎢ ⎥=⎥
⎢ ⎥⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
−⎢ ⎥⎢ ⎥⎦ ⎣ ⎦

(47)

is the equation system - compare it to Eq. (40) - and the solutions are as follows:

( ) ( ) ( )

( )

1 2 3
12 12 122 2 2 2

3 4 4
22 12 22 22 2

1 cos 1 sin 1 cosha B , b B , c B ,
2 2 21 1 1

1 sinh 1d B 0 , e B , f B .
2 21

ψ ψ χψ
χ χ χ χ

χψ
χχ χ

= = = = − = =
+ + +

= = = = − = = −
+

(48)

For the matrices Aj, boundary conditions given by Eq. (20b) yield the equation system upon repeating the steps
leading to Eq. (42), consequently:

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

1
1i

2
1i

3
1i

3
2i2 2

4
2 2 1i

A
cos sin cosh sinh 1

Acos sin cosh sinh 1
sin cos sinh 1 cosh 0 A
sin cos sinh 1 cosh 0

A
cos sin cosh 0 sinh 0

Acos sin cosh 0 sinh 0

A

ϑ ϑ χϑ ϑ χϑ
ϑ ϑ χϑ ϑ χϑ
ϑ ϑ χ χϑ χ χϑ
ϑ ϑ χ χϑ χ χϑ

ϑ ϑ χ χϑ χ χϑ

ϑ ϑ χ χϑ χ χϑ

− −⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥− − −
⎢ ⎥

− − −⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥− − −⎣ ⎦

M
M

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )

4
2i

2 2

a cos b sin ccosh d e sinh f
a cos b sin c cosh d e sinh f

a sin bcos c sinh d e cosh
a sin bcos c sinh d e cosh

a cos b sin c cosh e sinh

acos

ϑ ϑ χϑ ϑ χϑ
ϑ ϑ χϑ ϑ χϑ

ϑ ϑ χ χϑ χ χϑ
ϑ ϑ χ χϑ χ χϑ

ϑ ϑ χ χϑ χ χϑ

ϑ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥ =
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

− − − + + −
− + + + +

− − + +
= + − − −

− − + −

−

M
M

( ) ( )2 2

,

b sin c cosh e sinhϑ χ χϑ χ χϑ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎣ ⎦

(49)

from where, with the constants:

( ) ( )2
21

21

1 sin sinh cos sinh sin cosh ,

sin cosh cos sinh

χ ϑ χϑ χ ϑ χ ϑ χϑ ϑ χϑ

χ ϑ χϑ ϑ χϑ

= − + + +

= −

C M

D
, (50)

the closed form solutions are:
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( )( )
( ) ( )

( )

( ) ( )

1 2
1i

21
2 3 22

1i
21

3
1i

21
3 2 2

2i
21

1A b sin sinh cos cosh d cosh e ,

a sin sinh cos cosh a 1 cos sinh c f sinh
A ,

1A b e sin sinh cos cosh d cos ,

1A a 1 sinh c 1 sin f cos s

ϑ χϑ χ ϑ χϑ χ χϑ χ

ϑχ χ ϑ χϑ ϑ χϑ χ ϑ χϑ ϑχ χ χϑ

χ χ ϑ χϑ ϑ χϑ ϑ
χ

χ χϑ χ χ ϑ χ χ ϑ

= + − −

− + + + +
=

= + − −⎡ ⎤⎣ ⎦

= + + + +

D

M M

C

D

C
( )

( ) ( )

( ) ( )(
( ) ( ) )

4 2
1i

21
4 2

2i
21

2 2

in sin cos ,

1A a c cos cosh sin sinh c 1 sin cosh f sin ,

1A b 1 cosh d sin cosh cos sinh

d 1 cos cosh e 1 cos .

χϑ ϑ χϑ

ϑ ϑχ χ ϑ χϑ ϑ χϑ χ ϑ χϑ ϑ

χ χϑ χϑ χ ϑ χϑ ϑ χϑ
χ

χ ϑ χϑ χ χ ϑ

⎡ ⎤+
⎣ ⎦

⎡ ⎤= − − + + + +
⎣ ⎦

= − + + − +

+ + + +

M M
C

M
D

(51)

6. THE LOAD-STRAIN RELATIONSHIP
AND THE CRITICAL STRAIN

6.1 Load-strain relationship

It is essential to know how the load affects the strain
of the centroidal axis. In practice, load is always the
known quantity. However, our formulation has the axial
strain εoξ as parameter. As the model is linear, the effects
the deformations have on the equilibrium state are
negligible. We can establish the relationship
εoξ = εoξ (P) on the basis of differential equations (9),
which are to be solved by assuming  ft = fn = 0. For a
fixed-fixed beam, differential equations (9) are
associated with the boundary conditions:

o o oU W 0ηϑ ϑ ϑ
ψ± ± ±

= = = (52a)

and the continuity (discontinuity) conditions:

o o o o0 0 0 0

o o0 0

U U , W W ,

,
ϕ ϕ ϕ ϕ

η ηϕ ϕ
ψ ψ

=− =+ =− =+

=− =+

= =

=
(52b)

0 0 0 0

0 0

N N , M M ,

dM dM P 0
ds ds

ϕ ϕ ϕ ϕ

ζ
ϕ ϕ

=− =+ =− =+

=+ =−

= =

− − =
(52c)

prescribed at the crown point. Here, the axial strain
εoξ, the angle of rotation ψoη, the axial force N as well
as the bending moment M can all be expressed with
the dimensionless displacements Uo and Wo (more
details are presented in the M.Sc. Thesis [15]:

( 1 ) ( 1 )
o o o o o oU W , U Wξ ηε ψ= + = − (53a)

e o e o
o

MN A A ,ξ ξε ε
ρ

= − ≈ (53b)

( )e ( 2 )
o o2

o

I
M W W .η

ρ
= − + (53c)

The long formal transformations lead to the axial
strain as:

( )( )
( )[ ]o 2

1 cos sin
.

1 m sin cos 2m sinξ
ϑ ϑ ϑ

ε
ϑ ϑ ϑ ϑ ϑ ϑ

− − −
=

+ + −

P
(54)

If P is [negative] (positive), then ε0ξ is [negative]
(positive).

6.2 The critical strain

When reaching the critical strain, the heterogeneous
curved beam in compression loses its stability. This
limit can be obtained by solving the eigenvalue problems
defined by Eqs. (15) with the right side set to zero (the
beam is in a static equilibrium under the force exerted
at the crown point) and by the corresponding
homogeneous boundary conditions. In this case,
physically, the lowest possible value of χ is sought.

The general solutions for the displacement
increments are:

ob 2 3 4

5 6

W E E cos E sin
E cos E sin ,

ϕ ϕ
χ χϕ χ χϕ

= − − + −
− + (55a)

ob 1 2 3 4

5 6

U E E E sin E cos
E sin E cos

ϕ ϕ ϕ
χϕ χϕ

= + + + +
+ +

M
(55b)

in which Ei (i = 1, ..., 6) are undetermined constants
of integration. For a fixed-fixed beam:

(1 )
ob ob obU W W 0ϑ ϑ ϑ± ± ±

= = = (56)

are the boundary conditions. Therefore, the system of
equations to be dealt with is:



ENGINEERING MODELLING 27 (2014) 3-4, 85-100 95

L. Kiss, et al.: Vibrations of fixed-fixed heterogeneous curved beams loaded by a central force at the crown point

1

2
2 2

3
2 2 4

5

6

0 1 cos sin cos sin E 0
0 1 cos sin cos sin E 0

E0 0 sin cos sin cos 0
E 00 0 sin cos sin cos
E 01 sin cos sin cos
E 01 sin cos sin cos

ϑ ϑ χ χϑ χ χϑ
ϑ ϑ χ χϑ χ χϑ

ϑ ϑ χ χϑ χ χϑ

ϑ ϑ χ χϑ χ χϑ
ϑ ϑ ϑ χϑ χϑ
ϑ ϑ ϑ χϑ χϑ

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ =⎢ ⎥
⎢ ⎥− − ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦− − −⎣ ⎦

M
M

.

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

(57)

Nontrivial solution can be obtained if we set the determinant of the coefficient matrix to zero, thus:

( )
( )( )2 2

D 8 cos sin sin cos

sin sin cos sin sin cos sin sin 0.

χ ϑ χϑ χ ϑ χϑ

χ ϑ χϑ χ ϑ ϑ χϑ ϑ ϑ χϑ χ ϑ χϑ

= − − + ×

× − + − + =M M
(58)

In this way there are three solutions:
0, sin cos cos sin ,χ χ ϑ χϑ ϑ χϑ= = (59)

( ) ( )2 2sin cos sin sin cos sinχϑ χ ϑ ϑ ϑ ϑ ϑχ χϑ χ χϑ+ = +M M (60)

from which, physically, the lowest possible one is obtained from the second equation in Eqs. (59):
tan tan .χ ϑ χϑ= (61)

The approximative polynomial that satisfies the above relation with a very good accuracy is:

( ) 2 4 3 2
ff

2

g 3.689334 516 10 0.131139 9068 0.2595737664

9.600584 516 10 4.506 225066 .

χϑ ϑ ϑ ϑ ϑ

ϑ

−

−

= = × − + −

− × +
(62)

It means that the critical strain calculated from Eq. (21) is:

2
ff

o crit
g1 1 .

mξε
ϑ

⎡ ⎤⎛ ⎞⎢ ⎥= − −⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

(63)

7. COMPUTATIONAL AND
EXPERIMENTAL RESULTS

A program has been developed in Fortran90 to
numerically solve the eigenvalue problems governed
by the Fredholm integral equations. The results have
been compared to those valid for the free vibrations of
curved beams with the same geometric and material
properties. (For a more detailed study about the natural
frequencies of planar curved beams see Ref. [5].

7.1 Numerical results for free vibrations

When we set the strain, and at the same time
the parameter χ to a very small magnitude − i.e.
|εoξ | = | εoξ crit ⋅10−6 | − for both loading cases we get
back identical results obtained in Refs. [5] and [16] for
the free vibrations.

It is known, see Ref. [13], that the i-th
eigenfrequency for the free transverse vibrations of
heterogeneous straight beams can be calculated from
the relation:

a

e

2
i,char

i A 4
bI

C
.

η

ρ

π
α∗ =

A
(64)

Here, the constant Ci,char depends on the supports
and the number of the frequency sought (see Table 1),
while lb is the length of the beam.

If we recall Eq. (16)2 which, for such a small strain
considered, expresses the relation between the
eigenvalues λi and the eigenfrequencies αi=αi free  for
the free vibrations of curved beams, we arrive at relation:

i
A 2a

Ie

2

A 2a
rIe

2R ii
i,char 2

i
C .

ρ
η

ρ
η

λ

π

ϑ λα
α π∗ = =

A
(65)

This, therefore, expresses the relation between the
natural frequencies of curved and straight beams with
the same length ( b Rϑ=A ) and same material. In
Figure 2 the above ratio is plotted against the central

angle ϑ  of the curved beam. Four different values of
the parameter m were picked: 1000; 3400; 12000 and
100000.

Table 1 The values of Ci,char

 Support type i 1=  i 2=  i 3=  i 4=  

 Fixed-fixed beam 2.266 6.243 12.23 20.25 
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Fig. 2  Results for fixed-fixed beams when εoξ ≅ 0

Fig. 3  A comparison with vibrating rods when εoξ ≅ 0
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Observe that the ratio of the even natural
frequencies are independent of m, while the odd ones
depend enormously on it if the central angle is rather
small. It is also important to mention that the frequency
spectrum changes as ϑ  increases, e.g. the first/third
eigenfrequency becomes the second/fourth one in
terms of magnitude if ϑ  is sufficiently big.

Relying on Ref. [16], when dealing with the free
longitudinal vibrations of fixed-fixed rods, the natural
frequencies assume the following form:

i char
i

r a

K Eˆ ,α π
ρ

=
A

(66)

where the constant Kichar = 1; (i = 1, 2, 3, ...) and lr is
the length of the rod.

If we recall Eq. (16)2 again, we can compare
this result with the free vibrations of curved beams
|εoξ| = |εo ξcrit ⋅10−6|  ≅ 0 (when calculating the
eigenvalues λi) in such a way that:

i
i char i

i

1K .
ˆ m
α ϑ λ
α π

= (67)

These quotients for i = 1, 2 are plotted in Figure 3.
It turns out that the ratios do not depend on the
parameter m and are equal to 1 and 2, respectively, if
the central angle is small enough. It is also interesting
to mention that, when the curved beam is pinned-
pinned, there are hardly any noticeable differences. The
equations of the fitting curves are:

1

1
2

1.001118 881
ˆ

0.010 891608 0.031031468 ,

α
α

ϑ ϑ

= +

+ + (68a)

2

2
2

2 1.999126 573
ˆ

0.012572027 0.014195804 .

α
α

ϑ ϑ

= +

+ + (68b)

7.2 Experimental determination of the
eigenfrequencies

Aiming to confirm the theoretical results, we began
high-accuracy experimental investigations. A membrane-
less VISATON EX 45S loudspeaker (with 10 W output)
was chosen as an excitatory device. It was fixed to the
crown of the curved beam with a screw; to better
understand the set-up, see  Figure 4.

The total additional mass at the crown is m = 74 g,
that is ~ 0,794 N. The original electronic system – with
signals generated by a free-to-access software
SweepGen 3.5.2.24 (http://www.satsignal.eu) – can
realize the desired output frequency range. The
VISATON EX 45S electro-dynamical exciter is
practically a membrane-less loudspeaker and its moving
coil acts directly on the studied structural member.

Fig. 4  The experimental set-up: (1) curved beam; (2) fixing
screw of the (3) excitatory device; (4) strain gauge

A high-performance electronic amplifier circuit
drives the exciter at the required voltage and power
(AD-022 amplifier module, www.adelaida.ro). It is
presented in Figure 5. This High-Fidelity amplifier
module is based on a TDA7294 amplifier integrated
circuit, which has utterly preferable technical
parameters. The amplifier can output a maximum of
100 W power, when using a ±38 V supply, but for the
experiments (in order to protect the exciter) the supply
voltage was limited to ±22 V. The power supply,
presented in Figure 6, is a simple one, because the
amplifier circuit has a very good differential supply
voltage ripple rejection. It consists of a 230 V/2×19 V,
1A mains transformer, a 3A bridge rectifier and
2×4.7 mF filtering electrolytic condensers. There
is a 200 cm2 heat sink attached to the integrated
power amplifier circuit.

Fig. 5  The schematic of the amplifier connections

Fig. 6  The schematic of the power supply circuit

The input signal is generated by a computer
software. There is a bunch of signal generator
programmes available on the Internet. In our
experiments, the free Sweep-Gen 3.5.2.24 has been
used. This is a simple, but at the same time, very
effective audio signal generator. It has a lot of presets,
e.g. sine/square shape, separate L/R levels and
frequencies, preset and custom frequency ranges,
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various sweep modes and noise, etc. The input signal
was sent from the 3.5 mm stereo jack audio port of a
computer. The input sensitivity was found to be
sufficiently good. Both the left and right channels were
used with 2×1 kΩ resistors for protection and
separation. A 10 kΩ potentiometer made it possible to
set the desired input level.

Each of the curved beams was equipped with an
HBM simple-grid electric strain gauge – see part (4) in
Figure 4. The active length of the strain gauge was 10
mm, while the electric resistance was 120 Ω. The strain
gauge was connected to a quarter Wheatstone bridge
to monitor the occuring strains due to the mechanical
vibrations. During the experiments, the authors
investigated a frequency range of 5 ... 2500 Hz, with a
sampling rate of 20000/s, using a multichannel National
Instruments series 6000 data acquisition device. Two
channels were involved: the first one for the excitation
signal and the other one for receiving the signals from
the strain gauges.

In an attempt to improve the accuracy of the
received frequencies, the authors have used
customized settings instead of the default ones under
SweepGen 3.5.2.24. This new program counts how
many times the signal passes through the zero value
and, based on this information, we could determine
the exact frequency of the exciter. Given the fact that
the sample rate was 20000 per second, the obtained
frequencies were more reliable and correctly
determined. A very first attempt was made on a sweep
frequency mode in the initially predicted 5 ... 2500 Hz
range. As a result, with a manual command, it became
feasible to monitor the environment of the expected
eigenfrequencies in order to find protuberant
amplitudes of the signal coming from the strain gauge.

A particular attention has been given to filtering out
the eigenfrequencies of the exciter.

Due to the technical limits, we determined only the
first (lowest) eigenfrequency of the four investigated
beams. In the near future, the authors intend to study a
larger range of eigenfrequencies with more sensitive
devices.

The measured and in several ways computed first
eigenfrequencies of the homogeneous curved beams
(E = 2.06⋅105 MPa, ρa = 7800 kg/m3) are compared
in Table 2, where the  relative error was calculated by
the following formula:

1,Num 1,Meas

1,Meas
100[%] .

α α
∆

α
−

= ⋅ (69)

Utilizing the commercial finite element software
ABAQUS CAE 6.7., the additional mass at the crown
was modelled by an increased density of the beam.
Three-node B31 beam elements were used and the
Linear Perturbation Frequency step. The outcomes are
outlined by α1 Abaqus in the corresponding table.

The α1 Ansys outcomes of the software ANSYS
were established by using 3D elements and a
concentrated mass at the crown.

For the numerical model (based on the Green’s
function matrices), we replaced the additional mass m
with a concentrated force of 0.794 N. It was found
that the strains caused by such a small force are in the
magnitude of (1.6⋅10−4 ... 4.9⋅10−5)⋅εοξ crit and,
therefore, have no effect on the frequencies.
Consequently, we got back the results valid for free
vibrations – see α1 Num in Table 2.

Between the numerical and experimental results, the
difference is always less than 10%. It is considered to
be a good correlation.

m 2J w × h R Beam 
weight α1 Abaqus α1 Num α1 Ansys α1 Meas ∆ 

[-]  [°] [mm2] [mm] [N] [Hz] [Hz] [Hz] [Hz] [%] 
98 523 46 29.7 × 4.8 434.9 3.81 556.2 557.5 540.1 507 9.96 
84 984 43.1 25 × 5.5  462.9 3.66 643.2 645.2 624.9 614 5.08 
77 961 36.9 29.5 × 5  403 2.93 1057.8 1062.8 1028 1016 4.6 
281 169 31.17 25.6 × 3.1 474.5 1.57 667.6 668.8 642.5 625 7 

Table 2. Results for the frequencies

Fig. 7  Results for loaded curved beams
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7.3 Results for beams under a concentrated
force

The effect of the central concentrated load on the
length of the centroidal axis is accounted for. In this
subsection, αi denotes the i-th eigenfrequency of the
loaded beam, while the eigenfrequencies of the free
vibrations (when the beam is unloaded) are noted by
αi free. Figure 7 presents the quotient 2 2

1 1 free/α α
against the quotient o o  crit| / |ξ ξε ε , when the loading
is directed both, upwards and downwards. We point
out that in this case the subscript 1 refers to the lowest
frequency (which is not always the first one in the
frequency numbering scheme that is shown in Figure
2). The ratios investigated are practically independent
of m and ϑ. While for pinned-pinned beams, these
ratios valid for [compression] <tension> [decrease]
<increase> linearly, this time it is better to add a
quadratic term to the approximative polynomials for a
better accord. Equations:

if

2
o1

2
o crit1 free

2
o

o
o crit

| |
1.00190 0.968 24

0.03280 , 0

ξ

ξ

ξ
ξ

ξ

εα
εα

ε
ε

ε

= − −

⎛ ⎞
− <⎜ ⎟⎜ ⎟

⎝ ⎠

(70)

if

2
o1

2
o crit1 free

2
o

o
o crit

| |
1.000 904330 0.965029 372

0.018791494 , 0.

ξ

ξ

ξ
ξ

ξ

εα
εα

ε
ε

ε

= + −

⎛ ⎞
− >⎜ ⎟⎜ ⎟

⎝ ⎠

(71)

agree well with the computational results.

8. CONCLUDING REMARKS

We have investigated the vibrations of curved
beams with cross-sectional heterogeneity and subjected
to a vertical force at the crown point.
1) We have derived the governing equations of those

boundary value problems which determine how the
radial load affects the natural frequencies.

2) For a fixed-fixed beam, we have determined
Green’s function matrix assuming that the beam is
prestressed by radial load. When computing this
matrix we had to take into account that the system
of ODEs that govern the problem are degenerated.

3) Making use of Green’s function matrix we have
reduced the self-adjoint eigenvalue problem set up
for the eigenfrequencies to an eigenvalue problem
governed by a homogeneous system of Fredholm
integral equations. These integral equations can be
used for those dead loads which result in a constant

axial strain on the E-weighted centroidal axis (that
is, for a constant radial load as well).

4) Numerical solutions were provided for fixed-fixed
beams. The quotient 2 2

1 1 free/α α  depends almost
linearly on the axial strain εoξ  and is independent of
the parameter m. Knowing the relationship
εoξ = εoξ (P), we can determine that value of εoξ
which belongs to a given load and consequently the
natural frequency of the loaded structure.

5) The numerical results were verified by commercial
finite element calculations and experiments. It turns
out that the numerical model approximates the
eigenfrequencies with good accuracy.
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