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SUMMARY
This study is concerned with determination of the optimal replenishment policy for economic manufacturing

quantity (EMQ) model with backlogging and machine reliability issue. Classic EMQ model does not consider
nonconforming items generated during a production cycle, nor does it deal with the machine breakdown situation.
It is noted that in manufacturing system when back-ordering is permitted, a random machine failure can take place
in either backorder filling time or in on-hand inventory piling period. The first phase of this study examines the
aforementioned practical issues by incorporating rework process of defective items, scrap and random machine
failure taking place specifically in backorder satisfying time into the EMQ model. The objective is to determine the
optimal replenishment lot-size that minimizes the overall production-inventory costs. Mathematical modelling and
analysis is used and the renewal reward theorem is employed to cope with the variable cycle length. Theorem on
conditional convexity of total cost function is proposed and proved. The optimal lot size for such a real-life imperfect
manufacturing system is derived. A numerical example is given to demonstrate its practical usage.
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1. INTRODUCTION

The classic economic manufacturing quantity
(EMQ) model with backlogging [1, 2] assumes that
all items produced are of perfect quality and the
production equipments are always in good condition.
However, in real world due to different reasons,
generation of random defective items and occasional
breakdowns of machine are inevitable. Hence, studies
have been carried out to address the issues of
defective items produced in EMQ model [3-8]. The
imperfect quality items fall into two groups, the scrap
and the repairable. By reworking defective items, for
example, manufacturing processes in printed circuit
board assembly or in plastic injection molding, etc.,
the overall production-inventory costs can be
significantly reduced  [9-14].

Another common and inevitable reliability factors
that trouble the production planners and practitioners
is mostly the breakdown of production equipments. To
effectively manage and control the disruption and to
minimize total production costs are critical tasks to
most manufacturing firms. It is not surprising that
determination of optimal lot-size for systems with
machine failures has received attention from
researchers in recent decades [15-22]. Groenevelt et
al. [15] proposed two inventory control policies to deal
with machine breakdown. They are (1) no resumption
(NR) policy and (2) abort/resume (AR) policy. Under
the NR policy, the production of the interrupted lot is
not resumed after a breakdown. While the AR policy
considers that after the machine is fixed and restored,
the production of the interrupted lot will be immediately
resumed if the current on-hand inventory falls below a
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certain threshold level. The effects of breakdown under
both policies and their corrective maintenance on the
economic lot sizing decisions have been investigated
respectively. Abboud [17] considered an EMQ model
with Poisson machine failures and random machine
repair time. A simple approximation model was
developed to describe the behavior of such systems,
and specific formulations were derived for the cases
where the repair times are exponential and constant.
Giri and Dohi [20] presented the exact formulation of
stochastic EMQ model for an unreliable production
system. Their EMQ model is formulated based on the
net present value (NPV) approach and by taking
limitation on the discount rate the traditional long-run
average cost model is obtained. They also provided the
criteria for the existence and uniqueness of the optimal
production time and computational results showing that
the optimal decision based on the NPV approach is
superior to that based on the long-run average cost
approach. Lin and Kroll [21] examined an EMQ model
for an imperfect production process that is subject to
random machine breakdowns. The objective of their
paper was to find an optimal production lot size that
minimizes the expected (long-run) total cost per unit
time. Several models are investigated and a numerical
approach is developed to obtain an optimal production
lot size. Chiu [22] investigated the optimal run time for
EPQ model with random breakdown, rework, and no
shortages permitted. Theorems on conditional
convexity of the integrated cost function and on
bounds of the production run time is proposed and
proved. An optimal run time was located by the use of
the bisection method based on the intermediate value
theorem. This paper reexamines the imperfect quality
EMQ model studied by Chiu [13] and takes an
additional reliability factor – machine breakdown into
consideration. For the reason that little attention has
been paid to the aforementioned area, this study
intends to bridge the gap.

2. MODEL DESCRIPTIOM AND
NOTATION

Reconsider the imperfect production system studied
by Chiu [13], a manufactured item can be produced at a
rate of P per year, and its demand rate is λ units per
year. The production rate P is much larger than the
demand rate d. Shortages are allowed and backordered,
they will be satisfied when the next replenishment
production cycle starts. This system may randomly
generate x portion of defective items at a rate d, where
d=Px. Assume that the production rate of perfect quality
items must always be greater than or equal to the sum
of the demand rate λ and the defective rate d. Hence,
the following condition: (P-d-λ)≥≥≥≥≥0 or (1-x-λ/P)≥≥≥≥≥0 must
hold. All items produced are screened and the inspection
cost per item is included in the unit production cost C.

The imperfect quality items fall into two groups, a θ
portion of them is the scrap and the other (1-θ) portion
of the defective items is considered to be reworkable.
When regular production ends, the rework process
starts immediately at a rate of P1, in each cycle. A θ1
portion of the reworked items fails the repairing and
becomes scrap.

Further, according to the mean time between
failures (MTBF) data, a machine breakdown may take
place randomly in the backorder filling stage (see
Figure 1), and an abort/resume production control
policy is adopted. Under such a policy, when a random
breakdown occurs, the machine is under corrective
maintenance immediately, a constant repair time is
assumed and the interrupted lot will be resumed right
after the restoration of machine. It is also assumed that
during the setup time, prior to the production uptime,
the working function of machine is fully checked and
confirmed. Hence, the chance of breakdown in a very
short period of time when production begins is small.
Also, due to tight preventive maintenance schedule, the
probability of more than one machine breakdown
occurrences in a production cycle is assumed to be very
small. However, if it does happen, safety stock will be
used to satisfy the demand during machine repairing
time. Therefore, multiple machine failures are assumed
to have insignificant effect on the proposed model.

Fig. 1  On-hand inventory of perfect quality items in EMQ
model with imperfect rework and breakdown taking place in

backorder filling time

Figure 1 depicts the level of on-hand inventory of
perfect quality items in the proposed EMQ. Cost
parameters considered in the study include: unit
manufacturing cost C, unit shortage/backordered cost
b, disposal cost for each scrap item CS, setup cost K,
unit holding cost h, unit repair cost for each defective
item reworked CR, unit holding cost per reworked item
h1, and the cost for repairing and restoring machine
M. Other notations used are listed as follows:
T − the production cycle length,
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T1 − optimal production time (i.e. production uptime),
the decision variable to be solved for the proposed
EPQ model,

t − production time before a random breakdown
occurs,

Q − production lot size for each cycle,
B − the maximum backorder level allowed for each

cycle,
H1 − the level of backorder quantity when machine

breakdown occurs,
H2 − the level of backorder quantity when machine is

repaired and restored,
H3 − the level of perfect quality inventory when regular

production process ends,
H4 − the maximum level of perfect quality inventory

when rework finishes,
tr − time required for repairing and restoring the

machine,
tr’ − time required for producing sufficient stocks to

satisfy the demand during machine repair time tr,
t5 − time required for filling the backorder quantity B

(excluding tr and tr’),
t1 − time for piling up stocks during the production

uptime in each cycle,
t2 − time needed to rework (1-θ) of the repairable

defective items,
t3 − time required for depleting all available perfect

quality on-hand items,
t4 − shortage permitted time,
TC(T1,B) − total production-inventory costs per cycle,
TCU (T1,B) − total production-inventory costs per unit

time (e.g. annual),
E [TCU(T1,B)] − the expected total production-

inventory costs per unit time.

3. FORMULATION

In Figure 1, let t denote the production time before
a breakdown occurring in the backorder filling time t5,
that is t<t5. Let the maximum machine repair time be a
constant and tr=g. In this study, it is conservatively
assumed that if a failure of a machine cannot be fixed
within a certain allowable amount of time, then a spare
machine will be in place to avoid further delay of
production. The following derivation procedure is
similar to what was used by past studies [10, 13]. From
Figure 1, one can obtain the following relationships
for: production lot size Q; the levels of backorder H1
and H2; the levels of on-hand perfect quality inventory
H3 and H4; the cycle length T; production uptime T1;
tr'; time required for satisfying B (maximum backorder
quantity) t5; time for piling up stocks t1; time for
reworking repairable items t2; and time required for
depleting all available on-hand items t3 and t4:
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where d=Px.
Figure 2 illustrates the level of on-hand inventory

of defective items for the proposed EMQ model, where
total defective items produced during the production
uptime T1 can be computed as shown in Eq. (14):

[ ]1 5 1d rT P x t t t x Q⋅ = + + =′⋅ ⋅ ⋅ (14)

Fig. 2  On-hand inventory of defective items in the proposed
EMQ model

Figure 3 displays the on-hand inventory level of
scrap items for the proposed model. During the rework
process, the production rate of scrap items can be
rewritten as in Eq. (15) and the total scrap items
produced can be calculated by Eq. (16):

1 1 1 1d  ;  where  0 1P θ θ⋅ ≤ ≤= (15)

( )
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d T P t
Q x Q x 1
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θ θ
θ θ θ

θ θ θ

⋅ ⋅ + ⋅ ⋅ =

= ⋅ ⋅ + ⋅ ⋅ − ⋅ =

= ⋅ ⋅ + − ⋅⎡ ⎤⎣ ⎦ (16)
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Fig. 3  On-hand inventory level of scrap items in the proposed EMQ model

Let ( ) 11ϕ θ θ θ= + − ⋅⎡ ⎤⎣ ⎦ , then ϕ denotes the total scrap rate among the defective items. From Figures 1 to 3,
one obtains the total production-inventory cost per cycle TC (T1,B) as follows:
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By substituting all related parameters from Eqs. (1) to (16) into Eq. (17), one has TC(T1,B) as follows:
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Due to random defective/scrap rates, the production cycle length is not constant. Therefore, to take the
randomness of scrap rate into account, one can employ the renewal reward theorem in production-inventory cost
analysis to cope with the variable cycle length. Also, because a Poisson machine breakdown (with mean equals to
β per unit time) is assumed to occur in backorder satisfying time, one can use the integration of TC(T1,B) to deal
with the random breakdown happening in time t5. The long-run expected costs per unit time E [TCU (T1,B)] can be
calculated as follows:
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Substituting TC(T1,B) (Eq. (18)) in Eq. (19) and with further arrangement one can obtain E[TCU (T1,B)] as
follows (see Appendix A for detailed derivations):
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then Eq. (20) becomes:
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4. CONVEXITY OF COST FUNCTION AND OPTIMAL LOT SIZE

In order to find the optimal production run time T1*, a theorem is proposed in this study. Let δ denote the
following:
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Theorem 1: E[TCU(T1,B)] is convex if δ > 2gPb.
Applying the Hessian matrix equations [23] to Eq. (22), one obtains the following (see Appendix B for detailed

computation):
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Because the first part of the right-hand-size (RHS) of Eq. (24) is greater than zero:
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λ
ϕ β
⋅ >

−

it implies that if the following (the second part of RHS of Eq. (24)) is greater than zero then the Hessian matrix
equations for E[TCU(T1,B)] is greater than 0:
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From Eqs. (23) and (26), the proof of Theorem 1 is completed.
In order to minimize the expected overall costs E[TCU(T1,B)], Eq. (26) must be satisfied. Now, to search for the

optimal uptime T1 and optimal backorder level B, one can differentiate E[TCU(T1,B)] with respect to T1 and with
respect to B separately, then solve linear systems of Eqs. (27) and (28) by setting these partial derivatives equal to
zero:
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With extra derivations (see Appendix C), the resulting optimal uptime T1*, optimal production lot size Q*, and
backorder level B* can be obtained as follows:
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where ω1, ω2 and ω3 denote the following:
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( )1 2 3
1 x x 1 x 1b E h E ; b h E ; E .

1 x / P 1 x / P 1 x / P 1 x / P
ω ω

λ λ λ λ
ω − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⋅ − ⋅ = + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − − − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

4.1 Verification of the results

Suppose factor of machine breakdown is not considered, then machine repair cost and time for failure correction
are both zero, i.e. M=0 and g=0; Eqs. (30) and (31) become the same equations as were given by Chiu [13]:

( ) [ ]
[ ]

( )

222
2 2

1 1
1

* 2

1(1 )1 1 2 1
1

1 /

λ

ϕλ λ θ λθ ϕ ϕ

λ

=
⎡ ⎤−⎧ ⎫−⎛ ⎞ ⎛ ⎞ ⎣ ⎦⎡ ⎤− + − − + − − ⋅ −⎡ ⎤⎨ ⎬⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦ −⎡ ⎤⎝ ⎠ ⎝ ⎠⎩ ⎭ + ⋅ ⎢ ⎥− −⎣ ⎦

∴ KQ
h E x

h h h h E x h E x xP P P b h E
x P

(32)

[ ]* *1 E xhB Q
1 xb h E

1 x / P

ϕ

λ

⎛ ⎞
⎜ ⎟−⎛ ⎞⎜ ⎟= ⎜ ⎟ −+ ⎡ ⎤⎜ ⎟⎝ ⎠
⎜ ⎟⎢ ⎥− −⎣ ⎦⎝ ⎠

(33)

Further, suppose that the regular production
process produces no defective items, i.e. x=0, then
Eqs. (32) and (33) become the same equations as were
presented by the classic EMQ model with shortages
permitted and backordered [2]:

 * 2

1

K b hQ
bh

P

λ
λ⎛ ⎞

⎜ ⎟⎝ ⎠

+= ⋅
− (34)

( )
* *hB 1 Q

Pb h
λ⎡ ⎤⎛ ⎞ ⋅⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
= −

+ (35)

5. NUMERICAL EXAMPLE AND
DISCUSSION

Consider a manufactured product has an annual
demand rate 4600 units and its production rate is 11500
units per year. Machine in the production system is
subject to a random breakdown that follows a Poisson
distribution with mean β=2 times per year and according
to the MTBF data from the maintenance department, a
breakdown is expected to occur in backorder filling time.
Abort/resume (AR) policy is used when a random
breakdown takes place. Under such policy, the
interrupted lot will be resumed right after restoration of
the machine. The percentage x of defective items
produced follows a uniform distribution over the interval
[0, 0.2]. Among all imperfect quality items, a θ=0.15
portion is the scrap and the other (1-θ) portion of the
defective items are reworked at a rate of P1= 600 units
per year. During the reworking time, a θ1=0.15 portion
of the reworked items fails and becomes scrap.
Therefore, after the rework process, overall scrap rate
ϕ = [θ + (1-θ) θ1] = 0.2775. Other related parameters
are summarized as follows:

C = $2 per item,
K = $450 for each production run,
h = $0.6 per item per unit time,
b = $0.2 per item backordered per unit time,
CR = $0.5 for each item reworked,
h1 = $0.8 per item per unit time,
CS = $0.3 disposal cost for each scrap item,
g = 0.018 years, time needed to repair and restore the

machine,
M = $500 repair cost for each breakdown.

To test for convexity of the cost function, from
Eq.  (23) and theorem 1 one obtains δ=3,837.2 and
2gPb=82.8. Because d>2gPb, therefore E[TCU(T1,B)]
is convex. Then by applying Eqs. (29) to (31) and (22),
one obtains the optimal production lot-size Q* = 8,096
(or the optimal run time T1* = 0.7040 years),
the backorder level B*=3,216, and
E[TCU(T1*,B*)]=$10,757.88. Variation of defective
rate x and scrap rate ϕ effects on the optimal Q* is
depicted in Figure 4, where each x-value represents a
uniform distributed random variable over the interval
[0, x]. In Figure 4, it is noted that as the overall scrap
rate ϕ increases, the value of Q* increases; and for
different x values, as x increases, Q* decreases
significantly.

Fig. 4  Variation of defective rate and scrap rate effects on
optimal lot size Q*
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Fig. 5  Variation of defective rate and scrap rate effects on
E[TCU(Q,B)]

6. CONCLUSION

In real life manufacturing environments, random
machine breakdown and defective items produced are
inevitable. One cannot count on classic EMQ model to
deal with the reliability and imperfect quality issues.
Effect of these practical situations on optimal
replenishment policy for EMQ model must be
specifically studied, so that the overall production-
inventory costs can be minimized. This research
incorporates the reliability issues such as random
machine breakdown, the reworking of random
defective items, and scrap into the EMQ model with
backlogging. The objective is to determine the optimal
replenishment lot size that minimizes the overall
production-inventory costs. Mathematical modeling is
used and the renewal reward theorem is employed to
cope with the variable cycle length. Theorem on
conditional convexity of total cost function is proposed
and proved. The optimal lot size for such a real-life
imperfect manufacturing system is derived. A
numerical example is provided to demonstrate its
practical usage. For future study, considering multiple
machine failures during uptime and random repair time
for breakdown (these may be applied to certain
production systems) into the similar imperfect EMQ
model may be one of the interesting studies.
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APPENDIX A

Computational procedures for Eq. (20):

Because: tf ( t ) e ββ −= , so: ( )
5 5

5

t t

0 0

ttf t dt )dt 1e e βββ −−= ( = −∫ ∫ , and:

( )
( ) ( )

5 5

5

t t

0 0

B 1 B

P 1 x / P P 1 x / P
ttt f t t )dt ( 1 )e e

λ β λ
βββ + −

− − − −

−− ⎡ ⎤ ⎡ ⎤⋅ = ( = − ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫ ∫ (A.1)

Recall Eq. (19) from Section 3:

( )
( ) ( )

( )

( ) ( )
[ ]( )

5 5

5

t t

0 0
1 t 5

1

0

1 1
tE TC T ,B f t dt E TC T ,B dt

E TCU T ,B
T P 1 E x / 1E T f t dt

t

e

e

β

β

β

ϕ λ

−

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⋅ ⋅
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦= =⎡ ⎤⎣ ⎦ ⎡ ⎤ ⎛ ⎞⎡ ⎤⋅ ⋅ − ⋅ ⋅ −⎜ ⎟⎣ ⎦⎢ ⎥⋅ ⎝ ⎠⎢ ⎥

⎣ ⎦

∫ ∫

∫
(19)

Substituting equations (A.1) and (18) into Eq. (19), one has:

( )
[ ]( )

[ ] [ ] [ ]( )[ ]

( ) [ ]( ) ( )
( )

[ ] [ ]( )
[ ]
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(1 e ) P 1 2 E x E xhT P   2 E x 1
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λ
ϕ

θ ϕ ϕ λ

θ
λ θ

λ λ

ϕ ϕ
ϕ

λ

−β

−β

= ⋅⎡ ⎤⎣ ⎦ − −

⎡ ⎤+ + ⋅ + ⋅ ⋅ − + ⋅ ⋅ − − + +⎣ ⎦
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⎪ ⎪⎢ ⎥⎡ ⎤+ − 1−⎪ ⎪⎢ ⎥⎣ ⎦⎣ ⎦
⎪ ⎪

⎡ − ⎤⎪ ⎪⎡ ⎤ ⎡ ⎤+ ⋅ − ⋅⎢ ⎥⎪ ⎪⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦⎣ ⎦⎩ ⎭ (A.2)

Rearranging Eq. (A.2) one obtain:
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With further derivations, Eq. (A.3) becomes Eq. (20) as follows:
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APPENDIX B

Computational procedures for Eq. (24):
From Eq. (22) one has the following:
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then:
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Substituting Eq. (21) in the RHS of Eq. (B.4), one obtain Eq. (24) as follows:
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APPENDIX C

Computational procedures for Eqs. (29)-(31).
By setting Eqs. (27) and (28) equal to zero, one obtain:

( )

[ ]

( ) ( ) ( )

5

2 2 2
0 3 4 3 5t

2
1

1 0 1

2
2

1 1 2 0 1 2 1 0
1

1 2BgK M )E b h ( g B ) E 2hgB E (b E h E )
2P1 (1 e )

T
bg ( E E ) hg E

P 1 h      h h 1 E PE 2P E P E 2 E E
2P 2

λλ

θ
θ ϕ ϕ ϕ

−β

⎧ ⎫⎡ ⎤
2λ( + + + + ⋅ + λ + ⋅ ⋅ − ⋅ +⎪ ⎪⎢ ⎥

⎪ ⎪−⎢ ⎥⎣ ⎦ =⎨ ⎬
1⎪ ⎪+ λ − + λ⎪ ⎪β⎩ ⎭

λ −
= − − ⋅ + − + + λ − λ⎡ ⎤⎣ ⎦ (C.1)

( ) ( ) ( )
4 3 5

1 t53 3 3

hg E g ( bE hE )hPB T
b h E b h E b h E ( 1 e )β

λ
−

λ −
= − −

+ + + −
(C.2)

Substituting Eq. (C.2) in Eq. (C.1), one obtain equation (C.3):
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Rearranging Eq. (C.3) one has:
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UKLJU^IVANJE PROBLEMA POUZDANOSTI OPREME I IZOSTALIH POTRA@IVANJA
U EMQ MODEL - I. DIO: SLU^AJNI PREKID U VREMENSKOM INTERVALU

POPUNJAVANJA ZAOSTALIH NARUD@BI

SA@ETAK

Ovaj rad bavi se odre|ivanjem optimalne metode nadopunjavanja u modelu ekonomi~ne koli~ine proizvodnje
(EMQ) uklju~uju}i problem pouzdanosti opreme i izostalih potra`ivanja. Klasi~ni EMQ model ne uzima u obzir
neispravne predmete, koji nastaju tijekom proizvodnog ciklusa, kao ni kvar stroja. Uo~eno je da se u proizvodnom
sustavu, kada je dozvoljeno popunjavanje zaostalih narud`bi, slu~ajni kvar opreme mo`e pojaviti u tom vremenskom
intervalu, ali i tijekom gomilanja inventara u skladištu. Prva faza studije ispituje ranije spomenute prakti~ne probleme
u EMQ modelu uvode}i proces obnavljanja ošte}enih predmeta, otpadaka te slu~ajni kvar opreme koji se posebno
pojavljuje u situaciji popunjavanja zaostalih narud`bi. Svrha istra`ivanja je odrediti optimalno popunjavanje
zaostalih narud`bi što }e smanjiti troškove proizvodnje i skladištenja. Da bi se savladala promjenjiva duljina ciklusa
korišteni su matemati~ki model i analiza te "renewal reward" teorem. Predlo`en je i dokazan teorem o uvjetnoj
konveksnosti sveukupne funkcije troška. Dobiveno je optimalno odre|ivanje koli~ine robe za stvarni nesavršeni
proizvodni sustav. Prakti~na primjena je pokazana na jednom numeri~kom primjeru.

Klju~ne rije~i: proizvodnja, kvar opreme, EMQ model, ponovni rad, odre|ivanje koli~ine robe, otpadak, prirast
slu~ajnih ošte}enja.

By substituting Eq. (21) in the RHS of Eq. (C.4) and let ω1, ω2 and ω3 denote the following, one obtains
equations (29) to (31):

( )1 2 3
1 x x 1 x 1b E h E ; b h E ; E .

1 x / P 1 x / P 1 x / P 1 x / P
ω ω

λ λ λ λ
ω − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⋅ − ⋅ = + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − − − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

[ ] [ ]

( ) ( ) [ ]( ) [ ]( ) [ ]( ) [ ]( )

2 2 2 2 2 22 2 2
2 2 3 3 11

2 t t25 52 2 2*
1 22 2

2 22
1 1

1 2

h g 2hgg PgK M ) ( g ) hE x b(1 E x )
(1 e ) (1 e )1T

P h 1 E x1
h h 1 E x h 1 1 2 E x E x

P P

ω ωλ

ϕθ
θ ϕ ϕ

ωωω
ω ω ω

ω

−β −β

⎡ ⎤λ λλ 2 λ⎢ ⎥⎡ ⎤2λ( + + − − − + − −⎣ ⎦β⎢ ⎥− −⎣ ⎦=
−λ − ⎡ λ ⎤⎛ ⎞− − + − − + −⎡ ⎤ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦

(29)

[ ] [ ]

( ) ( ) [ ]( ) [ ]( ) [ ]( ) [ ]( )

2 2 2 2 2 22 2 2
2 2 3 3 11

2 t t25 52 2 2*
22 2

2 22
1 1

1 2

h g 2hgg PgK M ) ( g ) hE x b(1 E x )
(1 e ) (1 e )

Q
h 1 E x1

h h 1 E x h 1 1 2 E x E x
P P

ω ω
λ

ϕθ
θ ϕ ϕ

ωωω
ω ω ω

ω

−β −β

⎡ ⎤λ λλ 2 λ⎢ ⎥⎡ ⎤2λ( + + − − − + − −⎣ ⎦β⎢ ⎥− −⎣ ⎦=
−λ − ⎡ λ ⎤⎛ ⎞− − ⋅ + ⋅ − − + −⎡ ⎤ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦

(30)

( ) ( )
* *

3

4 3 5
t53 3

h 1
B Q

b h E
hg E g (bE hE )

b h E b h E (1 e )−β
=

+

⎛ ⎞ λ λ −⎛ ⎞ − −⎜ ⎟⎜ ⎟ +⎝ ⎠⎝ ⎠ + −
(31)


