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SUMMARY
The unsteady Couette flow of an electrically conducting, viscous, incompressible fluid bounded by two parallel

non-conducting porous plates is studied with heat transfer. An external uniform magnetic field and a uniform suction
and injection are applied perpendicular to the plates while the fluid motion is subjected to a constant pressure
gradient. The two plates are kept at different but constant temperatures while the Joule and viscous dissipations are
included in the energy equation. The effect of the magnetic field and the uniform suction and injection on both the
velocity and temperature distributions is examined.
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1. INTRODUCTION

The magnetohydrodynamic flow between two
parallel plates, known as Hartmann flow, is a classical
problem that has many applications in
magnetohydrodynamic (MHD) power generators,
MHD pumps, accelerators, aerodynamic heating,
electrostatic precipitation, polymer technology,
petroleum industry, purification of crude oil and fluid
droplets and sprays. Hartmann and Lazarus [1, 2]
studied the influence of a transverse uniform
magnetic field on the flow of a conducting fluid
between two infinite parallel, stationary, and insulated
plates. Then, a lot of research work concerning the
Hartmann flow has been obtained under different
physical effects [3-11].

In the present study, the unsteady Couette flow and
heat transfer of an incompressible, viscous, electrically
conducting fluid between two infinite non-conducting
horizontal porous plates are studied. The upper plate is
moving with a constant velocity while the lower plate

is kept stationary. The fluid is acted upon by a constant
pressure gradient, a uniform suction and injection and
a uniform magnetic field perpendicular to the plates.
The induced magnetic field is neglected by assuming
a very small magnetic Reynolds number [5, 6]. The
two plates are maintained at two different but constant
temperatures. This configuration is a good
approximation of some practical situations such as heat
exchangers, flow meters, and pipes that connect system
components. The cooling of these devices can be
achieved by utilizing a porous surface through which
a coolant, either a liquid or gas, is forced. Therefore,
the results obtained here are important for the design
of the wall and the cooling arrangements of these
devices. The equations of motion are solved
analytically using the Laplace transform method [12]
while the energy equation is solved numerically [13]
taking the Joule and the viscous dissipations into
consideration. The effect of the magnetic field and the
suction and injection on both the velocity and
temperature distributions is studied.
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2. DESCRIPTION OF THE PROBLEM

The two non-conducting plates are located at the
y= ± h planes and extend from x = -∞ to ∞ and z = -∞
to ∞. The lower and upper plates are kept at the two
constant temperatures T1 and T2, respectively, where
T2 > T1. The fluid flows between the two plates under
the influence of a constant pressure gradient dP/dx in
the x-direction, and a uniform suction from above and
injection from below which are applied at t=0. The
upper plate is moving with a constant velocity Uo while
the lower plate is kept stationary. The whole system is
subjected to a uniform magnetic field Bo in the positive
y-direction. This is the total magnetic field acting on
the fluid since the induced magnetic field is neglected.
From the geometry of the problem, it is evident that
∂/∂x = ∂/∂z = 0 for all quantities apart from the pressure
gradient dP/dx, which is assumed constant. The
velocity vector of the fluid is:

ov( y,t ) u( y,t )i v j= +
with the initial and boundary conditions u = 0 at t ≤ 0,
and u = 0 at y = -h, and u = Uo at y = h for t > 0. The
temperature T(y,t) at any point in the fluid satisfies both
the initial and boundary conditions T = T1 at t ≤ 0, T = T2
at y = +h, and T = T1 at y = -h for t > 0. The fluid flow
is governed by the momentum equation:
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o o2
u u dP uv B u
t y dx y

ρ ρ µ σ∂ ∂ ∂
+ = − + −

∂ ∂ ∂
(1)

where ρ, µ and σ are, respectively, the density, the
coefficient of viscosity and the electrical conductivity
of the fluid. To find the temperature distribution inside
the fluid we use the energy equation [14]:
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where c and k are, respectively, the specific heat
capacity and the thermal conductivity of the fluid. The
second and third terms on the right-hand side represent
the viscous and Joule dissipations, respectively.

The problem is simplified by writing the equations
in the non-dimensional form. We define the following
non-dimensional quantities:

o
2

o o

tUx y z u Pˆˆ ˆ ˆˆx , y , z , u , P , t
h h h U hUρ

= = = = = =

o oS v / U=  is the suction parameter,
Pr c / kµ=  is the Prandtl number,

2
o 2 1Ec U / c(T T )= −  is the Eckert number, and

2 2 2
oHa B h /σ µ=  where Ha is the Hartmann number.

In terms of the above non-dimensional variables and
parameters, the basic Eqs. (1) and (2) are written as
(the “hats” will be dropped for convenience):

2 2

2
u u dP 1 u HaS u
t y dx Re Rey

∂ ∂ ∂
+ = − + −

∂ ∂ ∂
(3)
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⎛ ⎞∂ ∂ ∂ ∂
+ = + +⎜ ⎟∂ ∂ ∂∂ ⎝ ⎠

(4)

The initial and boundary conditions for the velocity
become:

t 0 : u 0, t 0 : u 0, y 1, u 1, y 1≤ = > = = − = = (5)
and the initial and boundary conditions for the
temperature are given by:
  t 0 : T 0, t 0 : T 1, y 1, T 0, y 1≤ = > = = + = = − (6)

3. NUMERICAL SOLUTION OF THE
GOVERNING EQUATIONS

Equations (3) and (4) are solved numerically using
finite differences [13], under the initial and boundary
conditions (5) and (6) to determine the velocity and
temperature distributions for different values of the
parameters Ha and S. The Crank-Nicolson implicit
method is applied. The finite difference equations are
written at the mid-point of the computational cell and
the different terms are replaced by their second-order
central difference approximations in the y-direction.
The diffusion term is replaced by the average of the
central differences at two successive time levels.
Finally, the block tri-diagonal system is solved using
Thomas’ algorithm. All calculations have been carried
out for dP/dx = -5, Pr = 1 and Ec = 0.2.

4. RESULTS AND DISCUSSION

Figure 1 presents the velocity and temperature
distributions as functions of y for different values of
the time starting from t = 0 to the steady state. Figures
1a and 1b are evaluated for Ha = 1 and S = 1. It is
observed that the velocity component u and
temperature T reach the steady state monotonically and
that u reaches the steady state faster than T. This is
expected, since u acts as the source of temperature.

Figure 2 shows the effect of the Hartmann number
Ha on the time development of the velocity u and
temperature T at the centre of the channel (y = 0). In
this figure, S = 0 (suction suppressed). It is clear
from Figure 2a that increasing the parameter Ha
decreases u and its steady state time. This is due to
increasing the magnetic damping force on u. Figure
2b indicates that increasing Ha increases T at small
time but decreases it at large time. This can be
attributed to the fact that, for small time, u is small
and an increase in Ha increases the Joule dissipation
which is proportional to Ha and therefore, the
temperature increases. For large time, increasing Ha
decreases u and, in turn, decreases the Joule and
viscous dissipations and, in turn, decreases T. This
accounts for crossing the curves of T with time for
various values of Ha.
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Fig. 1  Time development of the profile of: (a) u; and (b) T
(Ha = 1 and S = 1)

Figure 3 shows the effect of the suction parameter
on the time development of the velocity u and
temperature T at the centre of the channel (y = 0). In
this figure, Ha = 0 (hydrodynamic case). In Figure 3a,
it is observed that increasing the suction decreases the
velocity u at the center and its steady state time due to
the convection of fluid from regions in the lower half
to the center, which has higher fluid speed. In Figure
3b, the temperature at the center is affected more by
the convection term, which pumps the fluid from the
cold lower half towards the centre.
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Fig. 2  Effect of Ha on the time variation of: (a) u at y=0;
(b) T at y=0. (S=0)
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Fig. 3  Effect of S on the time variation of: (a) u at y=0;
(b) T at y=0. (Ha=0)

5. CONCLUSION

The unsteady Couette flow of a conducting fluid
under the influence of an applied uniform magnetic field
has been studied in the presence of uniform suction
and injection. The effect of the magnetic field and the
suction and injection velocity on the velocity and
temperature distributions has been investigated. It is
found that both the magnetic field and suction or
injection velocity has a marked effect on both the
velocity and temperature distributions. It is of interest
to see that the effect of the magnetic field on the
temperature at the center of the channel depends on
time. For small time, increasing the magnetic field
increases the temperature, however, for large time,
increasing the magnetic field decreases the
temperature.
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NERAVNOMJERAN MHD COUETTEOV TOK S PRIJENOSOM TOPLINE UZ
PRISUSTVO JEDNOLIKOG USISAVANJA I UBRIZGAVANJA

SA@ETAK

U ovom radu prou~ava se neravnomjeran Couetteov tok elektri~no sprovodljive, viskozne i nestla~ive teku}ine s
prijenosom topline, ograni~ene s dvije paralelne porozne nesprovodljive plo~e. Okomito na plo~e postavljeno je
vanjsko jednoliko magnetsko polje, jednoliko usisavanje i ubrzigavanje, dok je gibanje teku}ine izlo`eno pritisku
konstantnog gradijenta. Ove dvije plo~e izlo`ene su razli~itim, ali stalnim temperaturama, dok su Jouleova i viskozna
disipacija uvrštene u jednad`bu energije. Ispituje se djelovanje magnetskog polja te jednoliko usisavanje i ubrizgavanje
na raspodjele brzine i temperature.

Klju~ne rije~i: MHD Couetteov tok, prijenos topline, Joulova disipacija, viskozna disipacija.
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