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SUMMARY
For one-legged passive jumping robot, a trajectory planning strategy is developed to jump over an obstacle

integrating three various dynamics among jumping process. Manipulability ellipsoids are effective tools to perform
task space analysis and motion optimization of redundant manipulators. Jumping robot can be considered as a
redundant manipulator with a load held at the end-effector. The concept of inertia matching ellipsoid and directional
manipulability is extended to optimize the take-off posture of jumping robot, and the optimized results have been
used to plan jumping trajectory. Aimed at the sensitivity of a trajectory to constraint conditions on point-to-point
motion planning, the 6th order polynomial function is proposed to plan jumping motion having a better robustness
to the parameters change of constraint conditions than traditional 5th order polynomial function. In order to lift the
foot over the obstacle, correction functions are constructed under unchanged boundary constraint conditions.
Furthermore, the body posture is controlled based on internal motion dynamics and steady-state consecutive jumping
motion principle. A prototype model is designed, and the effectiveness of the proposed method is confirmed via
simulations performed on parameters of designed prototype.
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1. INTRODUCTION

Inspired by the agility of animal and human
locomotion, the number of researchers studying and
developing legged robots has been increasing at a rapid
rate over the last few decades. In multi-legged robots,
coordination of legs is complex. Different gait patterns
are admissible in multi-legged systems depending on the
number of legs, terrain, and speed of locomotion,
particular gaits are most efficient. One of the motivations
to study one-legged robots is to gain a good
understanding of system dynamics extending it to human
and animal locomotion. Therefore, a number of
researchers have focused on single-legged systems [1].

One-legged robot has only one gait, viz. jumping.
Despite the great potential of jumping machines, their
control and trajectory planning are still issues. Li and

Montgomery [2] proposed a closed-loop strategy that
could optimally control the body orientation of a one-
legged robot during flight phase using the internal
motion of the leg. They showed that it was possible
to control the orientation of one-legged hopping robot
by using angular momentum constraint during its
flight phase. Based on the same principle, Lapshin [3]
analyzed the motion control problem of one-legged
hopper in the flight phase based on linear springy
telescopic leg. He investigated how the body and leg
orientation could be changed during the flight phase
by applying small perturbations. They have controlled
the body attitude by using angular momentum only in
flight phase, not in the whole jumping process.
Especially, the angular momentum is discontinuous
at the landing. Harbick and Sukhatme [4] described a
model-based height controller for a hopping robot in
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the sagittal plane with a pneumatically powered leg.
They derived the desired leg-length setting to regulate
apex hopping height using a PD controller. Ohashi
and Ohnishi proposed [5] a method of controlling the
hopping height by changing the leg length at bottom
taking account of torque limits of motors. They
described a way to estimate the actual thrust force.
Using the estimated thrust force, command value of
leg length in the landing phase is determined. Babic
and Omrcen [6] performed vertical jump simulations
using three different control algorithms including ZMP
constraints and showed the effects of each algorithm
on the vertical jump performance. Higashimori et al.
[7] obtained various jumping patterns with respect to
the torque limitation for a fixed mass of the robot by
applying a genetic algorithm for determining torque
assignment. With the increase of the torque limitation,
double leg based jump, single-leg based jump, and
spring-type jump are generated for achieving the
largest jump height. Although these papers described
some valid methods to obtain maximum jumping
height and control jumping height based on stability
or dynamics constraints, they didn’t study the take-
off phase. Take-off has a large influence to jumping
performance because ground reaction force
determines jumping trajectory. De Man et al. [8, 9]
developed a control algorithm for one-legged hopping
robot with a telescopic leg. They made it possible to
change a number of objective locomotion parameters
from one hop to another, thus allowing for
locomotion on an irregular terrain. Similarly,
Vermeulen [9, 10] developed a real-time applicable
control algorithm for a planar one-legged robot for
locomotion on an irregular terrain based on the choice
of a number of objective locomotion parameters.
Although their trajectory was only determined by
objective locomotion parameters, they did not
describe how to choose appropriate parameters in
real-time. The concept of kinematic manipulability
ellipsoids [11] was introduced by Yoshikawa as a
measure of the capability of a manipulator for
executing a specific task in a given configuration.
Then he extended this concept to dynamic
manipulability ellipsoids [12] as a measure of the
manipulator capabilities when the arm dynamics is
taken into account. A number of interesting extensions
and applications of manipulability ellipsoids has
appeared in robotic conceptual design [13], global
task space optimization of redundant manipulators
[14] and coordination control for multi-arm system
[15] and so on during the last few years. Although
some manipulability ellipsoids have been used to solve
robotic task space design and posture optimization,
there are some unsolved problems in trajectory
planning with those manipulability ellipsoids.

This paper will study a trajectory planning of
jumping over an obstacle for passive multi-joint
jumping robot. The initial constraint conditions are

obtained and optimized with inertia matching and
directional manipulability. The ultimate constraint
conditions are attained with obstacle parameters and
dynamics. Because the highest power polynomial
coefficient is most sensitive influencing the shape of a
polynomial, the 6th order polynomial function is
constructed to track joint angle trajectory based on
point-to-point motion planning. Its highest power
coefficient is obtained with joint workspace
constraints, and the other power coefficients are
determined with the initial and ultimate constraint
conditions. This method has a better robustness to the
parameters change of constraint conditions than
traditional 5th order polynomial function. The paper is
organized as follows. Section 2 describes the dynamics
model. Section 3 introduces inertia matching and
directional manipulability to optimize take-off posture.
Section 4 contains the strategies of trajectory planning
for jumping over an obstacle. Section 5 gives
simulation results. Section 6 provides some
conclusions.

2. MATHEMATICAL MODEL

Jumping process can be divided into three phases
based on constraint conditions, viz., stance phase,
flight phase, and landing impact phase. Each phase has
a different dynamics equation because of their different
constraint conditions. So the dynamics of jumping
motion belongs to the dynamics of a various constraint
system.

To study the conceptual features of a jumping or
running machine, such as underactuated and
nonholonomic features, our model is a multi-body
underactuated system in sagittal plane (Figure 1). It
consists of four segments, a massless foot, a lower
leg, an upper leg and an upper body. The actuation of
the robot consists of a passive ankle, an active knee
and an active hip.

Fig. 1  One-legged underactuated jumping robot
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Figure 1 depicts the robot geometry, where XOY is
an inertia reference frame. The joint axis position of
the connection between the upper body and the upper
leg is referred to as the hip and is represented by point
H. Analogously, the joint axis position of the connection
between upper and lower leg is referred to as the knee
and is represented by point K. The foot is called point
F, and this point coincides with the ankle joint. Being a
massless foot and underactuated ankle, the foot is
considered as a point during flight.

The mass of the ith rigid body is mi, its length is li,
and the moment of inertia around its center of mass Gi
is Ii. The absolute angle between the horizontal axis
and the ith segment is θi, the direction of anticlockwise
is positive. The location of the center of mass Gi of the
leg is given by 1 1 1FG lα=  and 2 2 2KG lα= , where
0<αi<1.  The coordinates θ  are the relative angles
(θ1, θ2)T, which describes the shape of the leg. The
coordinates q are the relative angles (θ1, θ2, θ3)T,
which describes the shape of the robot. The robot’s
absolute position vector of  COG RG is specified by
the Cartesian coordinates (XG, YG)T. The absolute
position vector of foot RF is specified by the Cartesian
coordinates (XF, YF)T. During flight phase the vector
of the generalized coordinates qf can be denoted as
(θ1, θ2, θ3, XF, YF)T, and during stance phase the
vector of the generalized coordinates qs can be denoted
as (θ1, θ2, θ3)T.

When the center of upper body G3 does not coincide
with the hip, the position of the global center of gravity G
of the robot is a function of θ1, θ2 and θ3. So the motion
between leg motion and body rotation has a coupling.
However, when G3 coincides with the hip, the position of
gravity G is a function only of θ1 and θ2. This condition
leads to a decoupling between leg motion and body
rotation. In that case the body rotation θ3 can only be
controlled by internal motion dynamics. In this paper, we
study a model where G3 coincides with the hip.

2.1 Dynamics equations during flight phase

The dynamics model can be derived in terms of the
following generalized coordinates qf by Lagrange
equations:

( ) ( ) ( )f f f f f f f,+ + =D θ q H θ θ q G θ B Γ&&& & (1)

where Df (θθθθθ) is an inertia matrix, which is symmetric
and positively defined, ( )f ,H θ θ&  is a centrifugal matrix
which contains the centrifugal acceleration and Coriolis
terms, Gf (θθθθθ) is a gravitational vector, Bf is a matrix

T1 1 0 0 0
0 1 1 0 0

−⎡ ⎤
⎢ ⎥−⎣ ⎦

, and ΓΓΓΓΓf  is external torque vector

Tf f
K Hτ τ⎡ ⎤

⎣ ⎦ .

2.2 Dynamics equations during stance phase

During the stance phase, assuming a non-slippery
rigid ground, the robot has three DOFs. Due to the fact
that no foot torque is applied, the robot is still an
underactuated mechanism, with one degree of
underactuation. The equations of motion for the stance
phase are found analogously as in flight phase. The
Lagrange equations are now expressed in terms of the
following generalized coordinates qs:

( ) ( ) ( )s s s s s s s,+ + =D θ q H θ θ q G θ B Γ&&& & (2)

3. INERTIA MATCHING

The concept of inertia matching [16] is widely used
in the analysis of actuator and gear systems, primarily
for selection of the optimum gear ratio based on the
transmission performance between the torque
produced at the actuator and the torque applied to the
load. In this process, the performance of torque
transmission is maximized by setting the optimal
balance of inertial properties between the actuator
system (including inertia of the rotor and shaft) and
the load. The concept of inertia matching for jumping
robot is proposed in this paper as a new index of the
dynamic performance. The proposed inertia matching
ellipsoid characterizes the dynamic torque-force
transmission efficiency between joint actuators and a
load held by the end-effector of a manipulator,
encompassing a wide range of previous concepts.

3.1 Inertia matching for jumping robot

The concept of inertia matching can be extended to
humanoid jumping robot as follows. Jumping robot can
be considered as a redundant manipulator with a load
held at the end-effector [17, 18]. Figure 2 shows the
jumping robot and inertia matching ellipsoid (IME).

Fig. 2  Jumping robot and inertia matching ellipsoid (IME)
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The motion and force equation analyzing the load
held at the end-effector can be written as:

( )e l Em= +F R g&& (3)

where RE is the position vector of the end-effector, ml
is the mass inertia of load, ( )T0, g= −g  is the gravity
vector. The end-effector posture of manipulator RE is
related to the shape of the robot θθθθθ as following:

[ ]
( )
( ) ( )

E E E E

E

E

⎧ = =
⎪⎪
⎨ =
⎪

= +⎪⎩

TR X Y E (θ)

R J θ θ
R J θ θ J θ θ

&&

&& &&& &
(4)

where J(θθθθθ) is the Jacobian matrix.
Jumping performance is affected by any motion

control and jumping posture. Jumping posture affects
not only the attitude during flight phase, but the angular
momentum with respect to COG. When an external
moment and force is applied to the jumping robot, with
reference to Eq. (2) the dynamics equation for stance
phase can be written as:

( ) ( ) ( ) ( )s s s e s s,+ + + =TD θ q H θ θ q G θ J θ F B Γ&&& &
(5)

where Fe is the external moment and force.
Substituting Eqs. (3) and (4) into Eq. (5), the torque

matrix can be obtained by:

( ) ( ) ( )( )

( ) ( ) ( )

( )( )

††
s s s e l l l

T
s s e

e bias

m m m

,

⎡= − − +⎢⎣
⎤+ + + =⎥⎦

= −

Γ B D θ J θ F g J θ q

H θ θ q G θ J θ F

Q θ F F

& &

& &

(6)

where:

( ) ( ) ( ) ( )

( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )

T ††
s s l

†T †
bias s l

†
s s s

m

m

,

⎧ ⎡ ⎤= +⎢ ⎥⎪ ⎣ ⎦
⎪⎪

= + ×⎨
⎪
⎪ ⎡ ⎤+ − −⎪ ⎢ ⎥⎣ ⎦⎩

Q θ B J θ D θ J θ

F W J θ D θ J θ

D θ J θ g J θ q H θ θ q G θ&& & &

(7)

Here, Fbias is the bias force matrix of angular velocity

and acceleration, Fe−Fbias  is the interia matching for

jumping robot, and ( )†J θ  is a pseudoinverse of the

Jacobian matrix J(θθθθθ). When the Jacobian matrix is a

regular matrix, then ( ) ( )† 1−=J θ J θ . In the case that

Jacobian matrix is a rectangular matrix, then

( ) ( ) ( ) ( )( ) 1† T T1 1 −− −=J θ W J θ J θ W J θ , where W

is a weight matrix.

3.2 Inertia matching manipulability

In Eq. (6), the coefficient matrix Q(θθθθθ) indicates the
moment or force transmission efficiency between the
torque produced at the actuators and the force or
moment applied to the load by the end-effector.

Based on the theory of singular value
decomposition, Q(θθθθθ) can be given by:

( ) T=Q θ UΣV (8)
where m n×∈U R  and n n×∈V R  are orthogonal
matrices, ( ) m n

1 2 mdiag , , ,σ σ σ ×= ∈Σ RL , and σi is
a nonnegative singular value.

The manipulability measure ω of inertia matching
Fe−Fbias can be expressed as the product of σi, as:

1 2 mω σ σ σ= ⋅ L (9)
The principal axes are the product between the row

vector  (u1,...,um) of U and the singular value vector
(σ1,...,σm). And moreover, the singular value vector
(σ1,...,σm) shows the motion capability of the
corresponding principal axis. The manipulability
measure of inertia matching synthetically evaluates the
isotropic flexibility of robot, and it measures the
manipulability of manipulator as a whole.

3.3 Directional manipulability for inertia
matching

Inertia matching is a vector with a value and
direction. However, the inertia matching
manipulability ω describes only the value not the
direction. And moreover, jumping motion includes
various jumping forms, such as vertical jumping or
long jumping. In this paper, we introduce directional
manipulability measure of inertia matching to analyze
the jumping task and direction.

Assuming the moment and force vector applied to
the center of load at end-effector is given by:

e bias IMA− =F F P (10)
where AIM is the scalar quantity form of inertia
matching Fe−Fbias, P is the direction of the force in
load at end-effector in Cartesian frame, and

( )T n 1
1 2 ncos ,cos , ,cosβ β β ×= ∈P RL , where βi is

the angle between inertia matching and the positive
horizontal axis.

Substituting Eq. (10) into Eq. (6), the following
equation can be obtained:

( )s IMA=Γ Q θ P (11)

Generally, the torque limits at each actuator in
jumping robot are assumed to be symmetrical and
constrained, viz. i max i i maxτ τ τ− ≤ ≤ . The normalized
joint torque Γ%  can be obtained using a conversion
matrix ( )1max n maxdiag , ,τ τ=L L  as:
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1−Γ = L Γ% (12)
Therefore, when a normalized torque with

magnitude of 1 is produced, the inertia matching
ellipsoid can be obtained as:

( ) ( )T2 T 2
IMA 1− ≤P Q θ L Q θ P (13)

The directional manipulability of inertia matching
can be given by:

( ) ( )
1T2 T 2

IM IMDM A
−−⎡ ⎤= ≤ ⎢ ⎥⎣ ⎦

P Q θ L Q θ P (14)

The directional manipulability measure of inertia
matching DMIM reflects the manipulability in specified
direction of robot.

3.4 The optimization of take-off posture

Analyzing the jumping robot as a whole, we can

find that the velocity at take-off determines the jumping

height, and the COG trajectory after take-off is a

parabola. The take-off motion of leg can be regarded

as a process from the initial posture ( )Ttd td
o 1 2,θ θ=θ

to the ultimate posture ( )Tto to
d 1 2,θ θ=θ  through the

harmonious movement of joints. The manipulability

measure of inertia matching is a function of posture θθθθθ,

and it reflects the moment/force transmission

efficiency between the torque produced at the actuators

and the force or moment applied to the load by the end-

effector. The take-off posture is a main factor which

affects jumping performance. When the force

transmission efficiency of interior joints is maximal,

the time integral of ground reaction force will reach

the maximization. So the jumping height is maximal.

We will discuss the optimal posture which make the

robot reach the maximization of jumping performance

applying the inertia matching and directional

manipulability.
The posture optimization of jumping motion can

be denoted by:

( ) ( )

( )

1TT 2

o im 1o 2o

max

s. t. f ,θ θ

−−⎡ ⎤
⎢ ⎥⎣ ⎦

=

P Q θ L Q θ P

θ
(15)

where constraint conditionis ( )im 1o 2of ,θ θ  determined
by the desired jumping angle. For example, if it wants
to jump over an obstacle, the angle between FG  and
horizontal axis should satisfy a certain function.

4. TRAJECTORY PLANNING FOR
JUMPING OVER OBSTACLE

Our algorithm for jumping over an obstacle is
(Figure 3):
− The take-off postures, viz. to

1θ  and to
2θ , is

established by the optimization results with inertia
matching and directional manipulability. The
superscript to denotes the moment of take-off.

− The touch-down postures, viz. td
1θ and td

2θ , are
given by desired input parameters. The superscript
td denotes the moment of take-down. The velocity
of the foot F at touch-down is given by input
parameter ki, it reflects the amount of kinetic energy
loss during impact. If trajectory is a soft landing, ki
is zero.

− The trajectory planning satisfies dynamics
constraints and boundary conditions.

− The motion of body is established by internal
motion dynamics and steady-state consecutive
jumping motion principle.

Fig. 3  Events and phases for jumping over obstacle

4.1 Trajectory during flight phase

4.1.1 General assumption and boundary
conditions

Based on the kinematics of the robot, the
relationship between the COG position and the foot F
position can be expressed as:

( )G F G

G F

G F

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

R R E θ
R R = Jθ
R R Jθ + Jθ

&& &

& &&&& && &
(16)

where [ ]TG G G,=R X Y , [ ]TF F F,=R X Y .
The obstacle parameters are described by height Ho

and length Lo. In order to let foot over the obstacle,
we evaluate the jumping height at following (Figure 4):

( )
( )

jump H o
td to

jump F F L o o

H H ,

L X X H ,L ,

⎧ =⎪
⎨

= − =⎪⎩

E θ

E θ (17)
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Fig. 4  Evaluation of jumping height and jumping length

Suppose that at take-off the foot does not slip. The
velocity of the foot at touch-down determines the
amount of kinetic energy loss during impact.
Performing touch-down with an improper choice for
the foot velocity at touch-down can cause high energy
losses during impact. The acceleration of the foot at
touch-down has an influence on the amplitude of the
ground reaction force immediately after impact. The
velocity and acceleration of the foot at touch-down will
be defined here proportional to the velocity of the
COG. So yields:

to td td
F F 1 G

to td td
F F 2 G

to td td
F F 3 G

to td td
F F 4 G

X 0 X k X

Y 0 Y k Y

X 0 X k X

Y 0 Y k Y

⎧ = =
⎪
⎪ = =⎪
⎨

= =⎪
⎪

= =⎪⎩

& & &

& & &

&& && &&

&& && &&

(18)

During the ballistic flight phase the COG tracks a
parabolic trajectory. The flight time can be expressed
as following by the initial conditions:

( )
( )

( )
( )

tjfl
T H jump G

to
G Y H jump

tjtd tj
G R HL jump jump G

T H ,

Y H tj to,td

L ,H , ,

−

−

−

⎧ =
⎪
⎪ = =⎨
⎪
⎪ =
⎩

E R

E

R E R θ

&

&

(19)
Then we can get:

( ) ( ) ( )
tjtj tj
G

R tjtj tj
G

tj to,tdθ θ θ− −

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥= + =⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Rθ θ
E θ E θ

Rθ θ

&

&&& &

(20)

4.1.2 Constructing the polynomial functions

Since now boundary conditions at take-off as well
as at touch-down have been known for both the angles
θi (i=1,2) and their first and second derivatives.
Normally, a 5th order polynomial tracking function can
be established for θi under their position, velocity, and

acceleration constraints of both initial point and ultimate
point. It is the traditional point-to-point motion
planning:

( )
5

f j
ii

j 0
a t i 1,2θ

=

= =∑% (21)

There is a problem: Since the operational time is
determined by initial and ultimate conditions such as
flight, the polynomial is sensitive to the initial point or
ultimate constraint conditions by using 5th order
polynomial to track trajectory (Figure 5). If one
condition changes among the six constraint conditions,
the trajectory would change very large. Moreover, the
trajectory would not satisfy the angular work space.

Fig. 5  Trajectory using 5th order polynomial under before-
change initial condition and after-change initial condition

Aimed at this problem, and in order to enhance the
trajectory generation efficiency and to improve the
trajectory robustness to constraint conditions, we
propose 6th order polynomial to track trajectory:

( )
6

f j
ii

j 0
a t i 1,2θ

=

= =∑% (22)

The highest power coefficient a6 is obtained by
joint motion constraints, the other power coefficients
are determined by the initial and ultimate constraint
conditions. The trajectory can be ensured to satisfy
the joint workspace through the optimization of the 6th

power coefficient because the highest power
polynomial coefficient is the most sensitive and
influencing the shape of a polynomial (Figure 6). If the
highest power coefficient is ascertained, the trajectory
polynomial will have a little influence with the change
of the other lower power coefficients. Thus, this
polynomial has a good robustness for the constraint
conditions.
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Fig. 6  Trajectory using 6th order polynomial under before-
change initial condition and after-change initial condition

4.1.3 Constructing correction functions of
controlling the foot to jump over the
obstacle

The polynomial function θ is completely
determined by the boundary points only. In order to let
foot jump over the obstacle, a correction on the
polynomial function is introduced. An intermediate
point is added to the polynomial function to make sure
that the foot reaches the height of obstacle at

to
GYt t
g

∗= =
&

, where t* is the time step where G and

foot reach their maximum height at the same time:

( )
( )

G

F

Y t 0

Y t 0

∗

∗

⎧ =⎪
⎨

=⎪
⎩

&

&
(23)

This strategy is chosen here, since it results in an
analytical solution for the correction functions. A
correction functions ( ) ( )ib t i 1,2=  will be added,
which do not change the boundary conditions of the
polynomial functions:

( ) ( )

( ) ( ) ( )
( ) ( )

i i co
33 fl

co fl 3 3fl

b t K f t

t T t1 1f t 1 3 t t
t T t t T t

∗
∗ ∗ ∗ ∗

=⎧
⎪
⎪ −⎡ ⎤⎨ ⎛ ⎞= − − −⎢ ⎥⎪ ⎜ ⎟

−⎝ ⎠⎣ ⎦⎪ −⎩

(24)
Based on parabolic motion of COG of the robot, Ki

can be solved as the following set:

( ) ( ) ( )

( )

2
toto to

G G G to

G

g t t
Y t Y Y t t

2
Y t 0

∗
∗ ∗

∗

⎧ −⎪⎪ = + − −
⎨
⎪

=⎪⎩

&

&
(25)

Thus, the angular value f
iθ  can be devoted by the

polynomial function f
iθ%  and correction function bi(t)

as following:

( )f f
ii i b tθ θ= +% (26)

4.1.4 Trajectory for upper body

Since our model has a decoupling between leg
motion and body rotation, in that case the body rotation
θ3 can only be controlled by internal motion dynamics,
such as angular momentum. The angular momentum
with respect to COG can be calculated with the
following general formula:

3
f

i i i i iG
i 1

GG m GG Iµ θ
=

⎛ ⎞′= × +⎜ ⎟
⎝ ⎠∑ & (27)

So we can obtain:
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4.2 Trajectory during stance phase

Due to the constraints on the leg during stance
demanding the foot should stay at a fixed position, the
polynomial functions during stance phase can be
constructed by using the results of impact phase and
the results of the algorithm developed for flight phase:
− As a steady-state consecutive jumping, the final

conditions during stance phase are equal to the
initial conditions at take-off during flight phase;

− The initial conditions during stance phase are equal
to the conditions after impact, and the conditions
before impact are equal to the final conditions
during flight phase respectively:

so sd to td

so sd to td

so sd to td

+ −

+ −

+ −

⎧ = = =
⎪⎪ = = =⎨
⎪

= = =⎪⎩

θ θ θ θ θ θ

θ θ θ θ θ θ

θ θ θ θ θ θ

& & & & & &

&& && && && && &&

(29)

where the superscript sd denotes ultimate state
configuration during stance phase, the superscript
+ denotes the state configuration after impact, and
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the superscript - denotes the state configuration
before impact.

4.2.1 General assumption and boundary
conditions

At the landing, the foot of the jumper hits the
ground. Let’s assume the foot does not bounce back
and does not slip, which means that it stays in contact
with the ground. These are the assumptions
corresponding to an inelastic impulsive impact. During
this impact phase, although discontinuities in the
velocity and acceleration state variables will occur, the
configuration of the robot is assumed to stay
unchanged, viz.:

+ −=θ θ (30)
According to Zheng and Hemami [19] the discrete

variation of the generalized velocities due to the inelastic
impulsive impact with the ground can be calculated as
follows:

( ) ( )( ) 11 T 1 T
f f∆ ∆

−− −=q D θ J JD θ J OF
�

& (31)

with ( )T3 F F, , X , Y∆ ∆ ∆θ ∆ ∆=q θ& & & &&  and

( )TF F= X , Y∆ ∆ ∆OF
�

& & . From the Eq. (31), we can
obtain:
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To calculate the angular accelerations +θ&&  after the
impact, the equation of motion for the stance phase
can be used. The joint torques are considered to remain
unchanged during the infinitesimal short time interval
of the impact. Their values are those measured at the
instance of landing impact:

so td
K K
so td
H H

τ τ

τ τ

⎧ =⎪
⎨

=⎪⎩
(33)

From the Eq. (33), we can obtain:

( ) ( )1so td td td td td so so so
s s f f f s s

−+ = + + − −θ D D q H q G H q G&& && & &

(34)

4.2.2 Solving stance time and constructing the
polynomial functions

During flight phase, the angular momentum with
respect to COG f

Gµ  is conserved without external
forces acting on the robot, and the angular momentum
with respect to foot f

Fµ  can be obtained by f
Gµ .

During stance phase, there are external ground reaction
forces on the foot, and the angular momentum with

respect to foot f
Fµ  can be obtained by integration over

the stance time:

( )
so

f ff f
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t
s td
F F G F

t

FG M FG

Mg X X dt

µ µ

µ µ

⎧ ′= + ×⎪
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= + −⎪
⎪⎩

∫
(35)

The stance time Ts can be calculated by Eq. (35) as
following:

td
st

to
st

t
to to td td

G
t

Mg X dt FG M FG FG M FG′ ′= × − ×∫
(36)

After obtaining six boundary conditions and stance
time, in an analogue way as during flight, 5th order
polynomials can be calculated, which are the reference
trajectories θθθθθ for lower and upper leg respectively
during stance phase.

4.2.3 Trajectory for upper body

Integrating Eq. (35) the following expression for the
upper body rotation during stance phase can be obtained:
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Considering a steady-state condition, the rotation
during flight needs to be compensated by the rotation
during stance:

fl st
33 0∆θ ∆θ+ = (38)

Introducing Eqs. (28) and (37) into Eq. (38) results
in an expression which can be solved for f

Gµ :
f s s s

f
G f s

A A B T
T T

µ + −
=

+
(39)

Thus, we can obtain the trajectory of upper body.

4.3 Flow chart

In order to clearly summarize the different steps of
the strategy generating the trajectory, a flow chart is
given in Figure 7.

(37)
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5. SIMULATION

To test the specified algorithm, a steady-state
jumping pattern over an obstacle has been simulated.
A jumping robot which has 3-DOF rotary joints and
four rigid bodies (foot, lower leg, upper leg, upper
body) is designed. Figure 8 shows the mechanical
CAD model, and its inertia parameters are given in
Table 1. The hip of robot is linked by a cylinder of a
guidance device, and its motion is restricted to a planar
jumping. This guidance device provides only lateral
stabilization, and the robot can rotate around the axis
in the hip and translate horizontally and vertically. Ankle

Fig. 8  Jumping robot

Fig. 7  Flow chart describing different steps in strategy

joint is passive, and knee/hip joint is independently
driven by servo motor. The type of servo motors is
GWS S777, made in Taiwan, China. Its rated velocity
is 0.12 s/60° (6.0V), viz. 8.72 rad/s, and its rated
torque is 42 kgcm. In this robot model, there are not
any assistant elastic components, such as spring, damp,
hydraulic or pneumatic actuators. The controller is an
AVR system, and main control chip is Atmega128 from
ATMEL company. The ATmega128 is a low-power
CMOS 8-bit microcontroller based on the AVR
enhanced RISC architecture. It provides four flexible
Timer/Counters with compare modes and PWM, and
PWM can directly drive servo motor.
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Table1 Inertial parameters of the jumping robot

Fig. 10  Distributing of ground reaction force under different
postures

The trajectories tracked by the actuators of the leg
during the stance phase, which guarantee that the
desired values for jumping over the obastcle are
attained, cause a clockwise natural rotation of upper
body. Therefore a counterclockwise rotation of upper
body during the fight phase is suitable, since these both
rotations can be compensated by each other. Suppose
that a zero angular momentum would have been chosen
during the flight phase, the upper body would rotate in
the clockwise direction, due to the leg swing in the
counterclockwise direction. In that case the global
upper body rotation would drift during the consecutive
jumping unless an actuator acted on it during the stance
phase [8]. This situation can simply be avoided by
choosing a positive value for the angular momentum
during the flight phase. In this paper, angular
momentum is 0.0185 kgm2/s during the flight phase.
The trajectory of angular momentum with respect to
COG is shown in Figure 14 later.

The trajectory being tracked by the actuators for
lower leg, upper leg and upper body are displayed in
Figure 11. Using our proposed 6th order polynomial
functions, the joint angle trajectory are all under the joint
workspace. Figure 12 gives the exerted torques by hip
and knee actuator respectively. The peak value of both
the hip torque and knee torque is smaller than the rate
torque value 4.1 Nm of servo motor. The peak value of
the knee torque is significantly higher than hip’s, being
approximately 4 Nm during the stance phase. If using a

i 
Length Li 

(m) 

Mass mi 

(kg) 

Moment of Inertia I i 

(kg m2) 

Maximal Torque τ i 

(kg cm) 

1 0.34 0.178 1.38 × 10-3 none 

2 0.31 0.137 2.18 × 10-3 42 

3 0.67 0.851 7.98 × 10-3 42 

 
The parameters of obstacle and postures at touch-

down are the following:
Ho=0.012 m;   Lo=0.01 m;

td
1 1.89 radθ = ;   td

2 2.25 radθ =

The following expatiates the simulation results.
Figure 9 shows inertia matching under different take-
off postures. Figure 10 shows distributing of ground
reaction force under different take-off postures. The
inertia matching and ground reaction force reach a
maximization when θ1 is equal to 1.01 rad. Here, θ2
can be obtained with the jumping angle. In this
simulation, θ1 is 1.89 rad based on the size of the
obstacle. In view of force transmission efficiency and
the time integral of ground reaction force, jumping
height is in direct proportion to the time integral of
ground reaction force. When take-off posture is in the
optimization, the time integral of ground reaction force
and jumping height are maximal. When the angular
angle of ankle increases from 0.52 rad to 1.01 rad,
inertia matching gradually increases to the maximal
0.9 N, and the ground reaction force also gradually
increases to the maximum 17.8 N. When the angular
angle of ankle is on the increase, inertia matching
rapidly reduces to zero, and the ground reaction force
and jumping height also rapidly reduces. Thus inertia
matching is in direct proportion to jumping height/
jumping performance, and it can be applied to analyze
the jumping motion.

Fig. 9  Inertia matching under different postures
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passive element, e.g. a torsional spring, this peak value
can be severely reduced. So, some hopping robot was
designed to use some assistant elastic components, such
as prototype OLIE in Vrije University Brussel, Belgium
[20]. Figure 13 shows the vertical position of the foot
using with/without correction function. We can find that
the foot can jump over the designed obstacle after using
correction function.

Fig. 14  Angular momentum trajectory with respect to COG

6. CONCLUSION

In this paper a trajectory generation strategy for
one-legged passive jumping robot is developed. Due
to the fact that the COG of the upper body is located
at the hip joint, the motion of the robot’s leg and its
body are completely decoupled. The upper body
rotation has no influence on the motion of the global
COG of the robot. The algorithm is therefore built up
by two independent tasks, being the control of lower
leg and upper leg, and the control of the upper body
motion.

Firstly, inertia matching and directional
manipulability are applied to analyze jumping robot
and to optimize take-off posture. The optimum results
are used to plan jumping trajectory. Then aimed at the
flight motion and point-to-point motion planning
theory, 6th order polynomials are proposed to track
the joint trajectory. They have a better robustness to
the changed constraint conditions than traditional 5th

order polynomials. This method improves the
efficiency of trajectory generation. Furthermore, in
order to lift the foot jump over the designed obstacle,
a correction function is constructed under unchanged
boundary constraint conditions. Finally, the body
posture is planned with internal motion dynamics and
steady-state consecutive jumping motion.

Jumping robot is a typical nonholonomic system,
the control of drift during flight is a difficult issue.
The development of jumping motion is to pursue an
effective locomotive velocity. In our following
work, we will focus on minimal control method, the
natural passive dynamics for locomotion, and
smaller control effort for energy loss compensation
and stabilization.

Fig. 11  Joint angle trajectory of lower leg, upper leg and body

Fig. 12  Torque trajectory at knee and hip

Fig. 13  Vertical position of the foot
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PLANIRANJE PUTANJE SKAKANJA JEDNONO@NOG ROBOTA PREKO
PREPREKE

SA@ETAK

Ovaj rad opisuje planiranje putanje skakanja jednono`nog pasivnog robota preko prepreke koriste}i tri razli~ite
dinamike procesa preskakivanja. Podešavaju}i elipsoidi su u~inkovito sredstvo kojim se mo`e izvršiti zadana analiza
prostora kao i optimizacija gibanja razgranatih manipulatora. Robot koji ska~e mo`e se smatrati razgranatim
manipulatorom koji dr`i optere}enje na krajevima izvršitelja. Ideja elipsoida izjedna~avanja inercije kao i direktna
mogu}nost rukovanja proširena je na optimizaciju postavljanja u polo`aj za skok robota, a optimizirani rezultati
koriste se za planiranje putanje skakanja. Uzimaju}i u obzir osjetljivost putanje na uvjete ograni~enja planiranja
gibanja od to~ke do to~ke, predla`e se polinom šestog stupnja  za planiranje gibanja skoka, budu}i da je pogodniji
za promjenu parametara uvjeta ograni~enja od uobi~ajenog polinoma petog stupnja. Funkcije korekcije formirane
su za konstantne rubne uvjete tako da robot mo`e dignuti nogu preko prepreke. Nadalje, polo`aj tijela kontrolira se
pomo}u dinamike unutarnjeg gibanja i na~ela mirnog konsekutivnog skakanja. Konstruiran je model na kojem je
potvr|ena u~inkovitost predlo`ene metode simulacijama koje su obavljene na parametrima projektiranog modela.

Klju~ne rije~i: ska~u}i robot, izjedna~avanje inercije, planiranje putanje, jaki polinom, funkcija korekcije.


