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SUMMARY
This paper presents algorithm for development of structural and continuous curved surface into a planar and

non planar (radial) shape in 3D space. The development process is modeled by application of strain in certain plane
from the curved surface to its planar development. A doubly curved surface has been generated for the purpose of
technical studies. Important features of the approach include formulations of the coefficients of first fundamental
form, second fundamental form, Gaussian curvature and Serret Frenet curve. The approximate strain field is obtained
by solving a constrained linear and nonlinear problem in algorithm.

Key words: doubly curved surface, fundamental forms, Frenet curve radius, Gaussian curvature, strain field,
Serret angle.

UDC 531.25:517.9
Original scientific paper

Received: 14.12.2007.

Strain field in doubly curved surface
Amod Tiwari(1), Aurobinda Chatterjee(1), Vinay K. Pathak(2) and Sanjay G. Dhande(3)

(1)CAD Laboratory, Indian Institute of Technology Kanpur, Kanpur 208 016, INDIA
e-mails: amod@iitk.ac.in; achat@iitk.ac.in

(2)Harcourt Butler Technological Institute Kanpur, Nawabganj, Kanpur-21, INDIA
e-mail: vpathak@lycos.com

(3)Indian Institute of Technology Kanpur, Kanpur 208 016, INDIA
e-mail: sgd@iitk.ac.in

1. INTRODUCTION

Shape design and representation of complex objects
such as car, ship, airplane, etc., could not be achieved
through wireframe modeling. These objects are better
modeled through surface modeling. Generation of
surface in general requires some quantitative data, such
as a set of points and tangents as well as some
qualitative data, such as intuition for the desired shape
and smoothness. The choice of the surface geometry
depends upon the application and the manufacturing
methods needed to produce the surface. Polynomial
functions are easy to deal with [1]. The higher order
polynomials are avoided for surface design problems
due to large number of coefficients, which make it
difficult to control the resulting surface. For most
practical surface applications, cubic polynomials are
sufficient.

Two kinds of surfaces, developable surfaces and
non-developable surfaces are used in engineering
applications [2, 3]. These are also called as ‘singly’
and ‘doubly curved’ surfaces respectively. A

developable surface has zero values of Gaussian
curvature at all points while a non-developable surface
has non-zero values of Gaussian curvature at least in
some region [4].

A developable surface is highly favorable in metal
forming since it can be formed only by bending without
any tearing and stretching. However surfaces of many
engineering structures are commonly fabricated as
doubly curved shapes to fulfill the functional
requirements such as hydrodynamic, aesthetic or
structural.

For example, a large portion of shell plates of ship
hulls or airplane fuselages and prosthetic sockets are
doubly curved surfaces [5]. Given a three-dimensional
design surface, which represents a face of a curved
plate or shell, the first step in the fabrication process is
flattening or planar development of this surface into
planar shape. So that the manufacturer can determine
the initial shape of the flat plate, also many estimate the
strain distribution required to obtain the desired shape.
A planar development corresponding to minimum
stretching or shrinkage is highly desirable because it
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saves material and it reduces the work required. Early
surface development procedures were implemented in
shipyards based on geodesic development during the
last three decades, mainly for ship hull plates, whose
Gaussian curvature is very small [4]. Manning [6] has
developed a procedure for surface development based
on an isometric tree. A tree of lines with a spine and
branches was first drawn on the curved surface. Then
these were developed isometrically onto planar curves,
using the geodesic curvature of the spine and branches
on the surface as the curvature of the planar curves.
The envelope of the developed pattern formed the
planar developed shape. The shape of planar
development is dependent on the choice of the spine
and branch curves. The stretching along both spine
and branch curves was zero. Hinds [7] has developed
patterns for simple surfaces that have been considered
in terms of Gaussian curvature. Patterns are derived
for elliptic and hyperbolic curvature regions. Similar
methods have been applied to garment pieces that have
been defined as 3D mathematical models at a
workstation. Approximations have been applied to
patterns to reduce the complexity to a level that is
acceptable to the clothing industry. The limitation of
the method is that the developed shape depends on the
choice of starting edge. If used in metal forming, it is
not guaranteed that the forming process would be
realizable from the planar shape to the curved shape.

2. LITERATURE SURVEY

Letcher [8] has presented a basic geometric theory
for flattening and fabrication of doubly curved plates.
The mapping from the curved surface to its planar
development has been obtained by adding in-plane
strain to the curved surface. The strain field has been
obtained by solving a generalized Poisson’s equation
with the source term equal to the Gaussian curvature.
Cho [9] has presented an algorithm to approximately
develop a doubly curved surface by minimizing the
mapping error function for locally isometric mapping
between a given and developed surface net. The
method has been applied to construct an auxiliary planar
domain of triangulation for tessellating trimmed
parametric surface patches, which sufficiently
preserves the shape of triangles when mapped into
three-dimensional space. Cho’s method for metal
forming has some inherent problems. Azariadis [10]
have dealt with the approximate design of planar
development of doubly curved surfaces and their
refinement in order to derive a final pattern with limited
gaps and overlaps. They have divided the problem of
planar development into three stages i.e.:

• Stage of defining the starting guide strip,
• Stage of designing the initial pattern, and
• Stage of refinement.
The method dealing with first stage of problem is

based on elements of geodesic and Gaussian curvature.
They have also presented an alternative technique of
generating an initial planar development of doubly
curved surface. Yu [4] has presented algorithms for
optimal development (flattening) of a smooth
continuous surface embedded in three-dimensional
space into planar shape.

The development process has been modeled by in-
plane strain (stretching) from the curved surface to its
planar development. The distribution of the appropriate
minimum strain field has been obtained by solving a
constrained nonlinear programming problem. Based on
strain distribution and coefficients of the first
fundamental form of curved surface, another
unconstrained nonlinear programming problem has
been solved to obtain the optimal developed planar
shape. Michael [5] have presented an optimal approach
to laser scanning paths and heating condition
determination for laser forming of doubly curved
shapes. Important feature in their approach includes
strain field calculation based on the Serret Frenet
curvature formulations and minimal strain optimization,
and scanning paths and heating condition determined
by combining analytical and practical constraints.

Different curved surfaces have been shown in
Figure 1 considering single, double and triple curve
states.

Fig. 1   Curved surfaces: I - Support single curve state; II -
Support double curve state; III - Support triple curve state

In the present work, an attempt has been made for
optimal development of a doubly curved surface such
that the strains from the surface to its planar
development are minimized. The development from
curved surface to planar shape is modeled by in-plane
strain methodology. An example has been solved, where
the surface has both positive and negative values of
Gaussian curvature.
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3. GENERALIZATION OF DOUBLY
CURVED SURFACE

An arbitrary surface is not defined globally, but only
at some local points. As a result, the local shape can be
known and be determined by the derivatives of the
surface vector. The nature of local shape is classified
into four cases according to the Gaussian curvature
K1, K2 and the coefficients of the second fundamental
form viz. L, M and N at a point. The commonly used
surfaces are:
(i) elliptic surface, which has positive Gaussian

curvature. In Figure 2, the inter section of K1 and
K2 curves denote the positive Gaussian curvature
(peak representation).

 

Maximum Gaussian curvature Minimum Gaussian curvature

Fig. 2  Elliptical doubly curved surface

(ii) hyperbolic surface, which has negative Gaussian
curvature. At a point where surface is neither
concave nor convex but a surface with a radius of
curvature tending towards infinity is known as
saddle point, Figure 3.

(iii) parabolic surface, which has zero Gaussian
curvature, Figure 4.

Saddle point

Fig. 3  (a, b) Hyperbolic doubly curved surface of saddle

Fig. 4  Parabolic doubly curved surface

(iv) planar surface, which has zero Gaussian
curvature, Figure 5 and L=M=N=0.

Fig. 5  Plane doubly curved surface

The conditions in each case are to be satisfied at
all major points. A doubly curved surface, Figure 5,
generally requires both in-plane and bending strains
to form. For thin plates, in-plane strain is usually
much larger than the bending strain and therefore only
the former is considered. A doubly curved surface
has been generated for the purpose of study in this
work. The surface has a form of Bezier surface as
shown in Figure 6.

Fig. 6  The generated shape

Points on the Bezier surface are given by the
following equation [1]:
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triangular. There are two types of surfaces, analytic and
synthetic. Analytic surfaces are based on wireframe
entities and synthetic surfaces are formed from a given
set of data points or curves. The tensor product method
is the most popular and is widely used in surface
modeling. The tensor product formulation is a mapping
of a rectangular domain described by the u and v values.
Tensor product surfaces fit naturally onto rectangular
patches [11]:

1, if i j For first domainiu j  (by definition of Kronecker delta)0, if i j
=⎧ ⎫

= ⎨ ⎬≠⎩ ⎭

1, if i j For second domainiv j  (by definition of Kronecker delta)0, if i j
=⎧ ⎫

= ⎨ ⎬≠⎩ ⎭
There is a set of boundary conditions associated

with a rectangular patch. There are sixteen vectors and
four boundary curves, shown in Figure 7. The vectors
are four position vectors for the four corner points,
eight tangent vectors and four twist vectors at the
corner points. Geometric surface analysis is performed
using principles of differential geometry. The
parametric surface P(u,v) is directly amenable to
differential analysis. There are intrinsic differential
characteristics of a surface such as the unit normal
and the Serret Frenet curvatures and directions which
are independent of parameterization.

4. FIRST FUNDAMENTAL FORM

The tangent vector at any point P(u,v) on the
surface is obtained by keeping one parameter as a
constant and differentiating position vector of the point
with respect to the other.

These vectors are given by:
Pu(u,v)=δP/δu=δx/δu i +δy/δu j +δz/δu k (4)

where umin≤u≤umax, vmin≤v≤vmax along the
v=constant curve, and:

Pv(u,v)=δP/δv=δx/δv i +δy/δv j +δz/δv k (5)
where umin≤u≤umax , vmin≤v≤vmax along the
u=constant curve. Tangent vectors are useful in
determining boundary conditions for patching surfaces
together. The magnitudes and unit vectors of the
tangent vectors are given by:

( ) ( ) ( ){ }2 2 2 
u =  x/ u +  y/ u +  z/ u∂ ∂ ∂ ∂ ∂ ∂P (6)

( ) ( ) ( ){ }2 2 2 
v =  x/ v +  y/ v +  z/ v∂ ∂ ∂ ∂ ∂ ∂P (7)

nu=Pu / |Pu|     nv=Pv / |Pv| (8)
Twist vector at a point is the rate of change of the

tangent vector Pu with respect to v or vice-versa. The
twist vector depends upon both the surface geometric
characteristics and its parametrization. The twist vector
can be written in terms of its Cartesian components as:

( ) ( ) ( )
m n

ij i,n j ,m
i 0 j 0

P u,v P B u B v
= =

=∑∑ (1)

where u,v ∈ [0,1], Pij is the ijth control point. These
points form the vertices of the control or characteristic
polyhedron of the resulting Bezier surface;
Bi,n(u)=C(n,i) ui(1-u)n-i where C(n,i) is the binomial
coefficient and is given as:

( ) n!C n,i
i! ( n-i)!

=
×

In the design environment, the Bezier surface is
superior to bi-cubic surface because it does not require
tangent or twist vectors to define a surface. Its main
disadvantage is the lack of local control. By changing
one or more control points affects the shape of whole
surface. The user cannot change the shape of part of
the surface also. Therefore a bi-cubic Bezier surface
has been selected to have more control over the surface
[1]. For a bi-cubic Bezier surface patch, sixteen points
are required to determine the surface patch [5]. The
point on the surface patch can be expressed in the
matrix form [1]:

( ) ( ) ( ) ( )

( )
( )
( )

3

2
3 2 2 3

2

3

1-v

3v 1-vu,v = 1-u 3u 1-u 3u 1-u u
3v 1-v

v

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤ × × ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

P Q

(2)
where Q is a matrix having (m+1) rows and (n+1)
columns containing sixteen control points.

The following control points for the surface
generation have been taken:
{(0,0,3), (0,1/3,2.89), (0,2/3,2.31), (0,1,1.5)},
{(1/3,0,2.89), (1/3,1/3,2.79), (1/3,2/3,2.25), (1/3,1,1.47)},
{(2/3,0,2.31), (2/3,1/3,2.25), (2/3,2/3,1.88), (2/3,1,1.31)},
{(1,0,1.5), (1,1/3,1.47), (1,2/3,1.31), (1,1,1)}.

3.1 Surface representation

The function P(u,v) at certain values u and v is the
point on the surface at these values. The general way
to describe the parametric equation of a three-
dimensional curved surface in space is:

P(u,v)=[x y z]T=[x(u,v) y(u,v) z(u,v)]T (3)
where umin≤ u ≤umax , vmin≤ v ≤vmax

The above equation suggests that a general three-
dimensional surface can be modeled by dividing it into
an assembly of topological patches. A patch is considered
the basic mathematical element to model a complete
surface. Some surface may consist of one patch only
while others may be a few patches connected together.
The topology of the patch may be rectangular or
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T2 2 2
uv

2 2 2

 = x/ u y y/ u y z/ u y

x/ u y  + y/ u y + z/ u y 

⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ =⎣ ⎦

= ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

P

i j k (9)

where umin≤ u ≤umax, vmin≤ v ≤vmax.
The normal to the surface is another important

analytical property. The surface normal at a point is a
vector, which is perpendicular to both tangent vectors
at the point, that is:

N(u,v)=(δP/δu)×(δP/δv)=Pu×Pv (10)
and the unit normal vector is given by:

n=N /⏐N⏐=(Pu×Pv) /⏐Pu×Pv⏐ (11)
The calculation of the distance between two points

on a curved surface becomes an important aspect for
surface analysis. The infinitesimal distance between two
points (u,v) and (u+du, v+dv) on a surface is given by:

ds2 = Pu⋅Pu du2+2Pu⋅Pv du dv+Pv⋅Pv dv2 (12)
Equation (12) is called as the first fundamental

quadratic form of the surface and is written as:
ds2=E du2+2F du dv+G dv2 (13)

where: E(u,v) = Pu⋅Pu
F(u,v) = Pu⋅Pv
G(u,v) = Pv⋅Pv

E, F and G are the first fundamental or metric
coefficients of the surface. These coefficients provide
the basis for the measurement of length and areas, and
the specification of directions and angles on a surface.

4.1 Second fundamental form

The first fundamental form yields no information
on how surface curves away from the tangent plane at
that point. To investigate the surface curvature, another
distance perpendicular to the tangent plane at P(u,v) is
introduced and is given by:
½  d h2 = n⋅⋅⋅⋅⋅Puu du2 + 2n⋅⋅⋅⋅⋅Puv du dv + n⋅⋅⋅⋅⋅Pvv dv2 (14)

The above equation is often called the second
fundamental quadratic form of the surface and is
given as:

½  d h2 = L du2 + 2M du dv + N dv2 (15)
where L(u,v)=n⋅⋅⋅⋅⋅Puu, M(u,v)=n⋅⋅⋅⋅⋅Puv, N(u,v)=n⋅⋅⋅⋅⋅Pvv
L, M and N are the second fundamental coefficients,
L1, M1, N1 and L2, M2, N2 are direction cosine of the
plane surface and form the basis for defining and
analyzing the curvature of a surface:

( )
( ) ( )

1 1 1
2 2 2 2 2 2

1 1 1 2 2 2

L L  + M M  +N N
cos

L + M  + N L  + M  + N
θ =

∗

(16)

( )
( ) ( )

2 2 2
2 2 2 2 2 2

2 2 2

L L  + M M  +N N
cos

L + M  + N L  + M  + N
Φ =

∗

(17)

Fig. 7  A parametric surface patch with its boundary conditions
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4.2 Gaussian curvature

The surface curvature at the point on a normal
section curve given by the form {u=u(t), v=v(t)} can
be written as [4]:

2 2

n 2 2
L u' + 2M u'v' +N v'
E u' + 2F u'v' +G v'   

κ = (18)

The radius of curvature at the point is r=1/κn.
The above equation gives the surface curvature in

any direction at point P(u,v). During analysis of curved
surface two curvatures viz. Gaussian curvature and
mean curvature are used. The Gaussian curvature (K)
and mean curvature (H) are defined by Michael [5],
Zeid [1] and Carmo [12] as:

( )
( ) 2

L N
K

E G - F   
×

=
×

(19)

( ) ( ) ( )
( )( )2

E N + G L - 2 F  M
H

2 E G F   

× × × ×
=

× × −
(20)

4.3 Serret Frenet curvature

The values of Gaussian curvature and mean
curvature are used to obtain the Serret Frenet
curvatures [13], which are the upper (maximum) and
lower (minimum) bounds on the curvature at the point
[1]:

drt
ds

= (21)

dt kn
ds

= (22)

dn kt b
ds

τ= − + (23)

db n
ds

τ= − (24)

It is clear that t, n and b are mutually perpendicular
to each other, Figure 8. If we consider t, b and n are
vectors quantity, therefore:

b = t × n (i)
t = n × b (ii)
n = b × t (iii)

Now, we can find the relation between Gaussian
curvature (K), mean curvature (H) and Serret Frenet
constant (κ).

The curvature constant (κ) has been defined two
types from Eqs. (25) and (26):

(i) κmax is maximum geodesic distance between
doubly curve surface, and

(ii) κmin is minimum geodesic distance between
doubly curve surface, see Figure 3, as:

( )2
max= H + H - Kκ (25)

( )2
min= H - H - Kκ (26)

Fig. 8  Doubly curved surface

5. DETERMINATION OF STRAIN FIELD

During metal forming by line heating [14], the
strains due to development from curved surface to its
planar development are:

εu(u,v) ≥ 0
and:

εv(u,v) ≥ 0.
Normal strains are a non-dimensional quantity

defined by the ratio of extension or shrinkage of a fiber
and its original length as shown in Figure 9. After
surface development, an infinitesimal length
⏐Pudu⏐changes to (1+εu)⏐Pudu⏐and an infinitesimal
length ⏐Pvdv⏐changes to (1+εv)⏐Pvdv⏐.

Fig. 9  Curced surface and its planar developent

Thus we have:

⏐pu⏐=(1+εu)⏐Pu⏐, ⏐pv⏐=(1+εv)⏐Pv⏐ (27)

where p(u,v) is the planar development. The first
fundamental form coefficients of the developed surface
p(u,v) are given by Yu [4]:

e = pu ⋅ pu
f = pu ⋅ pv (28)
g = pv ⋅ pv

After substituting Eq. (27) and the relations:
pu ⋅ pu = ⏐pu⏐2,      pv ⋅ pv = ⏐pu⏐2
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into Eq. (28), the coefficients of the first fundamental
form of the planar developed surface are [4]:

e = (1+εu)2 E
f = (1+εu) ⋅ (1+εv) F (29)

g = (1+εv)2 G
It is therefore required to minimize the strains

eu(u,v) and ev(u,v), which satisfy the condition that
after adding these strains to the doubly curved surface,
it maps to a planar shape on which the Gaussian
curvature is zero. This minimization is done in an
integral sense using the squares of the strains.

This results are presented as follows [4]:

( ) ( )

( ) ( ) ( )

2 2u v
u v

2 2u v 2

min du dv

min EG F du dv

ε ε

ε ε

⎧ ⎫+ × =⎨ ⎬
⎩ ⎭
⎧ ⎫= + −⎨ ⎬
⎩ ⎭

∫ ∫

∫ ∫

P P
(30)

Such that:
0 = {e (evgv – 2fugv + gu

2) +

+ f (eugv – evgu – 2ev fv + 4eu fv – 2fugu) +

+ g (eugu – 2eu fv + ev
2) –

– 2(eg – f 2)(evv – 2fuv + guu)}/4(eg – f 2)2 (31)

where: εu(u,v) ≥ 0,
εv(u,v) ≥ 0, and:
(u,v) ∈ D.

This constrained minimization problem is
discretized by using the finite difference method and
trapezoidal rule of integration [15]. A grid of (Ngu×Ngv)
points in the parametric domain is used in the
discretization. Therefore, the total numbers of variables
are (2×Ngu×Ngv). To guarantee the independence of
each constraint, constraints are imposed at the internal
points of the grid, so there are [(Ngu–2)×(Ngv–2)]
constraints. After discretization, the objective function
becomes [4]:

( ) ( ) ( )
u v

g gN N
2 2u v 2

ij ij ij ij ij ij
i 1 j 1

E G F u vα ε ε ∆ ∆
= =

⎧ ⎫+ −⎨ ⎬
⎩ ⎭∑∑

(32)

where following the trapezoidal rule of integration
[10]:
αij = 1 when 1<i<Ng

u; 1<j<Ng
v,

αij = 0.5 when 1<i<Ng
u; j=1 or  j=Ng

v,

αij = 0.5 when i=1 or i=Ng
u; 1<j<Ng

v, (33)

αij = 0.25 when i=j=1 or i=Ng
v, j=Ng

v,

αij = 0.25 when i=Ng
u, j=1 or i=1, j=Ng

v,

We use second order central difference methods to
approximate all the derivatives in Eq. (31) at the internal
points of the grid. After discretization, we obtain a
nonlinear optimization problem with a convex cost
function and nonlinear polynomial constraints. This

nonlinear programming problem is solved using the
Matlab routine fmincon, which is designed to solve the
nonlinear programming problem. In implementation of
this work, the starting point of the minimization is that
all the strains are chosen to be zero.

6. RESULT

In the present work, the entire surface has been
divided into 25 grid points. For the purpose of studies,
number of grid points has been taken as 5 (that is Ngu=5
and Ngv=5). The strain distribution after the
constrained minimization problem was solved using
tolerances of 10-2 for the constraints and 10-3 for the
objective function. The strains are scaled to fit into the
figure (Figure 10).

Fig. 10  Graph between Grid values (Ngu, Ngv) and CPU time

The extreme values of the strain field are located at
(u,v)=(0.5, 0.25) with (εu,εv)=(0.023591, 0.389654).
The objective function converges to the value of
2.56814×10-3 at the solution. All the constraints have
been found within the tolerance of 1×10-2. Table 1
shows the CPU time spent in optimization for various
numbers of grid points and the values of objective
functions. In this table Ng represents the number of
grid points in both u and v directions, Niter is the
number of iterations, obj is the converged value of the
objective function in the optimization process and CPU
time is time spent on the optimization.

Table 1 CPU time for each optimization at various number of
grid points

Grid  
Points (Ng) 

Niter Obj (10-3) CPU Time 
(seconds) 

5 3 2 .56814 0.61 
7 8 2 .49626 8.53 

10 7 2 .46140 33.00 
15 13 2 .44710 366.71 
20 33 2 .39968 7862.68 
25 40 2 .38560 13210.65 
30 52 2 .36140 20100.20 
40 57 2 .35110 29265.40 
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POLJE DEFORMACIJA NA DVOSTRUKO ZAKRIVLJENOJ PLOHI

SA@ETAK

U ovom radu predstavlja se algoritam za razvoj konstrukcijske i kontinuirane zakrivljene plohe u ravni i zakrivljeni
(radijalni) oblik u 3-D prostoru. Razvojni proces je modeliran primjenom deformacije na odre|enoj plohi od
zakrivljene plohe do ravne. Dvostruko zakrivljena ploha proizvedena je zbog tehni~kog prou~avanja. Va`ne zna~ajke
pristupa uklju~uju formulaciju koeficijenta prvog osnovnog oblika, Gaussove zakrivljenosti i Serret Frenetove krivulje.
Aproksimacijsko polje deformacija dobije se rješavanjem neprirodnog linearnog i nelinearnog problema u algoritmu.

Klju~ne rije~i: dvostruko zakrivljena ploha, osnovni oblici, radius Frenetove krivulje, Gaussova zakrivljenost,
deformirano polje, Serretov kut.

7. CONCLUSIONS

The value of strain is greater than compared to the
surfaces having positive or negative values of Gaussian
curvature only. The number of grid points should be
kept at around 30 because any further increase in
number of grid points does not significantly decrease
the objective function value but increases number of
iterations as well as CPU time. As the number of grid
points is increased, the CPU time, which is time taken
to optimize the objective function increases drastically.
The values of the objective function and the constraints
are within the tolerance limit. The values of the
constraints will never be zero.
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