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Abstract. This paper describes the constants in generic weight subspaces Bg of multi-
parametric quon algebra B, where it is shown that one can perform calculations of constants
in terms of certain iterated g-commutators. In order to simplify some algebraic manipula-
tions, here we use a twisted group algebra approach.
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1. Introduction

One of fundamental problems in multiparametric quon algebra B = B? equipped
with a multiparametric g-differential structure is a determination of the space C
of all constants. The algebra B is naturally graded by the total degree and more
generally it can be considered as multigraded, because it has a finer decomposition
into multigraded components Bg called weight subspaces. Thus the fundamental
problem can be reduced to simpler problems of determining all finite dimensional
spaces Cq of all constants belonging to Bg. Of particular interest are generic weight
subspaces Cg, where @ is a set (see Section 2 and also [7]).

To solve this problem, one needs some special matrices and their factorizations
in terms of simpler matrices. In order to simplify these algebraic manipulations,
first, we have introduced a twisted group algebra A(S,,) of the symmetric group S,
with coefficients in the polynomial ring R,, in n? commuting variables X5, where
we have studied nontrivial factorization of certain canonically defined elements (see
(8), Section 3 and also [8]). Then we have used a natural representation of A(S,,)
on the generic weight subspaces Bg of the algebra B. This approch is used because
in this representation some factorizations of certain canonical elements from .A(S,,)
immediately give the corresponding matrix factorizations and also determinant fac-
torizations.

Similar factorizations in a one-parameter case are given in [11] and in the multi-
parameter case in [5], where the factorizations were given on the matrix level. More
general factorizations in braid group algebra can be found in [1]. In this paper, we are
motivated to solve the problem of computing the constants in multiparametric quon
algebra, therefore the factorizations here are more suitable and algebraically much
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simpler. Note that the algebra B has a direct sum decomposition into the generic
subspace B&°" spanned by all multilinear monomials and the degenerate subspace
B8 spanned by all monomials which are nonlinear in at least one variable, that can
be written by B = B8 @ BI® with

Ber = (P Bg, B = T Bo.

Q a set Q@ a multiset (not set)

Thus we distinguish between generic and degenerate subspaces of B. Therefore,
the computation of constants in B indicates the calculations of constants in all
generic and also degenerate subspaces of B, but here we use the fact that it is
enough to compute the constants in generic subspaces, because the constants in
degenerated subspaces can be constructed from those in the generic case by a certain
specialization procedure (elaborated in the forthcoming paper [9]). In what follows,
we will give nice formulas to describe the constants in every generic weight subspace
of B, where we will show that every nontrivial (basic) constant can be expressed in
terms of certain iterated g-commutators defined by (7) (see [7]).

2. The algebra B

We recall that the free unital associative complex algebra B is generated by N
generators {e;};cnr, each of degree one, where N' = {i1,...,ix} is a fixed subset
of the set of nonnegative integers. The g-differential structure on B is given by
g-differential operators {9; };cn that act on B according to the twisted Leibniz rule

0i(e;x) = iz + qije;0i(x) foreach z € B,i,jeN (1)

with 9;(1) = 0 and 9;(e;) = d;5, where 0;; is a standard Kronecker delta and g;;’s
are given complex numbers. Every weight subspace Bg, corresponding to a multiset
Q={ly <---<l,} (of cardinality n), is given by

Bg = spanc {ejl...jn =ej €, | 1. Jn € Q}7 (2)

where @ denotes the set of all distinct permutations of Q). Thus, dim Bg = Card @
Let j := ji...jn and let us denote by B = {¢; | j € @} the monomial basis of Bg;
then by applying the formula (1) to e; € B we obtain

0ile)) = D G ey G (3)

1<k<n,jr=t

an explicit formula for the action of J; on a typical monomial in Bg. Here j//; denotes
the omission of the corresponding index jy.

_ 2 2
Example 1. o (61321212) = e321212 + G11912913€132212 + ¢11912913€132122-

It is obvious that if @ is a set (sometimes called the generic case), then (3)
reduces to

ajk (el) = Drgr " Dird—1C5,. fn.iin” (4)
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Motivated by the idea to treat better the matrices of 9;] Bo, We introduce a multide-
gree operator 0: B — B with
8 = Z €; 81',

iEN

where the operators e;: B — B are considered as multiplication by e;. Let 99 denote
the restriction of 0 to the subspace Bg and let us denote by B the matrix of the
operator 09 with respect to the basis B (totally ordered by the Johnson-Trotter
ordering on permutations, c.f. [10]). Then we can write

Bo (o) = 2 G @i i, (5)
1<k<n

for each j € @ The entries of this matrix are polynomials in g;;’s, that are reduced
to monomials in the generic case. Clearly, in this case, the size of By, is equal to n!.
In the algebra B the elements called constants are of particular interest. A constant
C in B is defined as an element in B annihilated by all multiparametric partial
derivatives 0; (equivalent to dC = 0). Note that every linear combination of some
constants is constant. Then linearly independent constants called basic constants
(and sometimes constants) are of particular interest. We denote by C the space of
all (basic) constants in B and by Cq the space of all (basic) constants belonging
to Bg. Then C =kerd (the kernel of the multidegree operator 9) and similar by
CQ = ker 8Q.

In what follows, we will consider only basic constants in generic weight subspaces
Bg of B (because the basic constants in degenerated subspaces can be constructed
from those in the generic case by a certain specialization procedure, c.f. [9]). The
existence of nontrivial basic constants depends on det Bg (c.f. (5)) which, in the
generic case, is given explicitly as the product of binomial factors (1 — o), i.e.,

det BQ = H (1 _ UT)(|T|72)!(H*‘T‘)! 7 (6)
TCR
2<|T|<n

where o1 =[], .pcr dab (see also [5] and Theorem 4.12 in [6]). Here [T'| = Card T
denotes the cardinality of the set 7. If detBg =0, i.e., if there is at least one
or =1, then we say that ¢;;’s are singular parameters, otherwise they are regular
(or in general position c.f. [2]). In other words, the space Cq is nonzero only for
singular parameters that can be classified into two types, satisfying:

e Type 1: Q-cocycle condition (i.e., the top cocycle condition, see [2], [3]),
e Type 2: (Q;T)-cocycle condition for fixed TG Q,

(see [7] for details). In the generic case, they take the form
o Type 1: og =1, 00 #1 forall TGQ,

o Type 2: og =1, 00 =1,05 #1 forall SSQ,S#T.
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Here we consider only Type 1 singular parameters because Type 2 could be obtained
from Type 1 by a certain specialization procedure (c.f. [7], Section 4 for the special
cases 2 < |Q| < 4; more details will be given in [9]). Thus, in this paper, we will
study only nontrivial basic constants in generic weight subspaces Bo C B under the
Q-cocycle condition (sometimes written as og = 1).

In hat follows, we will use an important result of Frgnsdal and Galindo (c.f. [3,
Theorem 4.1.2]) that can be interpreted as follows: in the generic case under the
Q-cocycle condition the space Cq has dimension (n — 2)!, where n = Card Q. It is
easy to see that if n = 1, then zero is the only constant in Bg. Hence nontrivial
constants might exist only in the spaces Bg, n > 2.

We use the following abbreviations Y}, . ;, for the iterated g-commutators defined
recursively by

Yj =Gy len-jp = [El"'jp*l’ejp} ) (7)

Qipi1 " Lipip—1

where Y, j, = ey €),] = €j,j» — Uj2j1€j2jz (s€€ [7] and also [4] for details).

52351

3. The algebra A(S,)

Recall that A(S,) = R, x C[S,] denotes a twisted group algebra of the symmetric
group S,, with coefficients in the polynomial algebra R,, in n? commuting variables
Xab (1 <a,b<mn) over the set of complex numbers (c.f. [8]) with 1 € R,, as a unit
element of R,,. Here x denotes the semidirect product. The multiplication in A(S),)
is given by

(p1(-- s Xavy - )g1) - (p2(- .., Xeas - )g2)
:pl(...,Xab,...) 'pQ("'7Xg1(c)g1(d)a"')gl.92'

The following canonically defined elements (c.f. [8], page 7) are of particular interest:

=S T Xeo)s )

g€Sn \(a,b)el(g—1)

in the algebra A(S,,), where I(g) = {(a,b) | 1 <a <b<mn, g(a) > g(b)} denotes the
set of all inversions (a,b) of the permutation g.

To recapitulate from [8], first we have considered the cyclic permutation ¢ , € Sy,
which maps a to a+1toa+2 -+ to b to a and fixes all 1 < k < a—1 and
b+ 1<k <n (cf [5]), and then we have decomposed g € S,, into cycles from the
left (this is more appropriate for determination of constants in the algebra B) as
follows: g =tk nthy_1n—1°tk; 5" tho,2 - tky,1, Where k; > j. The corresponding
elements in the algebra A(S,,) were given by

tha = H Xaj | the foreach 1<a<b<n. 9)
a+1<5<b
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Moreover, in [8] we have defined
Bn—tr1 =tng Tt 1 p+ Fthir g Ttk
Yoropgr = (id =t ) - (id =t p) - (id —teyip) s
* . 2 . *\2 . 2 g%
e = (id — (60)° 6 r) - (id = ()2 g gn) - (d — (60)* th pgn) s
1 <k<n-—1witht; , =idand (t})* = Xz, k41} id, where
=tk Xkt = Xkt - Xeg1ke

Note that k = n implies: §7 = id. Then we have obtained
o, = B3 5By with Sp=0- (), 2<k<n

So, o has a nontrivial factorization. It is firstly expressed as the product of simpler
elements 3} over all 1 < k£ < n and then 3} in terms of yet simpler products v}
and 6.

4. A representation of A(S,) on the generic subspaces Bg

Since A(S,) = R, x C[S,], firstly we consider a representation p; of R, and then a
representation g2 of C[S,] as follows:

® 01 Rn — End(BQ)a Ql(Xab> = Qab; 1 < CL,b < n,
o 02: C[Sy] = End(Bg),  02(9) €jijn = €5, 14 dy 100
for every X445 € Ry, and g € Sy; here Q4 denotes a diagonal operator on B¢ defined
by
Qab ejl---jn = qjajb ej1~~~jn'

Note that Qup - Qcd = Qcd - Qabp-

Proposition 1. Suppose that a map o: A(Sn) — End(Bg) is defined on decompos-
able elements by o(pg) := 01(p) - 02(g) for every p € Ry, and g € S,, and extended by
additivity. Then o 1s a representation

To prove this proposition it is enough to check that o preserves the following two
types of basic relations of the multiplication in A(S,,):

Xav*Xed=Xed Xavs,  9-Xab=Xg@)gv) 9

(see [6, Proposition 4.5] for details). Note that then the basic instance of the multipli-
cation in A(S,) can be written as (X,5 91)-(Xca 92) = Xav-Xg, (¢) g1 (@) 9192. In what
follows, we will consider the twisted regular representation g: A(S,) — End(Bg) in
the generic case, where Bg is the generic weight subspace of B. We have

* — .. . .. . .
Q(tb,a) €j1.Jadatre--Tbdn = H Qjojs €jr--goja--Jo—1---Jn
a<i<b—1
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and in the special case

Q(ta) €j1.Jajat1---dn — Qat1da €d1---Jat1da---dn>

and

o((t2)%) €4r.jn = Tjujuir €jrrin

where we use the abbreviation ¢j,j.., = @j.jai1@asrj.- Then the element o(o;) €
End(Bg) is given by

olor)ej = > I eer].

gESn \(a,b)€l(g)

where g satisfies k = g.7; see (8), (9). Similarly, the elements o(8;;_,.,,) € End(Bg),
1 <k <n-—1 are given by

o(Br—ks1)€j = Z ot 1) ej + ¢, (10)

k+1<m<n

with o(87) e; = e;. In order to write the given elements in the matrix notation, we
introduce the abbreviations T4, := 0(t} ), Ta := o(t;) with T, = I and similarly
Bg,k := 0(8}), 2 < k < n. Then identity (10) can be written in the matrix notation
as
Bon k1=, Tmrtl (11)
k4+1<m<n

Then, its factorization is given by

— —
Bon k= || @O=(Te)’Tos) [ AT Twr)™,
k+1<m<n k+1<m<n

where 1 < k <n — 1, or shorter
BQ_’k = DQ_’k . (CQ_’]C)_I 5 2 S k S n, (12)

where Cg 1 := 0(7;), Do,k 1= 0(d5) (see Section 3). Similarly, we get

— — —
Aq = H H (I - (Tk)2 Tm,kJrl) ) H I- Tm,k)i1 )
1<k<n—1 \k+1<m<n k+1<m<n

where Ag := p(aZ). Here we have used

| | Qjpji £ E=1pa.j Gi i i k= tq.j
- _ Ja+1Ja EA a'.l
g { IS (13)

(Tbva)&_' — ) esistl : v (Ta)y 0  otherwise
0 otherwise

with thad = J1---JoJa---Jo—1---Jn and ta-] = J1---Jat1Ja---Jn and also that
(T,)? is a diagonal matrix with o, j,,, as its J-th diagonal entry.
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Of particular interest is the study of det(Bg), 2 < k < n and also det(Ag).
From the above formulas it follows that these determinants can be calculated if one
finds formulas for computing det(I—Tp,), 1 < a < b < n and det(I— (Tq-1)?Tpa),
1< a<b<n,see [6, Lemma 4.11] for details and compare with [5, Lemma 1.9.1].
Then we obtain the following formulas

detBom-kt1) = ] I[[ a—op)tm=2re=mt 1<k <n-1,
2<m<n—k+1 Te€(Q;m)

det(Ag) = H H (1—o7) m—2)!»(n—m+1)!

2<m<n TE(Q;m)

(c.f. [6, Theorem 4.12]; compare with [5, Theorem 1.9.2]), where we have used the
following notations

(@m)={T CQ|Card T =m}, or= [] a

i#jET

An important special case of Bg,, 41 arises for & = 1. Then the (k, j)-entry of the
matrix Bg ,, (c.f. (11) and (13)) is given by

Qjmir " Djmim—r i E=1m1.j, 1<m<mn
B vl
(Bo, n)k 4 { 0 otherwise

with £n,1.J = JmJ1 -+ - Jm—1Jm+1 - - - jn. Hence we can write

Bon €= O Ginir Gimim s Chmirdm st (14)
1<m<n

Now it is obvious that

det(Bg.n) = H H (1— O-T)(m72)!-(n7m)!' (15)
2<m<n Te(Q;m)
By comparing (14) with the matrix B¢ (c.f. (5)) of the operator 99 with respect to
the basis B it follows that Bg, ,, = Bg. Consequently, their determinants must be
equal (c.f. (15) with (6)).

5. The constants in the generic weight subspaces By C B

We recall that Bg denotes the matrix of the operator 09 with respect to the mono-
mial basis of Bg and also that there exist nontrivial constants in Bg only for singular
parameters g;;’s for which detBg = 0 (c.f. (6) and (15)). Therefore, Bg = Bg
leads us to the conclusion that the matrix B can be factorized by applying identity
(12) for k = n.

In this section we will compute nontrivial basic constants in every generic weight
subspace Bg C B (Card Q > 2) under the Q-cocycle condition (see Section 2). Note
that this is equivalent to determine the kernel of the operator 9% = 9 Bo- Then
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in what follows, we will rewrite the operator 99 in terms of simpler operators T}, 1
(2 < m < n) acting on Bg and replace the matrix notation with the corresponding

operator notation. Therefore, for each j € @ we get

Tm71 ei = q]m]l T qjmjnlfl ej7nj1~~~j7n71jm+1~~~jn (16)

(c.f. (13)) with 171 = id, so the identity (11), for k = 1, takes the form

9= > Tni.

1<m<n
Moreover, we obtain
9 - Comn =Dgn (17)
(c.f. (12)) with
—
CQ,n = (Zd_Tn,1>(Zd_T2,l) = H (id_Tm,l)v (18)
2<m<n
—
Dgn = (id— (11)* Tns) - (id— (T1)* Tap) = [[ (id— (T2)*Tim2), (19)
2<m<n
where
(Tl)2 Tm,? ei = U]l]mq]mJQ U qjmjnlfl ejljnl~~~j7n71j7n+1~~~jn : (20)

Observe that (17) is a special case of the braid factorization from [1, Proposition 4.7]
(c.f. with [5]).
Proposition 2. Suppose that U € ker (id — (T)? ng). Then the corresponding
vector X € ker 09 is given by

X=Con [[ (d—(11)*Tns) " -U. (21)

2<m<n-—1

Proof. Observe that (17) can be rewritten as
09 Con=(id— (T1)*Tns) [ (id—(T1)*Tm2),

i.e.,

92-Con [ (id—(T0)?To2) " = (id — (T1)* To2)
2<m<n—1
-1

09 Con [ (id= (1)’ Tms) U = (id— (T1)* Tn2) - U,

2<m<n-—1

for every U € B. Note that the operators (id — (T1)? Tyn2) for m =2,...,n — 1 are
invertible because o # 1 for all T' ; Q (i.e., the Q-cocycle condition is satisfied).
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Therefore, we can relate ker (id — (T1)2 Ty2) C Bg to ker 9% (the space of all
(basic) constants in Bg). Then for each U € ker (id — (T1)* T, 2) the right-hand
side of the last formula is equal to zero, hence for every X € ker % it follows that
X is given by (21). O
Remark 1. Similarly, one can show that if U; € ker (id — (11)? Tj11,2), 2 < j <
n — 1, then the corresponding vector X; € ker 0% is given by

) ~1
X; =Conm H (id — (T1)* T 2) - U

2<m<j
In the special case, if Uy € ker (id —(T1)? T272), then X1 = Cgn-Ui € ker 09, where
Cq.n is given by (18).

The vectors in the kernel of the operator (id—(T1)? T, 2) are of particular interest.
Now we can raise two questions, first how one can write the vectors spanning the
kernel ker (id — (T1)? Ty,2) and then how to find a basis?

By considering the proof of Lemma 4.11 from [6] (see also [5, Lemma 1.9.1],
where the matrix factorizations from the right is used) we can write

n—1

((T1)2 ng) ej = UQ el, (22)

i.e.

(Zd — ((T1)2 Tn72)n_l) 61 = (1 — UQ) 61,

where 0o = H{ij}CQ oij = Hz‘;&jeQ ¢ij and Q = {l1,...,l,} is a set of cardinality
n. Recall that here we have used the factorizations from the left. By applying the

property
(id = (T1)* Tn2)" ") e
= (id — (T1)* Tuz) (id+ (1) Tu) + -+ (1) Tuz)"7) ¢
it follows that the last formula can be written as
(id — (T1)2 T, ») (id+ (T1)2 Tpa) + -+ + ((T1)? Tn,z)"‘Q) e;=(1—00) ¢;. (23)

Now it is easy to see that if o =1, then U; € ker (id —(Th)? Tnﬁg), where

Uy o= (id 4 (D)2 Tas) + -+ (1) Taz)" %) 1 (24)

This leads us to the conclusion that the corresponding vector U; belongs to the
kernel of the operator (id —(T1)? Tnﬁg) if the @-cocycle condition is satisfied.

Remark 2. Under the Q-cocycle condition we have:

dim (ker (id — (T1)* Tn2)) = n - (n — 2)!
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(see also long orbits treated in [2]), where the corresponding linearly independent
vectors can be taken in the form

U11l2j3~~~jn = (Zd + ((T1)2 Tn,2) 4+ .. 4 ((T1)2 Tn,2)n_2) €lalaian s
Ulkhis...in = (id —+ ((T1)2 Tn,2) 4+ ((T1)2 Tn,2)n72) Cltins i

for each 2 <k <mn, where Q ={l1 <ly <---<l,} and

Jaodn €@, Q =Q\{lla} = {lz,- .., 1n}
i in€ Q" Q" =Q\{ln, Ik} ={los. . lx,. . 1n}, 2<k <n.

@\’ (resp. 6/27’) denotes the set of all distinct permutations of the set Q' (resp. Q").

More generally, one can show more identities like (22)
((T1)2 Tm,Q)m_l ej =orej, 2<m<mn,

where T ={j1,...,jm} CQ, Card T =m and op = H Oap = H Qab-

{a,b}CT a#beT

Example 2. Let Bg correspond to Q = {1,2,3,4} and suppose that o1234 = 1. Then
dim (ker (id — (Th)? T4,2)) = 8 and the appropriate linearly independent vectors can
be given by

Ui234 = €1234 + 4243014 €1423 + 324420134 €1342,
Ui243 = €1243 + 432434013 €1324 + 424320134 €1432,
Us134 = €2134 + Q41443024 €2413 + 4319410234 €2341,
Us143 = €2143 + 31434023 €2314 + 414310234 €2431,
Usi24 = €3124 + 41042034 €3412 + 219410234 €3241,
Usi42 = €3142 + ¢21¢24023 €3214 + 414210234 €3421,
Ui123 = €4123 + 31432034 €4312 + ¢21G310234 €4231,

Us132 = e4132 + 421423024 €4213 + 314210234 €4321,

where U;j = (id—i— ((T1)2 T472) + ((T1)2 T4,2)2> €j for every j € @ It is easy to
check that the remaining linearly dependent vectors are related as follows

U124 = q23q430124 U1243,
U1423 = q249340123 U1234,
U2314 = q13q430124 U2143,
U2413 = q149340123 U2134,
Us214 = 129420134 Us142,
Uss12 = 149240123 Us124,
Us213 = q12q320134 Us132,
Uiss12 = q13G230124 Us123,

U142 = 23924012 U1234,
U1432 = 23924012 U1243,
Usza1 = q13G14012 U2134,
Us431 = q13q14012 Uo143,
Us241 = q12q14013 U3124,
Usi21 = q12q14013 U314z,
U231 = q12G13014 Us123,

Uisz21 = q12q13014 Us132.
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Now we can determine the vectors in ker 8¢ under the Q-cocycle condition, i.e.,
we can compute nontrivial basic constants in every such generic weight subspace Bg
of the algebra B. In view of an important result of Frgnsdal and Galindo (c.f. [3,
Theorem 4.1.2]), it turns out that in the generic case

dim (ker 99) = (n —2)! if og = 1. (25)

We recall that ker 99 denotes the space Cq of all constants in Bg. Let og =1
(where @ is a set of cardinality n) and let U; € ker (id — (T1)*T,,,2) for each j € Q.
Then, by temporarily working under condition og — 1 # 0, by using identities (24)
and (23), it follows U; = (id — (T})? ng)_l (1 —o0g) e;. Considering the definition

of diagonal operator Q1 .. »y on Bg:

Qq,.ny € = H Qapy €j

{a,b}C{1,...,n}

and

Qiapy€j = Qab " Qva€i = GjujvBjvia €5 = Tjuss €

we can write
Uy = (id = (1) Tuo) " (id = Qqu,y) 5

Then the vector X; € ker 99 (c.f. Proposition 2) is given by

Xl = CQ_’n H (Zd - (T1)2 Tmﬁg)_l (Zd — Q{l,...,n}) ei

2<m<n

i.e.,

X, = CanlDan) ™ 14~ Qo) 5 0

for each j € @, see also (19). Note that an additional problem of determining
the basis of ker 99 arises from (26), where first we must determine the inverse of
the operator Dg . This problem is directly linked to a more general problem of
determining the inverse of the elements d;_, ., € A(Sp), 1 < k < n—1. Here
we will consider a special case of a solution of this problem, where we will use
Proposition 3.10 from [8] for £ = 1 (see also [5]). By applying a twisted regular
representation ¢ on the elements from A(S,,) treated in [8, Proposition 3.10] as
well as the previously introduced matrix notations, we can use the following labels,
An = o(Ay), Egn = o)) with W, (9) = o(wn(g)) and G = p(g*). Then we
replace the matrix notation with the corresponding operator notation, such that
these labels replace with appropriate without bold tags. Here is meant that the
operator Q,, corresponds to the matrix A,. Let us denote by

Des(o) ={1<i<n—-1|o(i) >o(i+1)}

the descent set of a permutation ¢ € S,. Now we can formulate the following
theorem that is a direct consequence of Proposition 3.10 from [8].
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Theorem 1. Suppose that the parameters q;;’s are in general position, i.e., op # 1
for allT C Q. Then the inverse of the operator Dq . is given by the formula

(Dom) ™" =(2n)"" Equn, (27)
where
Qn = (id = Quzy) (id = Quu2,3y) -+ (id = Qu2.my)
Egn= Y., Wil9)-g
geES1IXSh—-1
and

Wa(g) = H Qi2,..i}

i€Des(g— 1)
with Des(g7 ) ={1<i<n—1|g () >g (i +1)}.
Note that g € S; x S,,—1 fixes the first index.

Theorem 2. Let Bg correspond to a set Q = {l1,...,l,} and let the Q-cocycle
condition be satisfied. If

Xl = (CQ)n(Qn_l)_lEQm) €5, (28)
then X; € Cq.
Proof. In view of the facts
Q, = (id — Qqi2y) (id — Qpu23y) -+ (id — Q1,2,...n}) »
Q-1 = (id— Qq2y) (id — Quu23y) -+~ (id — Qui2,...n—1}) »

it follows (Q,_1)" ! = (id - Qpipo,.., n}) (Q,)71, so (28) can be rewritten as

X; = (Com (id = Qu2...ny) (Do) ~") €.

Here we have applied identity (27) from Theorem 1. Note that the product of
(id— Q{1)27,.,)n}) and (Dg,,)~" commutes because (id— Q{1)27,,,)n}) is a diagonal
operator. By assuming that the Q-cocycle condition is satisfied, from the last formula
it follows X; € ker 99, c.f. (26). We recall that Cg = ker 99 denotes the space of all

(basic) constants belonging to Bg. O

Note that under the Q-cocycle condition, there are n! (nontrivial) vectors X; in

the kernel of the operator 9% (c.f. Theorem 2), but they are not linearly independgnt.
By Remark 2 it follows that the number of the vectors X; € ker 99 can be reduced
to n - (n—2)! with

Xl1l2j3~~~jn = (CQJI(Qﬂ—l)ilEQ,n) Clilajs...lns
Xlkl1i3~~~in = (CQJI(Qﬂ—l)ilEQ,n) Cliliig...in>
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for each 2 < k < n, where the indices of X (resp. corresponding generators e) are
also given in Remark 2. By using the identity (similar to (23)),

(id — Tp1) (id—i— Tor+ -+ (Tn)l)"_l) e;=(1-00) e,

one can show that for each 2 < k < n the vectors Xy, ;,:,...i,, depend on the linearly
independent vectors Xi,i,,..4, (recall that js...j, € @\’, Q' = {l3,...,1ls}). Then
we can conclude, the dimension of ker 99(= Cq) is equal to (n — 2)! that explains
more directly a result of Frgnsdal and Galindo. Thus, we can state the following
proposition.

Proposition 3. Let By correspond to a set Q = {l1,...,1,} and let us denote
Q' =Q\{l1,lo} ={ls,...,ln}. Then under the Q-cocycle condition

dim(Cq) = (n — 2)!
and the nontrivial basic constants in the space Cq are given by
—1
Clllzj3~~~jn = (CQ,n(Qn—l) EQ,") Clilajs...n

foralljg...jneé\’.

We recall that Cg ,, Qn—1 and Eg , are also given in Theorem 1 and @\’ denotes
the set of all distinct permutations of the set Q’.
In what follows, we will apply the iterated g-commutators (c.f. (7)) defined by

Yii iy = Yii iy 1 €y — Qiygy * " Qigiy_1 €ipYiy.ip_,  With  Yi =€,
Proposition 4. Let Q = {l1,...,l,} CN and j =j1...jn € Q. Then
Yj=Canej
where Cq,p, is given by (18).
Proof. Here we use (16) for every 2 < m < n. If m = 2, then it follows
(id = T,1) €5y..j = €hrjagserin — Dinir Cagida...in

= (€j1 = Gjan €ja1) €isorin = [€51:€32)g,, . €isin
=Y} js €5 -
Similarly, we obtain
(id — T3,1) (id = T2 1) €5,...5,

= (id = T5,1) (€j1j2 — Qjajs €aji) Cjaeeoin

= (id — T3,1) (€j1j2j3 — Gjaja 6j2j1j3) €js...jn
= (ejlejS = Qjaj1 Chagrgs — Yisji Lisje €jajrge T UsgeLisgr Diasn ej3j2j1)

= Yjijaja €
As described above, one can show that (id —T,1) - (id —T21) €j,..5, = Y1 . jn-
Thus it follows Cg n ej,..5, =Y;

1edn
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Theorem 3. Let the weight subspace Bo C B correspond to a set Q = {l1,...,ln}
of cardinality n > 2 and let Q' = {ls,...,l,}. If og =1, then

Olllzja---jn = ((anl)ilEQﬁn) Ylll2j3mjn (29)

for every js...j, € @\’
Proof. This Theorem is a direct consequence of Proposition 3 and Proposition 4.
O

Consequently, in the space Cg (of all constants belonging to Bg) there are (n—2)!
(nontrivial) basic constants that can be rewritten as

Z H Qu2,..iy | -9

gE€S1XSn—1 \i€Des(g—1) Y,
- - - Llofs...jm >
(id - Quay) (id = Quoz) - (id = Qua..nny)
where g € S1 x S;,_1 fixes the first index. The right-hand side of the last formula is

composed in terms of (n — 1)! iterated g-commutators Y},¢ such that the first index
l1 € Q is fixed and the remaining n — 1 indices £ = lyj3 ... j, vary. Let us denote

Clilajs...jn =

1 x
= T= . 30
. 1—=z v 1—=z ( )

Example 3. By applying formula (29) under the Q-cocycle condition, in what fol-
lows, we will show basic constants in By for Card Q = 2,3,4.

o If 0,1, =1, then in the generic weight subspace Bi,1, there is one nontrivial
basic constant given by Ci,1, = Yi,1,-

o Let 01,1,1; = 1. Then in the generic weight subspace By, 1,1, there is one non-
trivial basic constant, given by

1 Qi3120141
302 13
Yl1l2la + Ylll3l27
1 -0, 1 -0,

0111213 =

which can be rewritten by using (c.f. (30)) as
o +
Clytzly = Oy, Yz, + Q151207414 Yisisto-
o If 0115151, = 1, then in By, 1,141, there are two nontrivial basic constants
o * * +
Clllzl3l4 = 01,1,0141515 Yl1l2lal4 + igl30141,00,150, Yl1lzl4l3
+ * * +
+qlslzalll3al1l2l3 }/11131214 + Qi3l29141201,1597 151, }/11131412
+ + 4
sl Qals 071,00, 101, Yinlalols T Qalo Qals Qlals 071,07, 151, Yialalslas
_ * + * *
Clitalals = Qsla01,1507, 1,15 Yialalsls T 0131507, 151, Yialalals
+ + 4
sl Qlsla 071,01 1515 Yialslals + QisloQalaQisla 01 1,07 151, Yialslals
+ * * +
+Ql4l20l1l4al1l2l4 lell412l3 + i3l 9141201,1,00 151, Y21l413l2'

Here we have used the lexicographical ordering.
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Example 4. If 0y,1,151,1; = 1, then in Biyi,151,1, there are siz nontrivial basic con-
stants, each consisting of 24 terms. Accordingly, here we will show only the first
constant, where we use abbreviations (30) and the lexicographical ordering.
01112131415 = 071120711213Uf1121314 }/1112131415 + ql5l40?1120'?112130';212l3l5 }/1112131514
+ql413U?1l20;:12[40?1l2l3l4 }/1112141315 + QI4Z3QI5l30?1120'?112[40';:12[415 }/1112141513
+QZ513QI5l4Ulibaltlzlsalilglg,l;g }/1112151314
+QI413QI513QI514Uf112UZ12l50Z121415 Y i0051405
+ql3l2Uzl30?1l2l3gzﬁll2l3l4 }/1113121415 + QI3Z2QI5Z4UZ[30'7112[3UZ12[315 }/1113121514
Q13151415 Ul*llg, UZ13[4 Ul*1l2l3l4 }/1113141215
_HﬂsbqhbQZ5Z2U?1l30?1l3l40;;l3l415 }/1113141512
_HﬂsbQI5l2QZ5Z4U?1l30;:l3l50?1l2l3l5 }/1113151214
+QI312QI412QI512QI5140?113Uf:13150f:131415 Y 1515140,
G141, Q13 Ultl4 Ul*llgl4 Ul*llglgu }/1114121315
+QI4Z2QI4l3QZ5Z3UZ14U?1lgl4UZlQl4lS Yitatatsts
505 Qala Qlals Ul—il_l4 Ul—il_l3l4 Ul*llglgu Yitatstats
+QI312QI412QI413QI512UZZ4Uf11314UZ131415 Yi1a05150,
+QI4Z2QZ4Z3QI5Z2QI5Z3UZZI4U;l4150?1lgl4l5 }/1114151213
+QI312QI412QI413iIl5z2QI513Uf114U;:l4150Z131415 Y 1405150,
+QI5Z2qhal?.QZ5Z4Uleafllglsgfllglgls }/1115121314
‘H]l4l3QI5Z2QI5Z3QI5Z4U;1_150'?112150'71_12[415 Y i500405
_HﬂsbQZ5Z2QI5Z3QI5Z4UZ15Ul—il_l?,lsalilglgls Yiuis1at204
+QI312QI412QI512iIl513QI514UZ150?113150Z131415 Yii55040,
+QI412QI413QI512iIl513QI514UZ150;:14150?1121415 Y i5140005
+QI312QI412QI413QI512QI513QI514UZZ5UL4Z5UL$Z415 Y5050,

The remaining five constants Ciyiz150500 5 Ciitalalalss Clilslalstss Clilsistslys Clilalsials
can be obtained from Ci, 1,151,415 by replacing the same indices in each of its terms. In
pamfzcular, the constant Ci,1,14151, can be obtaz.ned. if we take Ulllzoll’lQl’SalllQlSlsi/lllQl?’lf’l‘L
as its first term and then we permute the indices in the remaining 23 terms, as
given in the first constant. Similarly, we can obtain constant Ciiyi41s15, Clilslalsiss
. - * * * * * *
and Ol1l2l5l3l4’ Ol1l2l5l4l3 by taklng 011159111214 O 11314 }/lll2l4l3l5’ 011129111214 O 11415
* * * * * * -
Yiitotalsls s 01415011515 Ol tasls Yialolslslas O 073,071,107, 151,05 Yialolslals, Tespectively,
as its first term.

To recapitulate, in generic weight subspaces Bg of the algebra B there exist
nontrivial (basic) constants if and only if parameters g;;’s are singular, i.e., if there
is at least one o7 =1 such that det Bg = 0, where By denotes the matrix of the
operator % with respect to the basis of Bg. Singular parameters that satisfy the
Q-cocycle condition (or in Frgnsdal’s terminology the top cocycle condition, see |2,
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3]) are of particular interest. Then under the Q-cocycle condition, by applying
an explicit formula (29), one can compute basic constants in every generic weight
subspace Bg. If Card Q = n, then in Bg there exist (n — 2)! distinct basic constants,
each consisting of (n — 1)! terms. Computation of basic constants in degenerated
weight subspaces is more complicated because there is no single formula to describe
the constants in all degenerate subspaces. By studying in detail the basic constants
in generic as well as in degenerate subspaces of algebra I3, we have concluded that the
basic constants in degenerated subspaces can be constructed from those in the generic
case by a certain specialization procedure (c.f. [9]). In this way, we have solved
explicitly, under the top cocycle condition, the fundamental problem of determining
the constants in the algebra B.
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