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Abstract. In this paper, we study the existence and multiplicity of positive periodic and
subharmonic solutions of second order singular differential equations with impulsive effects.
The proof is based on a generalized version of the Poincaré-Birkhoff twist theorem due to
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1. Introduction

In this paper, we are concerned with the existence and multiplicity of positive pe-
riodic and subharmonic solutions of the second order singular differential equation
with impulsive effects















ü+ f(u) = p(t), t 6= tj ;

∆u(tj) = Ĩj
(

u(t−j ), u̇(t
−
j )

)

,

∆u̇(tj) = L̃j

(

u(t−j ), u̇(t
−
j )

)

, j = 1, 2, . . . ,

(1)

where f : R+ → R is locally Lipschitz continuous and has a singularity at the origin,
p : R → R is a continuous T -periodic function, 0 < t1 < t2 < · · · < tk < T ,
tj+k = tj + T , ∆u(tj) = u(t+j )− u(t−j ), ∆u̇(tj) = u̇(t+j )− u̇(t−j ), Ĩj : R+ × R → R

+

and L̃j : R+ × R → R are continuous maps with Ĩj+k = Ĩj and L̃j+k = L̃j for
j = 1, 2, . . .. For simplicity, we shall only consider right-continuous solutions, i.e.,
u(t+j ) = u(tj) and u̇(t+j ) = u̇(tj), j = 1, 2, . . ..

In this paper, we consider system (1) under the following conditions:

(A1) lim
u→+∞

f(u)
u

= +∞;

(A2) lim
u→0+

f(u) = −∞;

(A3) lim
u→0+

F (u) = +∞, where F (u) =
∫ u

1 f(s)ds;
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(A4) lim
u→0+

Ĩj(u, v) = 0 uniformly for v ∈ R, j = 1, 2, . . ..

Impulsive differential equations, which were initiated by the work of Mil’man
and Myshkis in [11], are basic models in the study of evolution processes of real life
phenomena that are subjected to abrupt changes in their state, and have an extensive
physical, chemical, biological, engineering background and realistic mathematical
model. Therefore, impulsive differential equations are very important in the theory
of differential equations. During the past few years, the periodic problem of impulsive
differential equations has been widely studied the in literature. We just refer the
reader to classical papers [8, 14, 15, 16] for the existence of periodic solutions of
impulsive differential equations via fixed point theory, [7, 12, 19] via topological
degree theory and [17, 23, 24, 27] via variational methods.

Recently, in [18] Qian, Chen and Sun studied the existence and multiplicity of
periodic solutions for the superlinear impulsive second order differential equation of
the form











ẍ+ g(x) = p(t, x, ẋ), t 6= tj ;

∆x(tj) = Īj
(

x(t−j ), ẋ(t
−
j )

)

,

∆ẋ(tj) = J̄j
(

x(t−j ), ẋ(t
−
j )

)

, j = ±1,±2, . . . ,

where 0 ≤ t1 < t2 < · · · < tk < 2π, tj+k = tj + 2π, ∆x(tj) = x(t+j ) − x(t−j ),

∆ẋ(tj) = ẋ(t+j ) − ẋ(t−j ), Īj , J̄j : R × R → R are continuous maps with Īj+k = Īj
and J̄j+k = J̄j for j = ±1,±2, . . .. In addition, g : R → R is a continuous function
satisfying the superlinear growth condition

lim
|x|→∞

g(x)

x
= +∞,

and p : R×R×R → R is bounded, continuous and 2π-periodic in the first variable.
The proof is based on a generalized version of the Poincaré-Birkhoff twist theorem
by Rebelo [21, Corollary 2 and Remark 2].

However, up to now, there are only a few works focused on the existence of
positive periodic solutions for singular differential equations with impulsive effects
[3, 25]. For instance, in [3] Chu and Nieto studied the existence of positive periodic
solutions of the first order singular differential equation with impulsive effects

{

ẋ+ a(t)x = f(t, x) + e(t), t 6= tj ;

∆x(tj) = Jj
(

u(t−j )
)

, j = 1, 2, . . . ,
(2)

where a, e are continuous and 1-periodic functions, 0 = t0 < t1 < t2 < · · · < tk <
tk+1 = 1. The nonlinearity f(t, x) is continuous and presents a singularity at x = 0,
f(t+j , x) and f(t−j , x) exist, f(t−j , x) = f(tj , x) and 1-periodic in t. The impulses
Jj : R → R, k = 1, . . . are continuous functions. Based on a nonlinear alternative
principle of Leray-Schauder, together with a truncation technique, they obtained
some existence results about positive periodic solutions of system (2). In [25], Sun
and his co-authors analyzed the second order singular differential equation with
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impulsive effects

{

ẍ− 1
xα(t) = e(t), t 6= tj ;

∆ẋ(tj) = Jj
(

u(tj)
)

, j = 1, 2, . . . , p− 1,
(3)

where α ≥ 1, e ∈ L1([0, T ]) is T -periodic, 0 = t0 < t1 < t2 < · · · < tp−1 < tp = T ,
tj+p = tj + T , Jj : R × R → R are continuous maps with Jj+p = Jj for j =
1, 2, . . . , p− 1. Based on the mountain-pass theorem, it was proved that system (3)
has at least one positive periodic solution.

The aim of this paper is to study the existence and multiplicity of positive pe-
riodic and subharmonic solutions for the second order singular differential equation
with impulsive effects (1). As far as we know, such problems have been rarely stud-
ied in the literature until now. Our proof is based on a generalized version of the
Poincaré-Birkhoff twist theorem due to Ding [4], and it has been widely applied to
study periodic problems of second order differential equations without impulsive ef-
fects and many nice results have been obtained. See [1, 2, 5, 6, 9, 10, 13, 20, 22, 26]
and the references therein. Let us recall here the generalized Poincaré-Birkhoff twist
theorem due to Ding [4].

Theorem 1 ([4, Generalized Poincaré-Birkhoff twist theorem]). Let D denote an

annular region in the (x, y)-plane. The bounds of D consist of two simple closed

curves, the inner boundary curve C1 and the outer boundary curve C2. Let D1

denote the simple connected open set bounded by C1. Consider an area-preserving

mapping P : R
2 → R

2. Suppose that P (D) ⊂ R
2/{O}. Let (r, θ) be the polar

coordinate of (x, y). Assume the restriction P |D is given by

θ∗ = θ + h(θ, r), r∗ = ϕ(θ, r),

where h and ϕ are continuous in (θ, r) and T -periodic in θ, and the following con-

ditions hold:

(i) C1 and C2 are star-shaped about the origin O;

(ii) O ∈ P (D1);

(iii) h(θ, r) > 0(< 0), (r cos θ, r sin θ) ∈ C1; h(θ, r) < 0(> 0), (r cos θ, r sin θ) ∈ C2.

Then P has at least two fixed points in D.

The rest part of this paper is organized as follows. In Section 2, some preliminary
results will be given in order to use the generalized Poincaré-Birkhoff twist theorem.
The existence and multiplicity results of system (1) are stated and proved in Section
3.

2. Some lemmas

In order to use Theorem 1 and the phase plane analysis methods conveniently, we
will not consider system (1) directly, in which f has a singularity at the origin.
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Instead, we consider the equation with impulsive effects











ẍ+ g(x) = p(t), t 6= tj ;

∆x(tj) = Ij
(

x(t−j ), ẋ(t
−
j )

)

,

∆ẋ(tj) = Lj

(

x(t−j ), ẋ(t
−
j )

)

, j = 1, 2, . . . ,

(4)

where g : (−1,+∞) → R is locally Lipschitz continuous and has a singularity at
x = −1 with g(x) = f(x + 1), ẋ(t+j ) = ẋ(tj), x(t+j ) = x(tj), j = 1, 2, . . .. Ij :
(−1,+∞)× R → (−1,+∞) and Lj : (−1,+∞)× R → R are continuous maps with

Ij(x, ẋ) = Ĩj(x + 1, ẋ) and Lj(x, ẋ) = L̃j(x + 1, ẋ), j = 1, 2, . . .. In fact, we can
take a parallel translation u = 1+x to achieve this aim. Under this transformation,
assumptions (A1)-(A4) become

(H1) lim
x→+∞

g(x)
x

= +∞;

(H2) lim
x→−1+

g(x) = −∞;

(H3) lim
x→−1+

G(x) = +∞, where G(x) =
∫ x

0 g(s)ds;

(H4) lim
x→−1+

Ij(x, y) = 0 uniformly for y ∈ R, j = 1, 2, . . ..

Let us rewrite system (4) as its equivalent form



















ẋ = y,
ẏ = −g(x) + p(t), t 6= tj ;

∆x(tj) = Ij
(

x(t−j ), y(t
−
j )

)

,

∆y(tj) = Lj

(

x(t−j ), y(t
−
j )

)

, j = 1, 2, . . . .

(5)

We denote by (x, y) =
(

x(t, x0, y0), y(t, x0, y0)
)

the solution of (5) satisfying the
initial condition

{

x(0) = x0,
y(0) = y0.

(6)

Lemma 1. Assume that conditions (H1) and (H3) hold. Then for any (x0, y0) ∈
(−1,+∞) × R, system (5) has a unique solution (x, y) which satisfies the initial

condition (6). Moreover, we have that

Pt : (x0, y0) 7→
(

x(t, x0, y0), y(t, x0, y0)
)

is continuous in (x0, y0) for t 6= tj , j = 1, 2, . . . .

Proof. Define a potential function

W (t) =
1

2
y2(t) +G(x(t)).
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Then we have

W ′(t) = y(t)y′(t) + g(x(t))x′(t)

= y(t)
(

y′(t) + g(x(t))
)

= y(t)p(t).

Obviously, we have

∣

∣W ′(t)
∣

∣ ≤
1

2
y2(t) +

1

2
p2(t) ≤

1

2
y2(t) +A,

where A = max
∀t∈R

p2(t)
2 . By (H1) and (H3), we know that there exists a constant

M ≥ 0 such that G(x) +M ≥ 0, which yields

∣

∣W ′(t)
∣

∣ ≤
1

2
y2(t) +A+G(x) +M = W (t) +A1,

where A1 = A+M . Hence, for all t ∈ [tj−1, tj), j = 1, 2, 3, . . ., we have

W (tj−1)e
−∆j +A1(e

−∆j − 1) ≤ W (t) ≤ W (tj−1)e
∆j +A1(e

∆j − 1), (7)

where t0 = 0, ∆j = tj − tj−1, j = 1, 2, . . .. By (7), it is not difficult to verify that
there is no blow-up of the solution (x(t), y(t)) for all t ∈ [0, t1) if W (0) is bounded.
Since I1, L1 are continuous maps and W (t−1 ) is bounded, then W (t1) is bounded,
which implies that there is no blow-up of the solution (x(t), y(t)) for t ∈ [t1, t2)
if W (0) is bounded. Therefore, it is by analogy that there is no blow-up for the
solution

(

x(t), y(t)
)

for all t ∈ [tj−1, tj), j = 1, 2, . . . if W (0) is bounded.

Consequently, by the fact that g is locally Lipschitz continuous and there is no
blow-up for the solution (x(t), y(t)) for all t ∈ [tj−1, tj), j = 1, 2, . . ., we know that
system (5) has a unique solution (x, y) which satisfies the initial condition (6).

From the theorem on continuity with respect to the initial condition and when
g is continuous in (−1,+∞)× R, we know that

Pt : (x0, y0) 7→
(

x(t, x0, y0), y(t, x0, y0)
)

is continuous in (x0, y0) for t 6= tj , j = 1, 2, . . . .

Now, we can define the Poincaré map P : (−1,+∞)× R → (−1,+∞)× R as

P : (x0, y0) 7→
(

x(T, x0, y0), y(T, x0, y0)
)

.

By Lemma 1, we know that P is continuous in (x0, y0).

Let us denote by
(

x(t, x0, y0), y(t, x0, y0)
)

the solution of (5) satisfying the initial
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condition
(

x(0, x0, y0), y(0, x0, y0)
)

= (x0, y0) and define

P0 : (x0, y0) 7→
(

x(t−1 , x0, y0), y(t
−
1 , x0, y0)

)

,

P1 : (x1, y1) 7→
(

x(t−2 , x1, y1), y(t
−
2 , x1, y1)

)

,

...

Pj : (xj , yj) 7→
(

x(t−j+1, xj , yj), y(t
−
j+1, xj , yj)

)

,

...

Pk−1 : (xk−1, yk−1) 7→
(

x(t−k , xk−1, yk−1), y(t
−
k , xk−1, yk−1)

)

,

Pk : (xk, yk) 7→
(

x(T, xk, yk), y(T, xk, yk)
)

,

where
(xj , yj) =

(

x(tj , xj−1, yj−1), y(tj , xj−1, yj−1)
)

, j = 1, 2, . . . .

Then the Poincaré map

P : (x0, y0) 7→
(

x(T, x0, y0), y(T, x0, y0)
)

can be expressed by
P = Pk ◦Φk ◦ · · · ◦ P1 ◦ Φ1 ◦ P0,

where
Φj : (x, y) 7→

(

x+ Ij(x, y), y + Lj(x, y)
)

, j = 1, 2, . . . .

A map P : R2 → R
2 is said to be an area-preserving map or symplectic if

detP ′ = 1.

Lemma 2. Assume that Pj , j = 1, 2, . . . are area-preserving maps. Then the finite

compositions of maps Pj , j = 1, 2, . . . are also area-preserving maps.

Proof. Set ¶n = Pn ◦ Pn−1 ◦ · · ·P2 ◦ P1, n = 1, 2, . . .. It comes directly from the
fact that

det¶′
2 = det(P ′

2 ◦ P1)detP
′
1 = 1,

which implies that ¶2 is an area-preserving map. Analogously, we can conclude that

det¶′
3 = det(P ′

3 ◦ ¶2)det¶
′
2 = 1,

det¶′
4 = det(P ′

4 ◦ ¶3)det¶
′
3 = 1,

...

det¶′
n = det(P ′

n ◦ ¶n−1)det¶
′
n−1 = 1.

Therefore ¶n, n = 1, 2, . . . are area-preserving maps.

Since the equation
{

ẋ = y,

ẏ = −g(x) + p(t),
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is conservative, we know that Pj , j = 1, 2, . . . are area-preserving maps. Therefore,
by Lemma 2, we know that the Poincaré map P is an area-preserving homeomor-
phism if Φj , j = 1, 2, . . . are global area-preserving homeomorphisms.

We define a function Γ : (−1,+∞)× R → R
+ as follows:

Γ(x, y) = x2 +
1

(1 + x)2
+ y2.

Denote

Γa :=
{

(x, y)
∣

∣x2 +
1

(1 + x)2
+ y2 < a2

}

,

where a > 1. Obviously, O(0, 0) ∈ Γa. Using the same ideas as in [18, Lemma 2.1],
we can easily obtain the following results.

Lemma 3. Let P be a global orientation-preserving planar homeomorphism and let

a be a constant large enough such that O ∈ P (Γa); then there exists a well defined

continuous polar lifting of P outside Γa.

Now we introduce a new assumption:

(H5): Φj, j = 1, 2, . . . are global orientation-preserving and area-preserving homeo-
morphisms with the finite twist property.

Here we say that Φj , j = 1, 2, . . . have the finite twist property if there exist uniform
constants MΦj

, j = 1, 2, . . . such that

|∆θΦj(z)| = |arg(Ψj(z))− arg(z)| ≤ MΦj
, j = 1, 2, . . . , for Γ(z) ≥ a,

where z = (x, y), a is large enough such that Φ−1
j (O) ∈ Γa, j = 1, 2, . . .. If (H5)

holds, then the Poincaré map P is an area-preserving homeomorphism in the phase
plane. Clearly, the fixed points of the map P correspond to the periodic solutions
of system (5).

Lemma 4. Assume that conditions (H1), (H3), (H4) and (H5) hold. Then

Γ(x(t), y(t)) → +∞ uniformly for t ∈ [tj−1, tj) as Γ(x0, y0) → +∞,

j = 1, 2, . . . .

Proof. By (7), we know that

Γ
(

x(t), y(t)
)

→ +∞ uniformly for t ∈ [0, t1) as Γ(x0, y0) → +∞. (8)

If Γ(x(t−1 ), y(t
−
1 )) → +∞, we know that at least one of the following cases holds

• x(t−1 ) → −1+;

• x(t−1 ) → +∞.

Then by (H4) and (H5), we know that at least one of the following cases holds

• x(t1) → −1+;
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• x(t1) → +∞,

which implies that
Γ
(

x(t1), y(t1)
)

→ +∞.

Similarly to (8), we have

Γ
(

x(t), y(t)
)

→ +∞ uniformly for t ∈ [t1, t2) as Γ(x0, y0) → +∞.

Analogously, by (7), we can conclude that Γ
(

x(t), y(t)
)

→ +∞ uniformly for t ∈
[tj−1, tj) if Γ(x0, y0) → +∞, j = 1, 2, 3, . . ..

By Lemma 4, we know that if Γ(x0, y0) is sufficiently large, then

x2(t) + y2(t) > 0, ∀t ∈ [tj−1, tj), j = 1, 2, 3, . . . .

Then, it follows from Lemma 3 that Φj , j = 1, 2, 3, . . . have a continuous polar lifting
with polar coordinates x = r cos θ, y = r sin θ. Denote

(

θ(t, θ0, r0), r(t, θ0, r0)
)

and let (θ0, r0) be the polar coordinates of
(

x(t, x0, y0), y(t, x0, y0)
)

and (x0, y0),

respectively. By calculating, we get that
(

θ(t, θ0, r0), r(t, θ0, r0)
)

satisfies











dθ

dt
= − sin2 θ −

g(r cos θ) cos θ

r
+

p(t) cos θ

r
,

dr

dt
= r sin θ cos θ − g(r cos θ) sin θ + p(t) sin θ,

(9)

for t ∈ [0, T ], t 6= tj , j = 1, 2, . . . . If Γ(x0, y0) is sufficiently large, we can easily see
that the Poincaré map P has a continuous polar lifting

P̃ : (θ0, r0) 7→
(

θ(T, θ0, r0), r(T, θ0, r0)
)

which has the form
P̃ = P̃k ◦ Φ̃k ◦ · · · ◦ P̃1 ◦ Φ̃1 ◦ P̃0,

where

Φ̃j : (θ
−
j , r

−
j ) 7→ (θj , rj), j = 1, 2, . . . ;

P̃j−1 : (θj−1, rj−1) 7→ (θ−j , r
−
j ), j = 1, 2, . . . ;

P̃k : (θk, rk) 7→
(

θ(T, θ0, r0), r(T, θ0, r0)
)

,

and

(θ−j , r
−
j ) =

(

θ(t−j , θ0, r0), r(t
−
j , θ0, r0)

)

,

(θj , rj) =
(

θ−j +∆θΦj

(

z(t−j , z0)
)

,
∣

∣Φj(z(t
−
j , z0))

∣

∣

)

, j = 1, 2, . . . ,

where z(t−j , z0) =
(

x(t−j , x0, y0), y(t
−
j , x0, y0)

)

.

Lemma 5. Assume that conditions (H1), (H2), (H3) and (H4) hold. Then for

any t ∈ [tj−1, tj), j = 1, 2, 3, . . ., there exists a positive constant ρ0 such that if

Γ(x0, y0) ≥ ρ20, then θ′(t) < 0.
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Proof. It follows from (H1) that there exist positive constants a0 and b0 such that

g(x)− p(t)

x
≥ a0, x ∈ (b0,+∞), t ∈ [tj−1, tj), j = 1, 2, 3, . . . ,

which implies that if x > b0, we have

θ′(t) = − sin2 θ −
g(x)− p(t)

x
cos2 θ

≤ − sin2 θ − a0 cos
2 θ

< 0,

(10)

for all t ∈ [tj−1, tj), j = 1, 2, 3, . . . . Moreover, by (H2), we know that there exist
positive constants a1 and b1 < 1 such that

g(x)− p(t)

x
≥ a1, x ∈ (−1,−b1), t ∈ [tj−1, tj), j = 1, 2, 3, . . . ,

which implies that if −1 < x < −b1, we have

θ′(t) = − sin2 θ −
g(x)− p(t)

x
cos2 θ

≤ − sin2 θ − a1 cos
2 θ

< 0,

(11)

for all t ∈ [tj−1, tj), j = 1, 2, 3, . . . . For x ∈ [−b1, b0], we know from Lemma 4 that
there exist positive constants ρ̃0 and a3 such that

|
g(x)− p(t)

x
| ≤ a3, | sin θ| >

√

a3
1 + a3

, for Γ(x0, y0) ≥ ρ20,

for all t ∈ [tj−1, tj), j = 1, 2, 3, . . . . Consequently, if x ∈ [−b1, b0], we have

θ′(t) = − sin2 θ −
g(x)− p(t)

x
cos2 θ

≤ − sin2 θ + |
g(x)− p(t)

x
| cos2 θ

≤ − sin2 θ + a3 cos
2 θ

= −(1 + a3) sin
2 θ + a3

< 0

(12)

for all t ∈ [tj−1, tj), j = 1, 2, 3, . . .. By Lemma 4, (10), (11) and (12), we know that
for any t ∈ [tj−1, tj), j = 1, 2, 3, . . ., there exists a positive constant ρ0 such that if
Γ(x0, y0) ≥ ρ20, then θ′(t) < 0.

Denote by ∆(θ0, r0) the time for the solution (θ(t), r(t)) to make one turn around
the origin. Proceeding as in the proof of [10, Lemma 2.6], we can easily obtain the
following lemma which gives the estimate on ∆(θ0, r0).
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Lemma 6. Assume that conditions (H1), (H2), (H3), (H4) and (H5) hold. Then

∆(θ0, r0) = o(1) as Γ(x0, y0) → +∞.

By Lemma 6, we notice that

lim
Γ(x0,y0)→+∞

t−j − tj−1

∆(θ0, r0)
= +∞, j = 1, 2, 3, . . . ,

where t0 = 0. Then by Lemma 4 and Lemma 5, one can easily obtain the following
lemma.

Lemma 7. Assume that conditions (H1), (H2), (H3), (H4) and (H5) hold. Then

for any nj ∈ N
+, j = 1, 2, . . ., there exist sufficiently large constants ρnj

≥ ρ0,
j = 1, 2, . . ., such that if Γ(x0, y0) ≥ ρnj

, then

θ(t−j ; θ0, r0)− θ(tj−1; θ0, r0) ≤ −2njπ, j = 1, 2, . . . .

Finally, the following results allow us to apply Theorem 1 to prove our main
results in Section 3.

Lemma 8. [10, Lemma 3.1] There exists a constant c0 > 0 such that if c > c0, then
Γ(x, y) = c is star-shaped with respect to the origin.

3. Main results

In this section, we state and prove our main results.

Theorem 2. Assume that conditions (A1), (A2), (A3), (A4) and (H5) hold. Then

system (1) has infinitely many T -periodic solutions u = ui, i = 1, 2, . . ., which satisfy

lim
i→+∞

(

min
t∈[0,T ]

(ui(t) + |u′
i(t)|)

)

= 0, (13)

and

lim
i→+∞

(

max
t∈[0,T ]

(ui(t) + |u′
i(t)|)

)

= +∞. (14)

Proof. For every solution u of system (1), there exists a solution x of system (4)
satisfying u = x + 1, so we just need to prove that system (4) has infinitely many
T -periodic solutions xi, i = 1, 2, . . ., which satisfy

lim
i→+∞

( min
t∈[0,T ]

(1 + xi(t) + |x′
i(t)|)) = 0,

lim
i→+∞

( max
t∈[0,T ]

(1 + xi(t) + |x′
i(t)|)) = +∞.

Let
(

x, y
)

=
(

x(t, x0, y0), y(t, x0, y0)
)

=
(

r(t, θ0, r0) cos θ(t, θ0, r0), r(t, θ0, r0) sin θ(t, θ0, r0)
)
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be the solution of system (5) satisfying the initial condition (x(0), y(0)) = (x0, y0)
= (r0 cos θ0, r0 sin θ0). We consider

∆1(T, θ0, r0) = θ(T, θ0, r0)− θ0.

Since ∆1(T, θ0, r0) is continuous with respect to (θ0, r0), so if we choose a suitably
large constant α1 and define

n =

[

sup
Γ(r0 cos θ0,r0 sin θ0)=α1

−∆1(T, θ0, r0)

2π

]

+ 1,

where [q] stands for the integer part of the real number of q, then we have

θ(T, θ0, r0)− θ(0, θ0, r0) > −2nπ, for Γ(r0 cos θ0, r0 sin θ0) = α1. (15)

Moreover, we have

θ(T, θ0, r0)− θ(0, θ0, r0) = θ(T, θ0, r0)− θ(tk, θ0, r0)

+

k
∑

j=1

(

θ(tj , θ0, r0)− θ(tj−1, θ0, r0)

)

.

It is easy to see that when Γ(x0, y0) is large enough, θ is decreases strictly, then we
have

θ(T, θ0, r0)− θ(0, θ0, r0) ≤

k
∑

j=1

(

θ(tj , θ0, r0)− θ(tj−1, θ0, r0)

)

=
k

∑

j=1

(

θ(t−j , θ0, r0)− θ(tj−1, θ0, r0)

)

+

k
∑

j=1

∆θΦj

(

x(t−j , x0, y0)
)

.

By Lemma 7 and (H5), we can choose constant β1 with β1 > α1, integers nj, j =
1, 2, . . . and n such that

θ(t−j , θ0, r0)− θ(tj−1, θ0, r0) < −2njπ, for Γ(r0 cos θ0, r0 sin θ0) = β1,

j = 1, 2, . . . , k, and
k

∑

j=1

−2njπ +

k
∑

j=1

MΦj
< −2nπ,

which imply that

θ(T, θ0, r0)− θ(0, θ0, r0) < −2nπ, for Γ(r0 cos θ0, r0 sin θ0) = β1. (16)

Now we can consider the Poincaré map

P̃ (θ0, r0) =
(

θ(T, θ0, r0), r(T, θ0, r0)
)
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on the annulus
S1 : α1 ≤ Γ(x0, y0) ≤ β1.

It is obvious that the boundaries of the annulus S1 are star-shaped with respect to
the origin by Lemma 8.

Since Pj , j = 1, 2, . . . are area-preserving maps, Φj , j = 1, 2, . . . are global
orientation-preserving and area-preserving homeomorphisms with the finite twist
property, thus the Poincaré map P is an area-preserving homeomorphism. Mean-
while, the Poincaré map

P̃ (θ0, r0) = (θ(T, θ0, r0), r(T, θ0, r0))

is a continuous polar lifting of P and is also an area-preserving homeomorphism.
Moreover, from (15) and (16), we know that the Poincaré map P̃ is a twist on the
annulus S1. Finally, it is obvious that r(T, θ0, r0) > 0 if Γ(x0, y0) ≥ α1. Hence,
O ∈ P̃ (D1), where D1 is an open region with boundary Γ(x0, y0) = α1.

As a consequence, all conditions of Theorem 1 are satisfied. By Theorem 1, we
know that the Poincaré map P has at least two fixed points in the annulus S1, i.e.,
system (5) has at least two T -periodic solutions on the annulus S1.

Using the same method as above, we can construct infinitely many annuli

Si : αi ≤ Γ(x0, y0) ≤ βi, i = 1, 2, . . . ,

such that the Poincaré map P has at least two fixed points in the annuli Si, where

αi+1 > βi, i = 1, 2, . . .. Now, if we choose an annulus S with
+∞
⋃

i=1

Si ⊆ S, then the

Poincaré map P has infinitely many fixed points in the annulus S, which implies
that system (5) has infinitely many T -periodic solutions

(

xi, yi
)

on the annulus S,
i = 1, 2, . . ..

Moreover, by αi+1 > βi and lim
i→+∞

αi = +∞, we have either

lim
i→+∞

(

min
t∈[0,T ]

xi(t)
)

= −1

or
lim

i→+∞

(

max
t∈[0,T ]

xi(t)
)

= +∞,

which implies that (13) and (14) hold.

In order to state and prove our existence result of infinitely many m-order sub-
harmonic solutions for system (1), we define the Poincaré map

Pm : (−1,+∞)× R → (−1,+∞)× R

as
Pm : (x0, y0) 7→

(

x(mT, x0, y0), y(mT, x0, y0)
)

.

By Lemma 1, the Poincaré map Pm is well defined, and it is a homeomorphism and
continuous in (x0, y0). Let us denote by

(

x(t, x0, y0), y(t, x0, y0)
)

the solution of (5)
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satisfying the initial condition (x0, y0) =
(

x(0), y(0)
)

and define

P0 : (x0, y0) 7→
(

x(t−1 , x0, y0), y(t
−
1 , x0, y0)

)

,

P1 : (x1, y1) 7→
(

x(t−2 , x1, y1), y(t
−
2 , x1, y1)

)

,

...

Pj : (xj , yj) 7→
(

x(t−j+1, xj , yj), y(t
−
j+1, xj , yj)

)

,

...

Pmk−1 : (xmk−1, ymk−1) 7→
(

x(t−mk, xmk−1, ymk−1), y(t
−
mk, xmk−1, ymk−1)

)

,

Pmk : (xmk, ymk) 7→
(

x(mT, xmk, ymk), y(mT, xmk, ymk)
)

,

where (xj , yj) =
(

x(tj , xj−1, yj−1), y(tj , xj−1, yj−1)
)

, j = 1, 2, . . .. Then the Poincaré
map

Pm : (x0, y0) 7→
(

x(mT, x0, y0), y(mT, x0, y0)
)

can be expressed by

Pm = Pmk ◦ Φmk ◦ · · · ◦ P1 ◦ Φ1 ◦ P0,

where
Φj : (x, y) 7→

(

x+ Ij(x, y), y + Lj(x, y)
)

, j = 1, 2, . . . .

If
{

ẋ = y,

ẏ = −g(x) + p(t),

is conservative and Φj , j = 1, 2, . . . are global area-preserving homeomorphisms,
then Pm is an area-preserving homeomorphism. Moreover, if Γ(x0, y0) is sufficiently
large, Pm has a continuous polar lifting

P̃m : (θ0, r0) 7→ (θ(mT, θ0, r0), r(mT, θ0, r0)),

which has the form

P̃m = P̃mk ◦ Φ̃mk ◦ · · · ◦ P̃1 ◦ Φ̃1 ◦ P̃0,

where

Φ̃j : (θ
−
j , r

−
j ) 7→ (θj , rj), j = 1, 2, . . .

P̃j−1 : (θj−1, rj−1) 7→ (θ−j , r
−
j ), j = 1, 2, . . . ,

P̃mk : (θmk, rmk) 7→
(

θ(mT, θ0, r0), r(mT, θ0, r0)
)

and

(θ−j , r
−
j ) =

(

θ(t−j , θ0, r0), r(t
−
j , θ0, r0)

)

,

(θj , rj) =
(

θ−j +∆θΦj
(z(t−j , z0)), |Φj(z(t

−
j , z0))|

)

, j = 1, 2, . . . ,

where z(t−j , z0) =
(

x(t−j , x0, y0), y(t
−
j , x0, y0)

)

.
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Theorem 3. Assume that conditions (A1), (A2), (A3), (A4) and (H5) hold. Then

for any given integer m > 1, system (1) has infinitely many m-order subharmonic

solutions u = ui, i = 1, 2, . . ., which satisfy

lim
i→+∞

(

min
t∈[0,mT ]

(ui(t) + |u′
i(t)|)

)

= 0,

lim
i→+∞

(

max
t∈[0,mT ]

(ui(t) + |u′
i(t)|)

)

= +∞.

Proof. The proof is a straightforward modification of the proof of Theorem 2, with
T replaced by mT . The only difference is that we need to prove that mT is the
minimal period of subharmonic solutions.

We consider the Poincaré map

Pm : (x0, y0) 7→
(

x(mT, x0, y0), y(mT, x0, y0)
)

and its continuous polar lifting

P̃m(θ0, r0) =
(

θ(mT, θ0, r0), r(mT, θ0, r0)
)

.

Proceeding as in the proof of Theorem 2, we can choose two suitably large constants
ξ1 and η1 with ξ1 < η1; then there exists a prime positive integer n such that

θ(mT, θ0, r0)− θ(0, θ0, r0) > −2nπ, for Γ(r0 cos θ0, r0 sin θ0) = ξ1, (17)

θ(mT, θ0, r0)− θ(0, θ0, r0) < −2nπ, for Γ(r0 cos θ0, r0 sin θ0) = η1. (18)

Then we can consider the Poincaré map

P̃m(θ0, r0) =
(

θ(mT, θ0, r0), r(mT, θ0, r0)
)

on the annulus

Ψ1 : ξ1 ≤ Γ(x0, y0) ≤ η1.

It is obvious that the boundaries of the annulus Ψ1 are star-shaped with respect to
the origin by Lemma 8.

Since Pj , j = 1, 2, . . . are symplectic, Φj , j = 1, 2, . . . are global orientation-
preserving and area-preserving homeomorphisms with the finite twist property, thus
the Poincaré map Pm is an area-preserving homeomorphism. Meanwhile, the Poincaré
map

P̃m(θ0, r0) = (θ(mT, θ0, r0), r(mT, θ0, r0))

is a continuous polar lifting of Pm and also an area-preserving homeomorphism.
Moreover, from (17) and (18), we know that the Poincaré map P̃m is a twist on the
annulus Ψ1. Finally, it is obvious that r(mT, θ0, r0) > 0 if Γ(x0, y0) ≥ ξ1. Hence,
O ∈ P̃m(D1), where D1 is an open region with boundary Γ(x0, y0) = ξ1.

As a consequence, all conditions of Theorem 1 are satisfied. By Theorem 1, we
know that the Poincaré map Pm has at least two fixed points in the annulus Ψ1,
i.e., system (5) has at least two mT -periodic solutions on the annulus Ψ1.
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Next, we prove thatmT is the minimal period of subharmonic solutions of system
(5). We suppose that (x∗

0, y
∗
0) is a fixed point of Pm in the annulus Ψ1 and denote

by
(

x∗, y∗
)

=
(

x(t;x∗
0, y

∗
0), y(t;x

∗
0, y

∗
0)
)

the 2mT -periodic solution of system (5) satisfying the initial value condition

(

x(0;x∗
0, y

∗
0), y(0;x

∗
0, y

∗
0)
)

= (x∗
0, y

∗
0).

On the contrary, we suppose that the minimal period of (x∗, y∗) is lT , where
l < m. Obviously, there exist two integers k∗ ≥ 1 and 0 ≤ q < l such that
m = k∗l+ q. By

Pm(x∗
0, y

∗
0) = (x∗

0, y
∗
0), P l(x∗

0, y
∗
0) = (x∗

0, y
∗
0),

we have

P q(x∗
0, y

∗
0) = (x∗

0, y
∗
0).

Then by periodic points (x∗
0, y

∗
0) of Pm has a minimal period lT , we know that

m = k∗l with k∗ > 1.

Moreover, by Lemma 6 and Lemma 7, we know that as long as ξ1 is sufficiently
large, there exists N0 > 1 such that (x∗, y∗) turns clockwise N0 times around the
origin during [0, lT ] and turns clockwise k∗N0 times around the origin during [0,mT ].
Then n = k∗N0, where k∗ > 1 and N0 > 1, which contradicts the fact that n is a
prime positive integer.

The rest is similar to the proof of Theorem 2.

As an example, let us consider the system











ü+ up − u−q = e(t), t 6= tj ;

∆u(tj) = αj

(

u(t−j ), u̇(t
−
j )

)

,

∆u̇(tj) = βj

(

u(t−j ), u̇(t
−
j )

)

, j = 1, 2, . . . ,

(19)

where p > 1, q > 1 and e is a continuous 2π-periodic function. Assume that αj and βj

satisfy the condition (A4) and (H4). It is not difficult to verify that f(u) = up−u−q

satisfies the conditions (A1)-(A3). Then by Theorems 2 and 3, we can obtain the
existence of infinitely many periodic and subharmonic solutions for system (19).
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