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Abstract. In this paper, we propose a numerical integration technique with an exponential
integrating factor for the solution of singularly perturbed differential-difference equations
with a negative shift, namely the delay differential equation, with layer behavior. First,
the negative shift in the differentiated term is approximated by Taylor’s series, provided
the shift is of o(ε). Subsequently, the delay differential equation is replaced by an asymp-
totically equivalent first order neutral type delay differential equation. An exponential
integrating factor is introduced into the first order delay equation. Then the trapezoidal
rule along with linear interpolation has been employed to get a three-term recurrence rela-
tion. The resulting tri-diagonal system is solved by the Thomas algorithm. The proposed
technique is implemented on model examples, for different values of delay parameter δ

and perturbation parameter ε. Maximum absolute errors are tabulated and compared to
validate the technique. Convergence of the proposed method has also been discussed.
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1. Introduction

In mathematical modeling of a physical system, just like in control theory, the pres-
ence of small time parasitic parameters like moments of inertia, resistances, induc-
tances and capacitances increases the order and stiffness of these systems. The
suppression of these small constants results in the reduction of the order of the sys-
tem. Such systems are termed as singular perturbation systems and when these
systems take into account both the past history and the present state of the physical
system, then they are called singularly perturbed delay differential equations. Delay
differential equations arise in first-exit time problems in neurobiology and in math-
ematical formulation of various practical phenomena in biosciences. The study of
differential-difference equations, with the presence of shift terms, which induce large
amplitudes and exhibit oscillations, resonance, turning point behavior, boundary
and interior layers was carried out by Lange and Miura [7, 8, 9]. Extensive numeri-
cal work has been initiated by Kadalbajoo and Sharma [4], Kadalbajoo and Ramesh
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[5], Kadalbajoo and et al. [6]. Mohapatra and Natesan [10] proposed a numerical
method comprising an upwind finite difference operator on an adaptive grid with an
arc-length monitor function, to approximate the solutions of singularly perturbed
differential-difference equations with small delay and shift terms. Geng and et al.
[3] presented an improved kernel method to obtain an accurate approximation of
solutions for singularly perturbed differential-difference equations with small delay.

With this motivation, in this paper we employed a numerical integration tech-
nique with the exponential integrating factor for the solution of singularly perturbed
delay differential equations, with layer behavior. A numerical scheme for the solution
of a singularly perturbed delay differential equation with the left-end boundary layer
and the right-end boundary layer is described in Section 2. In Section 3, convergence
of the proposed method is analyzed. To demonstrate the efficiency of the method,
numerical experiments are carried out for several test problems and the results are
tabulated and compared in Section 4. Finally, the discussions and conclusion are
given in the last section.

2. Numerical scheme

Consider the delay differential equation with layer behavior:

εy′′(x) + a(x)y′(x− δ) + b(x)y(x) = f(x) (1)

under the interval (0, 1) and subject to the conditions

y(x) = φ(x) for − δ ≤ x ≤ 0 (2)

y(1) = β, (3)

where ε is a small positive parameter 0 < ε ≪ 1, a(x), b(x), f(x) and φ(x) are
sufficiently smooth functions and β is a positive constant. Furthermore, δ = o(ε),
where δ is a delay parameter. When δ is zero, equation (1) reduces to a singular
perturbation problem which, with small ε, exhibits layers and turning points de-
pending upon the coefficient of convection term. The layer behavior of the problem
under consideration is maintained only for δ 6= 0 but sufficiently small, i.e., δ is of
o(ε). When the delay parameter exceeds the perturbation parameter, i.e., δ is of
O(ε), the layer behavior of the solution is no longer maintained, rather the solution
exhibits an oscillatory behavior or diminished behavior (Lange and Miura [7]).

2.1. Left-end boundary layer problems

In general, the solution of problem (1)-(3) exhibits a boundary layer at one end of
the interval depending on the sign of a(x). We assume that a(x) ≥ M > 0 through-
out the interval [0, 1], for some positive constant M . This assumption merely implies
that the boundary layer will be in the neighbourhood of x=0.
By using a Taylor series expansion of the retarded term y′(x− ε) in the neighbour-
hood of the point x, we have

y′(x− ε) ≈ y′(x) − εy′′(x) (4)
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Consequently, equation (1) is replaced by an asymptotically equivalent first order
delay neutral type differential equation

y′(x) + b(x)y(x) = f(x) + y′(x− ε)− a(x)y′(x− δ) (5)

with y(0) = φ(0) ; y(1) = β. Since 0 < δ ≪ 1, the transition from (1) to (5) is
admitted. This replacement is significant from the computational point of view. For
more details on the validity of this transition, one can refer to El’sgolts and Norkin
[2]. Thus, the solution of equation (5) provides a good approximation to the solution
of equation (1). Here, for consolidation of our ideas, we assume a(x) and b(x) to be
constants.

By applying an integrating factor ebx to (5) (as in Brian J. McCartin [1]):

d

dx

{

ebxy(x)
}

= ebx {f(x) + y′(x− ε)− ay′(x− δ)} . (6)

Discretizing the interval [0, 1] into N equal subintervals of mesh size h = 1/N ,
let 0 = x0, x1, . . . , xN = 1 be the mesh points. Then we have xi = ih, for i =
0, 1, . . . , N . Integrating (6) with respect to x from xi to xi+1, we get

∫ xi+1

xi

d

dx

(

ebxy(x)
)

=

xi+1
∫

xi

ebx {f(x) + y′(x− ε)− ay′(x − δ)} dx (7)

ebxi+1y(xi+1)− ebxiy(xi) =

xi+1
∫

xi

ebx {f(x) + y(x− ε)− ay(x− δ)} dx

+ ebxi+1y(xi+1 − ε)− ebxiy(xi − ε)

− aebxi+1y(xi+1 − δ) + aebxiy(xi − δ). (8)

Using the trapezoidal rule to evaluate the integrals in (8), we get

ebxi+1y(xi+1)− ebxiy(xi)

=
h

2
[ ebxif(xi) + ebxi+1f(xi+1) ] + ebxi+1y(xi+1 − ε)

− ebxiy(xi − ε)−
bh

2

(

ebxiy(xi − ε) + ebxi+1y(xi+1 − ε)
)

−aebxi+1y(xi+1 − δ)

+ aebxiy(xi − δ)−
abh

2

(

ebxiy(xi − δ) + ebxi+1y(xi+1 − δ)
)

. (9)

Further, since 0 < ε ≪ 1 and δ = o(ε), to tackle the terms containing delay,
the Taylor series approximations (given by Kadalbajoo and Sharma [4] and Lange
and Miura [7]) have been used. Thus, by the Taylor series expansion and then
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approximating y′(x) by linear interpolation, we get

y(xi − δ) =y(xi)− δy′(xi) =

(

1−
δ

h

)

yi +
δ

h
yi−1 (10)

y(xi+1 − δ) =y(xi+1)− δy′(xi+1) =

(

1−
δ

h

)

yi+1 +
δ

h
yi (11)

y(xi − ε) =y(xi)− εy′(xi) =
(

1−
ε

h

)

yi +
ε

h
yi−1 (12)

y(xi+1 − ε) =y(xi+1)− εy′(xi+1) =
(

1−
ε

h

)

yi+1 +
ε

h
yi. (13)

By using equations (10) - (13) in equation (9) and simplifying, we get

ebh
(

ε

h
+

bh

2

(

1−
ε

h

)

+ a

(

1−
δ

h

)

+
abh

2

(

1−
δ

h

))

yi+1

−

(

ebh(1 +
ε

h
−

bε

2
−

aδ

2
)−

(

1−
ε

h

)

(

1 +
bh

2

)

+ a

(

1−
δ

h

)

+
abh

2

)

yi

+

(

ε

h
+

bε

2
−

aδ

h
+

abδ

2

)

yi−1 =
h

2

(

ebhfi + fi+1

)

. (14)

The resulting three-term recurrence relation of (14) is of the form

Eiyi−1 − Fiyi +Gyi+1 = Hi (15)

where

Ei =
ε

h
+

bε

2
−

aδ

h
+

abδ

2

Fi =
ε

h
+

ε

h
ebh −

bε

2
ebh −

bh

2

(

1−
ε

h

)

−
aδ

h
ebh + a

(

1−
δ

h

)

+
abh

2
−

abδ

2
+

abδ

2
ebh

Gi =
ε

h
ebh +

bh

2

(

1−
ε

h

)

ebh + a

(

1−
δ

h

)

ebh +
abh

2

(

1−
δ

h

)

ebh

Hi =
h

2

(

fi + ebhfi+1

)

.

This diagonal dominant tri-diagonal system is solved by the Thomas algorithm.

2.2. Right-end boundary layer problems

Now, assume a(x) ≤ −M < 0 throughout the interval [0, 1], for some positive con-
stant M . This assumption implies that the boundary layer will be at the right end,
that is, in the neighbourhood of x = 1. The evaluation of the right-end boundary
layer problems for equations (1)-(3) is similar to that of the left-end boundary layer,
except for some differences worth noting. By using the Taylor series expansion of
the term y′(x + ε) around the point x, we obtain

y′(x+ ε) ≈ y′(x) + εy′′(x). (16)
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Consequently, (1) is replaced by an asymptotically equivalent first order delay neutral
type differential equation:

y′(x)− b(x)y(x) = y′(x + ε) + a(x)y′(x− δ)− f(x). (17)

By applying an integrating factor e−bx to (17) (as in Brian J. McCartin [1]):

d

dx

{

e−bxy(x)
}

= e−bx {y′(x+ ε) + a(x)y′(x− δ)− f(x)} . (18)

Discretizing the interval [0, 1] into N equal subintervals of mesh size h = 1/N ,
let 0 = x0, x1, . . . , xN = 1 be the mesh points. Then xi = ih, fori = 0, 1, . . . , N .
Taking integrals from xi−1 to xi in (18), we have

∫ xi

xi−1

d

dx

(

e−bxy(x)
)

=

∫ xi

xi−1

e−bx(y′(x+ ε) + ay′(x− δ)− f(x))dx. (19)

Again, by integrating (19) with respect to x, we obtain

e−bxiy(xi)− e−bxi−1y(xi−1)

= e−bxiy(xi + ε)− e−bxi−1y(xi−1 + ε) + ae−bxiy(xi − δ)

− ae−bxi−1y(xi−1 − δ) + b

∫ xi

xi−1

e−bx(y(x+ ε) + ay(x− δ)− f(x))dx (20)

Now, employing the trapezoidal rule to evaluate the integrals in (20), we get

e−bxiy(xi)− e−bxi−1y(xi−1)

= e−bxiy(xi + ε)−e−bxi−1y(xi−1 + ε) + ae−bxiy(xi + ε)−ae−bxi−1y(xi−1 + ε)

+
bh

2

(

e−bxi−1y(xi−1 + ε) + ebxiy(xi + ε)
)

+
abh

2

(

e−bxi−1y(xi−1 − δ) + e−bxiy(xi − δ)
)

−
h

2

[

e−bxi−1f(xi−1) + ebxif(xi)
]

. (21)

Again, by means of the Taylor series expansion and then approximating y′(x) by
linear interpolation, we get

y(xi − δ) =y(xi)− δy′(xi) =

(

1 +
δ

h

)

yi −
δ

h
yi+1 (22)

y(xi−1 − δ) =y(xi−1)− δy′(xi−1) =

(

1 +
δ

h

)

yi−1 −
δ

h
yi (23)

y(xi + ε) =y(xi) + εy′(xi) =
(

1−
ε

h

)

yi +
ε

h
yi+1 (24)

y(xi−1 + ε) =y(xi−1) + εy′(xi−1) =
(

1−
ε

h

)

yi−1 +
ε

h
yi. (25)
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By making use of (22)- (25) in (21) and simplifying, we obtain:

(

−
ε

h
−

bh

2

(

1−
ε

h

)

+ a

(

1 +
δ

h

)

−
abh

2

(

1 +
δ

h

))

yi−1

−

((

−
ε

h
+
bh

2

(

1−
ε

h

)

+ a

(

1+
δ

h

)

+
abh

2

(

1+
δ

h

))

e−bh−
abδ

2
−

ε

h
−

bε

2
+

aδ

h

)

yi

+

(

−
e−bhε

h
−
bε

2
e−bh+

aδ

h
e−bh+

abδ

2
e−bh

)

yi+1=
h

2

[

e−bxi−1f(xi−1)+ebxif(xi)
]

(26)

By rearranging, (26) can be written as the three-term recurrence relation

Eiyi−1 − Fiyi +Gyi+1 = Hi, (27)

where

Ei =−
ε

h
−

bh

2

(

1−
ε

h

)

+ a

(

1 +
δ

h

)

−
abh

2

(

1 +
δ

h

)

Fi =−
ε

h
+

bh

2

(

1−
ε

h

)

+ a

(

1 +
δ

h

)

+
abh

2

(

1 +
δ

h

)

)e−bh−
abδ

2
−

ε

h
−

bε

2
+

aδ

h

Gi =−
e−bhε

h
−

bε

2
e−bh +

aδ

h
e−bh +

abδ

2
e−bh

Hi =−
h

2

(

e−bhfi + fi−1

)

.

The resulting diagonal dominant tri-diagonal system is solved using the Thomas
algorithm.

3. Thomas algorithm

A brief description of the algorithm is given as follows: Consider the tri-diagonal
system

Eiyi−1 − Fiyi +Giyi+1 = Hi ; i = 1, 2, . . . , N − 1 (28)

subject to the boundary conditions

y0 =y(0) = ϕ0 (29)

yN =y(1) = γ1. (30)

We set
yi = Wiyi+1 + Ti ; i = N − 1, N − 2, . . . , 2, 1, (31)

where Wi = W (xi) and Ti = T (xi), which are to be determined. From (31), we
have:

yi−1 = Wi−1yi + Ti−1. (32)

By substituting (33) in (28) and comparing with (31) we obtain the recurrence
relations given as follows:

Wi =

(

Gi

Fi − EiWi−1

)

(33)
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Ti =

(

EiTi−1 −Hi

Fi − EiWi−1

)

. (34)

To solve these recurrence relations for i = 1, 2, . . . , N−1, initial conditions forW0

and T0 are required. For this, we take y0 = ϕ0 = W0y1 + T0 and choose W0 = 0 so
that the value of T0 = ϕ0. With these initial values, Wi and Ti for i = 1, 2, . . .N − 1
are computed from (33) and (34) in the forward process, and yi is obtained in the
backward process from (30) and (31). For further discussions, about the Thomas
algorithm one can refer to Angel and Bellman. The stability of the algorithm is
guaranteed under the conditions Ei > 0, Gi > 0, Fi ≥ Ei +Gi and |Ei| ≤ |Gi|.

4. Convergence analysis

Writing the tri-diagonal system of equations (15) in matrix-vector form, we get

AY = C, (35)

where A = (mi,j) , 1 ≤ i, j ≤ N -1 is a tri-diagonal matrix of order N − 1, with

mii+1 =εebh +
bh2

2
ebh −

bhε

2
ebh + ahebh −

ahδ

2
ebh −

abh2

2
ebh +

abδh

2
ebh

mii =εebh+ε−
bεh

2
ebh−

bh2

2
+
bhε

2
−aδebh+ah−aδ+

abh2

2
−
abhδ

2
+
abhδ

2
ebh

mii−1 =ε+
bhε

2
− aδ −

abhδ

2

and C = (di) is a column vector with di =
h2

2

(

fi + ebhfi+1

)

, where i = 1,2, . . . ,N -1

with the local truncation error Ti(h) = h2

2
K + O(h3), where K =

[(

2abδ − aδ
2

)

y′i
+h

2

(

−2abδ − ab2 − b2 − 2bε− 4ε− 2a
)

y′′i
]

.
We also have

AY − T (h) = C, (36)

where Y = (y0, y1, . . . , yN )T and T (h) = (T0(h), T1(h), . . . , TN(h))
T
are the actual

solution and the local truncation error respectively.
From (35) and (36), we have

A
(

Y − Y
)

= T (h). (37)

Thus, we obtain the error equation

AE = T (h), (38)

where E = Y − Y = (e0, e1, e2, . . . , eN)T . Let the i-th row element sum of matrix
A be Si then we have

Si =− ε+ aδ + hB′
i +O

(

h2
)

for i = 1, where B′
i = −a−

bε

2
−

abδ

2
+ aebh

Si =B′′
i +O

(

h2
)

for i = 2, 3, . . . , N − 2, where B′′
i = h(2ab+ b)

Si =ebh(−ε+aδ)+hB′′′
i+O

(

h2
)

for i = N − 1, where B′′′
i=−a+

bεebh

2
+
abδebh

2
.
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For a given h, A is irreducible and monotone [10], since 0 < ε << 1 and δ = o (ε).
Hence from (38), we get

E = A−1T (h) (39)

and
‖E‖ ≤

∥

∥A−1
∥

∥ . ‖T (h)‖ . (40)

Also from the theory of matrices we have

N−1
∑

i=1

m k,i Si = 1 , k = 1, . . . , N − 1, (41)

where m ki ≥ 0 is (k, i)
th

element of the matrix A-1, therefore

N-1
∑

i=1

m k,i ≤
1

minSi
1≤ i ≤N−1

=
1

Bio

≤
1

|Bio |
(42)

for some io between 1 and N − 1 and

Bio =







B′
i, i = 1, . . . , n− 1

B′′
i, i = n

B′′′
i, i = n+ 1, . . . , N − 1

. (43)

Using (39), (40) and (42), we get

ej =

N−1
∑

i=1

m̄k.i Ti(h) ; j = 1, 2, . . . , N − 1 (44)

which implies

ej ≤
Kh

|Bio |
. (45)

Therefore, using (45) we have
‖E‖ = O (h) ,

i.e., our method is uniform convergent on uniform mesh.

5. Numerical examples

The proposed technique is implemented on model examples of the type by equa-
tions (1)-(3), for different values of delay parameter δ and perturbation parameter
ε. Maximum absolute errors are computed, tabulated and compared with the re-
sults of Kadalbajoo and Sharma [4] for the left-end boundary layer problems and
Y.N.Reddy et al. [11] for the right-end boundary layer problems.

Example 1. Consider the singularly perturbed differential difference equation ex-
hibiting left-end boundary layer [4]:

εy′′(x) + y′(x − δ)− y(x) = 0 ; 0 < x < 1
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δ\ h 10−2 10−3 10−4 10−5

Present method
0.1ǫ 0.011721 0.001225 0.000123 1.230e − 005
0.3ǫ 0.015056 0.001589 0.000159 1.599e − 005
0.6ǫ 0.025750 0.002812 0.000283 2.840e − 005
0.8ǫ 0.047807 0.005629 0.000573 5.747e − 005

CPUtime(sec) 0.031973 0.070347 1.069150 124.111747

Results by the method in [4]
0.1ǫ 0.011824 0.001229 0.000123 1.236e − 005
0.3ǫ 0.015155 0.001593 0.000160 1.603e − 005
0.6ǫ 0.025847 0.002816 0.000284 2.845e − 005
0.8ǫ 0.083131 0.011103 0.001151 5.748e − 005

CPUtime(sec) 0.090661 0.094502 1.391478 277.361489

Table 1: The maximum absolute error of Example 1 for ε =0.1 and different values of δ

δ\ h 10−2 10−3 10−4 10−5

Present method
0.1ǫ 0.090733 0.012286 0.001279 1.284e − 004
0.3ǫ 0.108033 0.015622 0.001644 1.653e − 004
0.6ǫ 0.127778 0.026309 0.002870 2.897e − 004
0.8ǫ 0.100404 0.048338 0.005688 5.794e − 004

CPUtime(sec) 0.031375 0.070726 1.093657 125.8793

Results by the method in [4]
0.1ǫ 0.090928 0.012290 0.001279 1.284e − 004
0.3ǫ 0.108362 0.015626 0.001644 1.653e − 004
0.6ǫ 0.128454 0.026314 0.002870 2.897e − 004
0.8ǫ 0.101499 0.048347 0.005688 5.794e − 004

CPUtime(sec) 0.062357 0.082070 1.281464 290.5346

Table 2: The maximum absolute error of Example 1 for ε =0.01 and different values of δ

with boundary conditions y(0) = 1, −δ ≤ x ≤ 0 and y(1) = 1.

The exact solution to this problem is given by

y(x) =
(1− em2) em1x + (em1 − 1) em2x

em1 − em2
,

where

m1 =
−1−

√

1 + 4(ε− δ)

2(ε− δ)
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and

m2 =
−1 +

√

1 + 4(ε− δ)

2(ε− δ)
.

Maximum absolute errors are presented in Tables 1 and 2 for ε = 0.1, 0.01 and for
different values of δ, respectively. The effect of δ on the boundary layer solutions is
presented in Figure 1.

Figure 1: Left layer solution of Example 1 for ǫ = 0.1 , N = 102 and different values of δ

Example 2. Consider an example with a variable coefficient singularly perturbed
differential-difference equation exhibiting left-end boundary layer [4]:

εy′′(x) + e−0.5xy′(x− δ)− y(x) = 0 ; 0 < x < 1

with boundary conditions y(0) = 1, −δ ≤ x ≤ 0 and y(1) = 1.
The exact solution is not known for this problem. Maximum absolute errors are
presented in Table 3 for ε = 0.1 and different values of δ, respectively. The effect of
δ on the boundary layer solutions is presented in Figure 2.

Figure 2: Left layer solution of Example 2 for ǫ = 0.1 , N = 102 and different values of δ
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δ\ h 10−2 10−3 10−4

Present method
0.1ǫ 6.2687e − 003 6.6646e − 004 6.7072e − 005
0.3ǫ 8.0060e − 003 8.6458e − 004 8.7156e − 005
0.6ǫ 1.342e − 002 1.5282e − 003 1.5493e − 004
0.8ǫ 2.3860e − 002 3.0459e − 003 3.1280e − 004

CPUtime(sec) 0.044040 0.156487 4.371006

Results by the method in [4]
0.1ǫ 6.3299e − 003 6.7426e − 003 6.7871e − 005
0.3ǫ 8.1591e − 003 8.8825e − 004 8.8986e − 005
0.6ǫ 1.3847e − 002 1.5797e − 003 1.1602e − 004
0.8ǫ 2.4771e − 002 3.1732e − 003 3.2602e − 004

CPUtime(sec) 0.157124 0.402152 6.964002

Table 3: The maximum absolute error of Example 2 for ε =0.1 and different values of δ

Example 3. Consider the singularly perturbed differential-difference equation with
right-end boundary layer [4]:

εy′′(x)− y′(x − δ)− y(x) = 0 ; 0 < x < 1

with boundary conditions y(0) = 1, −δ ≤ x ≤ 0 and y(1) = −1.

δ\ h 10−2 10−3 10−4 10−5

Present method
0.1ǫ 0.165949 0.022109 0.002285 0.000229
0.15ǫ 0.158945 0.021173 0.002186 0.000219
0.25ǫ 0.146034 0.019539 0.002013 0.000201

CPUtime(sec) 0.076865 0.153582 1.789081 283.2369

Results by the method in [4]
0.1ǫ 0.1634318 0.0217617 0.002249 0.000225
0.15ǫ 0.1564526 0.0208227 0.002151 0.000215
0.25ǫ 0.1435932 0.0191881 0.001977 0.000198

CPUtime(sec) 0.079840 0.102861 1.641013 312.8349

Table 4: The maximum absolute error of Example 3 for ε =0.01 and different values of δ

The exact solution is given by

y(x) =
(1 + em2) em1x − (em1 + 1) em2x

em2 − em1
,
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δ\ h 10−2 10−3 10−4 10−5

Present method
0.1ǫ 1.94e − 006 1.95e − 007 1.95e − 008 1.71e − 009
0.15ǫ 2.05e − 006 2.06e − 007 2.06e − 008 2.88e − 009
0.25ǫ 2.26e − 006 2.27e − 007 2.27e − 008 1.95e − 009

CPUtime(sec) 0.076334 0.138354 1.765720 275.5426

Results by the method in [4]
0.1ǫ 1.76e − 003 1.78e − 004 1.78e − 005 1.78e − 006
0.15ǫ 1.78e − 003 1.79e − 004 1.79e − 005 1.79e − 006
0.25ǫ 1.80e − 003 1.81e − 005 1.81e − 005 1.81e − 006

CPUtime(sec) 0.070809 0.164937 1.577380 309.4581

Table 5: The maximum absolute error of Example 3 for ε =0.001 and different values of δ

where

m1 =
1−

√

1 + 4(ε+ δ)

2(ε+ δ)

and

m2 =
1 +

√

1 + 4(ε+ δ)

2(ε+ δ)
.

Maximum absolute errors are presented in Tables 4 and 5 for ε = 0.01, 0.001 and for
different values of δ, respectively. The effect of δ on the boundary layer solutions is
presented in Figure 3.

Figure 3: Right layer solution of Example 3 for ǫ = 0.1 , N = 102 and different values of δ

Example 4. Consider an example with a variable coefficient singularly perturbed
differential-difference equation exhibiting left-end boundary layer [4]:

εy′′(x) − exy′(x− δ)− y(x) = 0
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δ\ h 10−2 10−3 10−4

Present method
0.1ǫ 7.7065e − 003 8.5743e − 004 8.6724e − 005
0.3ǫ 5.5572e − 003 6.0006e − 004 6.0487e − 005
0.6ǫ 3.8911e − 003 4.1085e − 004 4.1314e − 005
0.8ǫ 3.2241e − 003 3.3750e − 004 3.3908e − 005

CPUtime(sec) 0.185853 0.376056 7.192782

Results by the method in [4]
0.1ǫ 1.3426e − 002 1.5027e − 003 1.5211e − 004
0.3ǫ 9.6462e − 003 1.0470e − 003 1.0560e − 004
0.6ǫ 6.7256e − 003 7.1364e − 004 7.1798e − 005
0.8ǫ 5.5701e − 003 5.8554e − 004 5.8854e − 005

CPUtime(sec) 0.188576 0.379035 7.271094

Table 6: The maximum absolute error of Example 4 for ε =0.1 and different values of δ

with y(0) = 1, y(1) = 1.
The exact solution is not known for this problem. Maximum absolute errors are
presented in Tables 6 for ε = 0.1 and for different values of δ, respectively. The
effect of δ on the boundary layer solutions is presented in Figure 4.

Figure 4: Right layer solution of Example 4 for ǫ = 0.1 , N = 102 and different values of δ

6. Discussions and conclusion

A numerical integration technique with an exponential integrating factor has been
presented for solving singularly perturbed delay differential equations, whose solu-
tions exhibit layer behavior on one (left/right) end of the interval. To validate the
proposed method, for the examples with the exact solution, the maximum absolute
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errors are compared with the results of Kadalbajoo and Sharma [4] (in Tables 1,
2, 4 and 5). For the problems without exact solutions, the double mesh principle
has been used to calculate the maximum errors to compare them with the results
of Reddy and et al. [11] (in Tables 3 and 6). The effect of a negative shift on the
boundary layer solutions has been investigated and presented in graphs (Figures
1-4). It is observed that, as the value of the negative shift δ increases, the thickness
of the layer decreases in the left-end boundary layer problems and increases in right-
end boundary layer problems. The disadvantage of the proposed method is that it
is applicable only for the constant coefficient boundary value problem. Moreover,
our method does not depend on a asymptotic expansion as well as on the matching
of coefficients. And, hence the technique is simple, easy and it is an alternative
to solving singularly perturbed delay differential equations with modest amount of
computational effort.
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