RAD HAZU. MATEMATICKE ZNANOSTI
Vol. 21 = 532(2017): 169-177
DOI: http://doi.org/10.21857/9e311h4nrm

CECH SYSTEM DOES NOT INDUCE APPROXIMATE
SYSTEMS

VLASTA MATLIEVIC
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ABSTRACT. With every topological space X is associated its Cech
system C(X) = (INU)|, [puv], Cov(X)). Tt is well-known that the Cech
system C(X) of X is an inverse system in the homotopy category H Pol
whose objects are polyhedra and morphisms are homotopy classes of contin-
uous maps between polyhedra. We consider the following question posed
by S. Mardesi¢. For a given Cech system (|N(U)|, [puy], Cov(X)) of a
space X, is it possible to select a member gy € [pyy] in each homotopy
class [pyy] in such a way that the obtained system (|N(U)|, gy, Cov(X))
is an approximate system? We answer the question in the negative by
proving that for each Hausdorff arc-like continuum X any such system
(INU)|, quy, Cov(X)) is not an approximate system.

1. INTRODUCTION AND MAIN RESULT

Let K be a simplicial complex. Denote by |K| the carrier of K (i.e.
the union of all simplexes belonging to K) endowed with the CW-topology.
By a polyhedron we mean a space X such that X = |K| for some simplicial
complex K. If X = |K| and Y = |L| are polyhedra, then every simplicial map
f: K — L determines in a natural way a continuous map X — Y for which
we use the same notation f.

Recall that an idnverse system in a category C is a collection
X = (X, prn,A) which consists of an index set A, endowed with a di-
rected preorder =, of objects X, from C, for A € A, and of morphisms
pan @ Xy — Xy from C, for A < ). On morphisms py) one imposes the
functorial requirement pyxpaar = parr, for A <X <X A’ and pyy = idx,,
for A € A.
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With every topological space X one associates an inverse system
C(X)=(INU)I|, [puy],Cov(X)) in the homotopy category H Pol of polyhe-
dra and homotopy classes of continuous maps called the Cech system of X.
The index set Cov(X) is the set of all normal coverings U of X. A normal
covering of X is an open covering i/ which admits a partition of unity sub-
ordinated to Y. If X is a paracompact space, then Cov(X) coincides with
a set of all open coverings of X (see [4, App. 1, §3.1 Corollary 1]). The
set Cou(X) is preordered by the relation <, where & <V means that V is
a refinement of . For each U € Cov(X), a simplicial complex N (i) is the
nerve of U and [pyy],U <XV, is the unique homotopy class to which belong
projections pyy : [N(V)| — |[N(U)|. Recall that vertices of N(U) are the ele-
ments U € U, and vertices Uy, ..., U, € U span a simplex of N(U) whenever
Uyn---NU, # 0. A projection pyy : [IN(V)| — |[NU)|,U <V, is a contin-
uous map determined by a simplicial map pyy : N(V) — N(U) which sends
a vertex V of N(V) to a vertex U of N(U) with V' C U. Any two projections
puv,quy : |IN(V)| = |[NU)|,U <V, are contiguous and thus also homotopic.
Hence, projections pyy : [N(V)| — |N(U)| are not unique but they all belong
to the same homotopy class. The Cech system is studied in detail in [7, App.

1, §3].

It was noticed long ago, in fifties of the past century, that studying com-
pact Hausdorff non-metrizable spaces using inverse systems of polyhedra and
their limits has some deficiencies. For instance, S. Mardesié¢ proved that there
exist 1-dimensional compact Hausdorff spaces which are not limits of inverse
systems of 1-dimensional polyhedra ([2, Theorem 4]) and there exist chain-
able spaces which are not limits of inverse systems of arcs ([1, Theorem 6]).
These results were among the reasons which led S. Mardesi¢ and L.R. Ru-
bin to introduce in 1989 a more flexible kind of inverse systems of metric
compacta and continuous maps, called approximate inverse systems ([3]). S.
Mardesi¢ and T. Watanabe soon extended the notion to arbitrary topological
spaces ([5]). The main idea was to abandon the rigid functorial requirement
DaNPA A = P, for A X X < X’ and allow the continuous maps pxxpa i~
and pyy~ to differ. However, the difference should be arbitrarily small when
M is sufficiently large. Precisely, an approximate inverse system (approximate
system, for short) X = (X, pax, A) consists of the same data as ordinary in-
verse system in the category Top of topological spaces and continuous maps.
However, besides the requirement that pyy is the identity map, one imposes
the following condition.

(A) For any A € A and any normal covering U of X, there exists an
X = X such that for any A2 = A1 = A the maps pax,Par, and pax,
are U-near, i.e. for each x € X, there exists a U € U such that points
PaxiPaa, () and pay, (z) belong to U.
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S. Mardesi¢ asked the following related question:

Let C(X) = (INU)|, [puv],Cov(X)) be the Cech system of a space X. Is
it possible to select one projection gy in each homotopy class [pyy], U <V,
in such a way that the obtained system (|N(U)|, quy,Cov(X)) is an approx-
imate system? In other words, does the Cech system of a space X induce
approximate systems (associated with X)?

We answer the question in the negative by showing that the Cech sys-
tem C(X) of an arbitrary Hausdorff arc-like space X does not induce any
associated approximate system as it is proved in Theorem 2.13 in the next
section.

2. ARC-LIKE SPACES AND THEIR CECH SYSTEMS

DEFINITION 2.1. Let P be a non-empty class of compact polyhedra and
let X be a Ty-space. We say that X is P-like, if for each open covering U of
X, there exist a polyhedron P € P, an open covering V of P and a surjective
map f: X — P such that the open covering f=V = (f~1(V),V € V) of X
refines U.

PROPOSITION 2.2. Let P be a non-empty class of compact polyhedra
and let a Ty-space X be P-like. Then X is a compact Hausdorff space.
Furthermore, if each member of P is connected, then X is connected, too.

PROOF. Let U be an arbitrary open covering of X. Since X is P-like there
exist a compact polyhedron P, a surjective map f : X — P and a finite open
covering V of P such that f~1V <U. Hence, f~'V is a finite, open refinement
of U, which proves that X is compact. Let x,y € X be different points of X.
Since X is a Ty-space, a collection U = (X\ {z}, X\ {y}) is an open covering
of X. Then, there exist a compact polyhedron P, a map f : X — P and an
open covering V of P such that f~'V < U. Note that f(x) # f(y). Indeed,
assume the contrary, i.e.. f(z) = f(y) = p € P and take an open set V € V
which contains p. Then f~1V is contained in X\ {z} or in X\ {y} . However,
f~'V contains x and y and we get a contradiction in both cases. Hence,
f(x) # f(y). Polyhedra are Hausdorff spaces and we can find open disjoint sets
W1, Wy C P such that f(z) € Wy and f(y) € Wy. Then f~'W; and f~1W,
are required disjoint open neighborhoods of x and y respectively. Assume that
each member of P is a connected polyhedron. We claim that X is connected.
Assume the contrary. Since X is disconnected, there exist two non-empty
disjoint open sets Uy, Us in X such that X = U1 UUs. Then Y = (U, Us) is an
open covering of X and there exist a compact connected polyhedron P € P, a
map f : X — P and an open covering V of P such that f~'V < U. Denote by
Wy = U{VeV:f_lVgUl} and by Wy = U{VGV:f‘lngQ}. First
note that both open sets W; and W5 are non-empty. Assume that Wy = 0
and choose z € U;. Take V € V such that f(x) € V. Since W7 = 0, it follows
that f~1V C U, and consequently = € U, which is a contradiction. Also note
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that W7 and W5 are disjoint sets. Assume that there exist p € W7 N Wa.
Since f is surjective, there exists € X such that f(x) = p. Then there exists
V,V' € V such that p € V,V’, f~'V C U; and f~'V’ C U,. This implies
x € Uy NU; and we get a contradiction. So, Wy, Wy are non-empty disjoint
open sets and P = W; U Ws. We conclude that P is disconnected and get a
contradiction. ]

DEFINITION 2.3. A Hausdorff space X is said to be arc-like (or snake-
like), if X is P-like, where P consists only of the unit segment I =[0,1] C R.

Here the unit segment I = [0, 1] C R is considered as the carrier of a sim-
plicial complex K which has two vertices (points 0 and 1) and one 1-simplex.
According to the previous proposition any arc-like space is a Hausdorff con-
tinuum, i.e. a compact connected Hausdorff space. Arc-like spaces can be
characterized by a certain property of their open coverings. To show that
firstly we define chainable coverings of a space.

DEFINITION 2.4. A finite open coveringUd = (U;,i = 1,...,n) of a space
X is called chainable provided U; NU; # 0 if and only if i — j| < 1,4,j €
{1,...,n}.

A polyhedron homeomorphic to the unit segment I = [0,1] C R is called
an arc. Note that the nerve |N(U)| of any chainable covering U = (U;,i =
1,...,n), n > 2, is an arc. If V is a chainable covering of a space Y and
f: X — Y is a surjective map, then f~'V is a chainable covering of a space
X.

ProrosITION 2.5. A Haudsorff space X is arc-like if and only if each
open covering U of X admits a chainable refinement.

PROOF. Assume that X is arc-like and take an arbitrary open covering
U of X. Then there exist an open covering V of I and a surjection f: X — [
such that f~1V refines U. Put I = |K|, where K is a simplicial complex
having two vertices 0,1 and one 1-simplex. Then there exists a subdivision L
of K such that a finite open covering S of I consisting of open stars st(v, L)
of the vertices v of L refines V (see Theorem 4 in [7, App. 1, §1.1]). Assume
that the vertices v;,7 = 1,...,n, of L are indexed in such a way that 0 = v; <
vy < -t < Upo1 < Uy = 1 and put W; = st(v;, L),i = 1,...,n. Note that
W; N W; # 0 if and only if vertices v;,v; span a simplex of L. Consequently,
W;NW; # 0 if and only if | — j| < 1, which shows that S = (W;,i =1,...,n)
is a chainable covering of I. Then, f 'S = (f~'W;,i = 1,...,n) is a chainable
covering of X which refines f~!V and then also U.

Conversely, assume that each open covering of X admits a chainable re-
finement. First note that X is compact and connected. Compactness is
obvious since chainable coverings are open and finite by definition. Assume
that X is not connected. Then there exists an open covering U = (Uy, Uz) of
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X consisting of two disjoint non-empty open sets. Let V = (V;,i =1,...,n)
be a chainable refinement of U. Since V; NV;y1 # 0, foreach i =1,...,n—1,
it follows that all V; are contained in U; or all V; are contained in U, . This
contradicts the fact that U; and Us are both non-empty sets. Let us show
that X is arc-like. Take an open covering U of X consisting of open sets
U#X. Let V= (V,,i =1,...,n) be a chainable refinement of ¢/ and con-
sider a canonical map py : X — |[N(V)]| for V, i.e. a map having property
that p),' (st(V, N(V)) C V, for each V € V (see [7, page 326]). Since [N (V)] is
homeomorphic to I, P = py(X) is a compact and connected subset of [N (V)]
and P is not a singleton, it follows that P is homeomorphic to I as well.
Then there exist j, k,1 < j < k < n, such that W = (st(V;, N(V)) N P,i =
Jy-..,k) is an open covering of P consisting of non-empty sets. Note that
py (st(Vi, NV)) N P) C py, (st(Vi, N(V))) C V;,i = j,...,k, which shows
that py," (W) refines V and also Y. Let h : P — I be a homeomorphism.
Then hpy : X — I is a surjection, W = (h(W),W € W) is an open covering
of I and (hpy)~t(W’) refines U, which shows that X is arc-like. 0

DEFINITION 2.6. A Hausdorrf space X is said to be chainable, if each
open covering of X admits a chainable refinement.

According to Proposition 2.5, a Hausdorff space X is arc-like if and only
if X is chainable.

DEFINITION 2.7. A covering (Ax, A € A) of a set X is called irreducible
if, for each Ao € A, a family (Ax,\ € AN A{)o}) is not a covering of X. A
covering (Ax, X € A) of a set X is called reducible if it is not irreducible.

Put I = |K|,where K is a simplicial complex consisting of two ver-
tices 0,1 and one 1l-simplex. Let L be a subdivision of K with n vertices
{v1,...,v,} such that 0 = v; < vg < -+ < v, = 1. Then an open covering
S = (st(vs, L),i =1,...,n) of I consisting of open stars st(v;, L) of the ver-
tices v; of L is an irreducible chainable covering of I. If V is an irreducible
covering of a set Y and f : X — Y is a surjective function, then f~1V is an
irreducible covering of a set X.

LEMMA 2.8. Let (Ax, A € A) be an irreducible covering of a set X. Then
for each A € A there is an element xy € X such that x\ € Ay and x\ ¢ Ay
for X # A\

PROOF. Since (Ax, A € A) is an irreducible covering of X, for each A € A,

a subset X\ ( |J Ax) of X is non-empty and we can choose z) € X with
PUEDY
the required properties. ]

LEMMA 2.9. LetU = (U;,i =1,...,n),n > 2, be a chainable covering of
a connected space X. Then there exists an irreducible chainable subcovering V
of U.
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ProOF. If U is irreducible, put ¥V = U. Assume that U is reducible. If
n = 2, then U; C Us or Uy C U;. Putting V7 = Uy in the first case or V7 = Uy
in the second case we get the desired subcovering V. If n > 2, then there exists
i € {1,...,n} such that X = |JU;.and we claim that ¢ ¢ {2,...,n—1}.

J#i

Indeed, assume the contrary. Then X = (U U- - -UU;_1)U(U;41U- - -UU,,) is the
union of two non-empty disjoint open sets, which contradicts connectedness
of X. Hence i =1 or i = n and the desired irreducible chainable subcovering
V of U is one of the coverings (U;,i = 2,...,n), (Uj,i = 1,...,n—1) or
(Ui,i =2,...,n—1), depending on 3. d

LEMMA 2.10. Let a Hausdorff space X be arc-like. Then each open cov-
ering U of X admits an irreducible chainable refinement V.

PrOOF. The claim follows directly from the Proposition 2.5 and Lemma
2.9. |

LEMMA 2.11. Let a Hausdorff space X be arc-like and let {x1,...,xm}
be a finite subset of X consisting of different points. Then each open covering
U of X admits an irreducible chainable refinement V such that each point
xi,i = 1,...,m, belongs to exactly one member of V and different points
x5, x5,1 < 1,7 <m, belong to different members of V.

PRrROOF. Take an arbitrary open covering U of X. For each i =1,... ,m,
put W, := XN\ Az1,...,%i—1,Tit1,- -, Tm}. Then W= (W; ;i =1,...,m) is
an open covering of X and, for each i =1,...,m, W; N {zy,...,2m} = {x;:}.

Let U’ be an open covering of X which refines both &/ and W. Since X is
an arc-like space there is a surjective map f : X — I and an open covering
V' of I such that f~'V’ refines U’. Note that f(z;) # f(z;) for each i # j.
Indeed, assume f(x;) = f(z;), for some i # j. Take a V' € V' such that
f(z;) = f(z;) € V' and let W}, be an element of W with f~!'V’ C Wj. Then
zi,x; € XN\ A{Z1,...,Th—1,Tht1, ..., Tm},which implies z; = x; = x, and
we get a contradiction. Consider I as the carrier of a simplicial complex K
having two vertices 0,1 and one 1-simplex. Then there is a subdivision L of
K such that a finite open covering S of I consisting of open stars st(v, L) of
the vertices v of L refines V. Let L’ be a subdivision of L such that the set
of vertices of L' contains all vertices of L and all points f(z;),i = 1,...,m.
Denote by {vi,...,v,},n > m, the set of vertices of L' such that 0 = v; <
vy < -+ < v, = 1. An open finite covering &’ of I consisting of open stars
st(v;, L") of the vertices v; of L’ refines S and also V. Then V = f~1§' is an
irreducible chainable covering having required properties. ]

Let < be a binary relation on a set A. A subset A’ C A is said to be cofinal
in A, if, for each A € A, there exists some A’ € A’ such that A < X If (A, <) is
a directed preordered set and A’ C A is cofinal in A, then (A’, <) is a directed
preordered set as well. Let X be an arc-like space X and denote by ZC(X)
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a subset of Cov(X) consisting of all irreducible chainable coverings of X.
According to Lemma 2.10, ZC(X) is cofinal in (Cov(X), <) and, consequently,
(ZC(X), =) is a directed preordered set.

THEOREM 2.12. Let a Hausdorff space X be arc-like and let ZC(X) be a
subset of Cov(X) consisting of all irreducible chainable coverings of X. For
each pair U,V € IC(X) such that U <V, select a projection pyy : [N (V)| —
IN(U)|. Then the obtained system (|N(U)|,puy,IC(X)) is not an approxi-
mate system.

PROOF. Assume the contrary, i.e. (|[NU)|,puy,ZC(X)) is an approx-
imate system. Let U € ZC(X) be an arbitrary index , i.e. U is an irre-
ducible chainable covering of X and assume U = (Uy,...U,),n > 2. Choose
an open covering A of |N(U)| having property that each member of A con-
tains at most one vertex U € |[N(U)| (for instance, such A is an open cov-
ering (st(U, N(U)),U € U) consisting of open stars of vertices U of N(U)).
Since the system (| N ()|, puy, ZC(X)) is approximate, there exists a covering,
ie. an index, Uy = (UY,...,UY) € ZC(X) which refines U, and for each
V, W € IC(X) satisfying Uy < V = W, maps pyypyw and pyy are A-near.
Take an arbitrary vertex W € |[N(W)|. Since the projections are determined
by simplicial maps, points pyypyw (W) and pyw (W) are vertices of the nerve
[N(U)|. On the other hand, each member of A contains at most one vertex
of |IN(U)|, and we conclude that pyrypyw (W) = pyw (W), for each vertex
W e [N(W)|. This implies pyvpyw(y) = puw(y), for each y € [N(W)|.
Thus, puyvpvw = puw, for any V. W € ZC(X) such that Uy =V < W. Ac-

cording to Lemma 2.8, for each i = 1,...,n, we can choose a point x; € X
such that z; € U;\(JU;). Let U? and U]Q be members of the covering Uy
J#i

with z; € U and x5 € UjO. Note that i # j. Indeed, assume that ¢ = j. Since
U, is the only member of U which contains x; and Us is the only member of U
which contains x5, we get U? C Uy and U = U]O C Us. Hence, 21 € Ui NU,
and we get a contradiction. Hence, i # j. Note that pyu, (UP) = Uy and
Putdo (UJQ ) = Us. Without loss of generality assume i < j. We claim that there
exists k,i < k < j, such that pyy,(UY) = U; and pqu(U]gH) = U,. To
prove that consider a finite set F' = {n S puu, (U) = Ui <n < j} .Fisa
non-empty set, since ¢ € F. Put k := max F. If k£ = j — 1, the claim holds,
because pu, (Uy) = Up. Assume k < j — 1. Since pyy, (Uy) = Uy, it follows
Up C Ui. Up is a chainable covering, so U) NUY, | # 0. Let Uy € U be a
member of U such that pyy, (Up,,) = Up. Then § # U NUY,, € U1 N
and we conclude that | € {1,2}. Assume that pu,(UY, ;) = Ui. Since
1 < k+4+1<j, it follows that k + 1 € F which contradicts k£ = max F. There-
fore, pqu(UISH) = U, and the claim is proved. So, we get puu, (UY) = Us
and puu, (UQ, ) = Us. Note that U) N UY, ;| is an infinite set. Indeed, as-
sume that U N UL, is a finite set U N ULy = {y1,92,- -, Yn } - Then
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we get {y1} = (UP NUL,)\ {2,...,Yn)} which implies that X has an
isolated point y; and that contradicts connectedness of X. Choose arbitrary
points z,z’ € U} NUY,,, © # 2’. Let V; and V, be open coverings of X
given by V; = (U{)v ) Ul(c)fl’ Ulg\ {z}, U18+1\ {z'}, U18+2’ RER) ng)v Vo =
(U, U, UNAY, UR N\ Az} UR L, ..., UY,). Note that V; and Vs, are
irreducible chainable coverings of X which refine Uy, i.e. Vi,Ve € IC(X),
Uy = V1,Va. Moreover, py,v, (Up N\A2'}) = Upy and pyov, (UPNA{2'}) =
U,g . According to Lemma 2.11, there exists an irreducible chainable covering
W of X which refines both V; and Vs, each of the points z,z’ belongs to
exactly one member of W and z, 2’ belong to different members of W. Hence
W e IC(X) and Uy = Vi,Va = W. Let W € W be the only element of
W which contains x. Note that ' ¢ W and Uy, ,\ {2’} is the only element
of V; which contains x. This implies py,w(W) = U,gﬂ\ {z'} and we get
puw(W) = puv, pvow (W) = puv, (UL, N\ A2'}) = puvopuov, Ui\ A{2'}) =
puuo(Up, 1) = Us. On the other hand, U\ {2’} is the only element of V,
which contains z and we get pyw (W) = puv,pvow (W) = puv, (U {z'}) =
Putto Py, (USNA2'}) = puw, (UY) = Uy. This yields a contradiction since Uy
and U are different vertices of |[N(U)]|. 0

THEOREM 2.13. The Cech system C(X) = (INU)|, [puv], Cov(X)) of a
Hausdorff arc-like space X does not induce approximate systems, i.e. it is not
possible to select one projection quy in each homotopy class [pyy] ,U XV, in
such a way that (|NU)|, quy, Cov(X)) becomes an approzimate system.

PROOF. Assume the contrary, i.e. there exists a selection of projections
quv € [puv], for each pair of coverings U <V, such that the obtained system
(INU)|, quy,Cov(X)) is an approximate system. Then (|N(U)|, quv,ZC(X))
is an approximate system, too, which contradicts Theorem 2.12. ]
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Cechov sustav ne inducira aproksimativne sustave

Vlasta Matijevié

SAZETAK. Svakom topoloskom prostoru X pridruzen je nje-
gov Cechov sustav C(X) = (|NU)|, [puv],Cov(X)). Dobro je
poznato da je Cechov sustav C(X) od X inverzni sustav u ho-
motopskoj kategoriji H Pol ¢iji su objekti poliedri, a morfizmi
homotopske klase neprekidnih preslikavanja medu poliedrima.
Sibe Mardesié¢ postavio je sljedeée pitanje: Za dani Cechov su-
stav (|[N(U)|, [puv],Cov(X)) prostora X, je li mogucée izabrati
¢lan quyv € [puv] u svakoj homotopskoj klasi [pyv] tako da do-
biveni sustav (|N(U)|, quv, Cov(X)) bude aproksimativni sustav?
Ovdje pokazujemo da je odgovor na to pitanje negativan, bududi
da, za svaki Hausdorffov kontinuum X koji je poput luka, svaki
takav sustav (|N(U)|, guv, Cov(X)) nije aproksimativni sustav.
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