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ČECH SYSTEM DOES NOT INDUCE APPROXIMATE
SYSTEMS
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Dedicated to the memory of Professor Sibe Mardešić

Abstract. With every topological space X is associated its Čech
system C(X) = (|N(U)| , [pUV ] , Cov(X)). It is well-known that the Čech
system C(X) of X is an inverse system in the homotopy category HP ol
whose objects are polyhedra and morphisms are homotopy classes of contin-
uous maps between polyhedra. We consider the following question posed
by S. Mardešić. For a given Čech system (|N(U)| , [pUV ] , Cov(X)) of a
space X, is it possible to select a member qUV ∈ [pUV ] in each homotopy
class [pUV ] in such a way that the obtained system (|N(U)| , qUV , Cov(X))
is an approximate system? We answer the question in the negative by
proving that for each Hausdorff arc-like continuum X any such system
(|N(U)| , qUV , Cov(X)) is not an approximate system.

1. Introduction and main result

Let K be a simplicial complex. Denote by |K| the carrier of K (i.e.
the union of all simplexes belonging to K) endowed with the CW -topology.
By a polyhedron we mean a space X such that X = |K| for some simplicial
complex K. If X = |K| and Y = |L| are polyhedra, then every simplicial map
f : K → L determines in a natural way a continuous map X → Y for which
we use the same notation f.

Recall that an inverse system in a category C is a collection
X = (Xλ, pλλ′ ,Λ) which consists of an index set Λ, endowed with a di-
rected preorder ≼, of objects Xλ from C, for λ ∈ Λ, and of morphisms
pλλ′ : Xλ′ → Xλ from C, for λ ≼ λ′. On morphisms pλλ′ one imposes the
functorial requirement pλλ′pλ′λ′′ = pλλ′′ , for λ ≼ λ′ ≼ λ′′, and pλλ = idXλ

,
for λ ∈ Λ.
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With every topological space X one associates an inverse system
C(X) = (|N(U)| , [pUV ] , Cov(X)) in the homotopy category HPol of polyhe-
dra and homotopy classes of continuous maps called the Čech system of X.
The index set Cov(X) is the set of all normal coverings U of X. A normal
covering of X is an open covering U which admits a partition of unity sub-
ordinated to U . If X is a paracompact space, then Cov(X) coincides with
a set of all open coverings of X (see [4, App. 1, §3.1 Corollary 1]). The
set Cov(X) is preordered by the relation ≼, where U ≼ V means that V is
a refinement of U . For each U ∈ Cov(X), a simplicial complex N(U) is the
nerve of U and [pUV ] ,U ≼ V, is the unique homotopy class to which belong
projections pUV : |N(V)| → |N(U)| . Recall that vertices of N(U) are the ele-
ments U ∈ U , and vertices U1, . . . , Un ∈ U span a simplex of N(U) whenever
U1 ∩ · · · ∩ Un ̸= ∅. A projection pUV : |N(V)| → |N(U)| ,U ≼ V, is a contin-
uous map determined by a simplicial map pUV : N(V) → N(U) which sends
a vertex V of N(V) to a vertex U of N(U) with V ⊆ U. Any two projections
pUV , qUV : |N(V)| → |N(U)| ,U ≼ V, are contiguous and thus also homotopic.
Hence, projections pUV : |N(V)| → |N(U)| are not unique but they all belong
to the same homotopy class. The Čech system is studied in detail in [7, App.
1, §3].

It was noticed long ago, in fifties of the past century, that studying com-
pact Hausdorff non-metrizable spaces using inverse systems of polyhedra and
their limits has some deficiencies. For instance, S. Mardešić proved that there
exist 1-dimensional compact Hausdorff spaces which are not limits of inverse
systems of 1-dimensional polyhedra ([2, Theorem 4]) and there exist chain-
able spaces which are not limits of inverse systems of arcs ([1, Theorem 6]).
These results were among the reasons which led S. Mardešić and L.R. Ru-
bin to introduce in 1989 a more flexible kind of inverse systems of metric
compacta and continuous maps, called approximate inverse systems ([3]). S.
Mardešić and T. Watanabe soon extended the notion to arbitrary topological
spaces ([5]). The main idea was to abandon the rigid functorial requirement
pλλ′pλ′λ′′ = pλλ′′ , for λ ≼ λ′ ≼ λ′′, and allow the continuous maps pλλ′pλ′λ′′

and pλλ′′ to differ. However, the difference should be arbitrarily small when
λ′ is sufficiently large. Precisely, an approximate inverse system (approximate
system, for short) X = (Xλ, pλλ′ ,Λ) consists of the same data as ordinary in-
verse system in the category Top of topological spaces and continuous maps.
However, besides the requirement that pλλ is the identity map, one imposes
the following condition.

(A) For any λ ∈ Λ and any normal covering U of Xλ, there exists an
λ′ ≽ λ such that for any λ2 ≽ λ1 ≽ λ′ the maps pλλ1pλ1λ2 and pλλ2

are U-near, i.e. for each x ∈ Xλ2 there exists a U ∈ U such that points
pλλ1pλ1λ2(x) and pλλ2(x) belong to U.
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S. Mardešić asked the following related question:
Let C(X) = (|N(U)| , [pUV ] , Cov(X)) be the Čech system of a space X. Is
it possible to select one projection qUV in each homotopy class [pUV ] ,U ≼ V,
in such a way that the obtained system (|N(U)| , qUV , Cov(X)) is an approx-
imate system? In other words, does the Čech system of a space X induce
approximate systems (associated with X)?

We answer the question in the negative by showing that the Čech sys-
tem C(X) of an arbitrary Hausdorff arc-like space X does not induce any
associated approximate system as it is proved in Theorem 2.13 in the next
section.

2. Arc-like spaces and their Čech systems

Definition 2.1. Let P be a non-empty class of compact polyhedra and
let X be a T1-space. We say that X is P-like, if for each open covering U of
X, there exist a polyhedron P ∈ P, an open covering V of P and a surjective
map f : X → P such that the open covering f−1V = (f−1(V ), V ∈ V) of X
refines U .

Proposition 2.2. Let P be a non-empty class of compact polyhedra
and let a T1-space X be P-like. Then X is a compact Hausdorff space.
Furthermore, if each member of P is connected, then X is connected, too.

Proof. Let U be an arbitrary open covering of X. Since X is P-like there
exist a compact polyhedron P, a surjective map f : X → P and a finite open
covering V of P such that f−1V ≼ U . Hence, f−1V is a finite, open refinement
of U , which proves that X is compact. Let x, y ∈ X be different points of X.
Since X is a T1-space, a collection U = (X� {x} , X� {y}) is an open covering
of X. Then, there exist a compact polyhedron P, a map f : X → P and an
open covering V of P such that f−1V ≼ U . Note that f(x) ̸= f(y). Indeed,
assume the contrary, i.e.. f(x) = f(y) = p ∈ P and take an open set V ∈ V
which contains p. Then f−1V is contained in X� {x} or in X� {y} . However,
f−1V contains x and y and we get a contradiction in both cases. Hence,
f(x) ̸= f(y). Polyhedra are Hausdorff spaces and we can find open disjoint sets
W1,W2 ⊆ P such that f(x) ∈ W1 and f(y) ∈ W2. Then f−1W1 and f−1W2
are required disjoint open neighborhoods of x and y respectively. Assume that
each member of P is a connected polyhedron. We claim that X is connected.
Assume the contrary. Since X is disconnected, there exist two non-empty
disjoint open sets U1, U2 in X such that X = U1∪U2. Then U = (U1, U2) is an
open covering of X and there exist a compact connected polyhedron P ∈ P, a
map f : X → P and an open covering V of P such that f−1V ≼ U . Denote by
W1 = ∪

{
V ∈ V : f−1V ⊆ U1

}
and by W2 = ∪

{
V ∈ V : f−1V ⊆ U2

}
. First

note that both open sets W1 and W2 are non-empty. Assume that W1 = ∅
and choose x ∈ U1. Take V ∈ V such that f(x) ∈ V. Since W1 = ∅, it follows
that f−1V ⊆ U2 and consequently x ∈ U2 which is a contradiction. Also note
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that W1 and W2 are disjoint sets. Assume that there exist p ∈ W1 ∩ W2.
Since f is surjective, there exists x ∈ X such that f(x) = p. Then there exists
V, V ′ ∈ V such that p ∈ V, V ′, f−1V ⊆ U1 and f−1V ′ ⊆ U2. This implies
x ∈ U1 ∩ U2 and we get a contradiction. So, W1,W2 are non-empty disjoint
open sets and P = W1 ∪W2. We conclude that P is disconnected and get a
contradiction.

Definition 2.3. A Hausdorff space X is said to be arc-like (or snake-
like), if X is P-like, where P consists only of the unit segment I = [0, 1] ⊆ R.

Here the unit segment I = [0, 1] ⊆ R is considered as the carrier of a sim-
plicial complex K which has two vertices (points 0 and 1) and one 1-simplex.
According to the previous proposition any arc-like space is a Hausdorff con-
tinuum, i.e. a compact connected Hausdorff space. Arc-like spaces can be
characterized by a certain property of their open coverings. To show that
firstly we define chainable coverings of a space.

Definition 2.4. A finite open covering U = (Ui, i = 1, . . . , n) of a space
X is called chainable provided Ui ∩ Uj ̸= ∅ if and only if |i− j| ≤ 1, i, j ∈
{1, . . . , n} .

A polyhedron homeomorphic to the unit segment I = [0, 1] ⊆ R is called
an arc. Note that the nerve |N(U)| of any chainable covering U = (Ui, i =
1, . . . , n), n ≥ 2, is an arc. If V is a chainable covering of a space Y and
f : X → Y is a surjective map, then f−1V is a chainable covering of a space
X.

Proposition 2.5. A Haudsorff space X is arc-like if and only if each
open covering U of X admits a chainable refinement.

Proof. Assume that X is arc-like and take an arbitrary open covering
U of X. Then there exist an open covering V of I and a surjection f : X → I
such that f−1V refines U . Put I = |K| , where K is a simplicial complex
having two vertices 0, 1 and one 1-simplex. Then there exists a subdivision L
of K such that a finite open covering S of I consisting of open stars st(v, L)
of the vertices v of L refines V (see Theorem 4 in [7, App. 1, §1.1]). Assume
that the vertices vi, i = 1, . . . , n, of L are indexed in such a way that 0 = v1 <
v2 < · · · < vn−1 < vn = 1 and put Wi = st(vi, L), i = 1, . . . , n. Note that
Wi ∩Wj ̸= ∅ if and only if vertices vi, vj span a simplex of L. Consequently,
Wi∩Wj ̸= ∅ if and only if |i− j| ≤ 1, which shows that S = (Wi, i = 1, . . . , n)
is a chainable covering of I. Then, f−1S = (f−1Wi, i = 1, . . . , n) is a chainable
covering of X which refines f−1V and then also U .

Conversely, assume that each open covering of X admits a chainable re-
finement. First note that X is compact and connected. Compactness is
obvious since chainable coverings are open and finite by definition. Assume
that X is not connected. Then there exists an open covering U = (U1, U2) of
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X consisting of two disjoint non-empty open sets. Let V = (Vi, i = 1, . . . , n)
be a chainable refinement of U . Since Vi ∩ Vi+1 ̸= ∅, for each i = 1, . . . , n− 1,
it follows that all Vi are contained in U1 or all Vi are contained in U2.. This
contradicts the fact that U1 and U2 are both non-empty sets. Let us show
that X is arc-like. Take an open covering U of X consisting of open sets
U ̸= X. Let V = (Vi, i = 1, . . . , n) be a chainable refinement of U and con-
sider a canonical map pV : X → |N(V)| for V, i.e. a map having property
that p−1

V (st(V,N(V)) ⊆ V, for each V ∈ V (see [7, page 326]). Since |N(V)| is
homeomorphic to I, P = pV(X) is a compact and connected subset of |N(V)|
and P is not a singleton, it follows that P is homeomorphic to I as well.
Then there exist j, k, 1 ≤ j ≤ k ≤ n, such that W = (st(Vi, N(V)) ∩ P, i =
j, . . . , k) is an open covering of P consisting of non-empty sets. Note that
p−1
V (st(Vi, N(V)) ∩ P ) ⊆ p−1

V (st(Vi, N(V))) ⊆ Vi, i = j, . . . , k, which shows
that p−1

V (W) refines V and also U . Let h : P → I be a homeomorphism.
Then hpV : X → I is a surjection, W ′ = (h(W ),W ∈ W) is an open covering
of I and (hpV)−1(W ′) refines U , which shows that X is arc-like.

Definition 2.6. A Hausdorrf space X is said to be chainable, if each
open covering of X admits a chainable refinement.

According to Proposition 2.5, a Hausdorff space X is arc-like if and only
if X is chainable.

Definition 2.7. A covering (Aλ, λ ∈ Λ) of a set X is called irreducible
if, for each λ0 ∈ Λ, a family (Aλ, λ ∈ Λ� {λ0}) is not a covering of X. A
covering (Aλ, λ ∈ Λ) of a set X is called reducible if it is not irreducible.

Put I = |K| ,where K is a simplicial complex consisting of two ver-
tices 0, 1 and one 1-simplex. Let L be a subdivision of K with n vertices
{v1, . . . , vn} such that 0 = v1 < v2 < · · · < vn = 1. Then an open covering
S = (st(vi, L), i = 1, . . . , n) of I consisting of open stars st(vi, L) of the ver-
tices vi of L is an irreducible chainable covering of I. If V is an irreducible
covering of a set Y and f : X → Y is a surjective function, then f−1V is an
irreducible covering of a set X.

Lemma 2.8. Let (Aλ, λ ∈ Λ) be an irreducible covering of a set X. Then
for each λ ∈ Λ there is an element xλ ∈ X such that xλ ∈ Aλ and xλ /∈ Aλ′

for λ′ ̸= λ.

Proof. Since (Aλ, λ ∈ Λ) is an irreducible covering of X, for each λ ∈ Λ,
a subset X�(

∪
λ′ ̸=λ

Aλ′) of X is non-empty and we can choose xλ ∈ X with

the required properties.

Lemma 2.9. Let U = (Ui, i = 1, . . . , n), n ≥ 2, be a chainable covering of
a connected space X. Then there exists an irreducible chainable subcovering V
of U .
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Proof. If U is irreducible, put V = U . Assume that U is reducible. If
n = 2, then U1 ⊆ U2 or U2 ⊆ U1. Putting V1 = U2 in the first case or V1 = U1
in the second case we get the desired subcovering V. If n > 2, then there exists
i ∈ {1, . . . , n} such that X =

∪
j ̸=i
Uj .and we claim that i /∈ {2, . . . , n− 1} .

Indeed, assume the contrary. ThenX = (U1∪· · ·∪Ui−1)∪(Ui+1∪· · ·∪Un) is the
union of two non-empty disjoint open sets, which contradicts connectedness
of X. Hence i = 1 or i = n and the desired irreducible chainable subcovering
V of U is one of the coverings (Ui, i = 2, . . . , n), (Ui, i = 1, . . . , n − 1) or
(Ui, i = 2, . . . , n− 1), depending on i.

Lemma 2.10. Let a Hausdorff space X be arc-like. Then each open cov-
ering U of X admits an irreducible chainable refinement V.

Proof. The claim follows directly from the Proposition 2.5 and Lemma
2.9.

Lemma 2.11. Let a Hausdorff space X be arc-like and let {x1, . . . , xm}
be a finite subset of X consisting of different points. Then each open covering
U of X admits an irreducible chainable refinement V such that each point
xi, i = 1, . . . ,m, belongs to exactly one member of V and different points
xi, xj , 1 ≤ i, j ≤ m, belong to different members of V.

Proof. Take an arbitrary open covering U of X. For each i = 1, . . . ,m,
put Wi := X� {x1, . . . , xi−1, xi+1, . . . , xm} . Then W = (Wi, i = 1, . . . ,m) is
an open covering of X and, for each i = 1, . . . ,m, Wi ∩ {x1, . . . , xm} = {xi}.
Let U ′ be an open covering of X which refines both U and W. Since X is
an arc-like space there is a surjective map f : X → I and an open covering
V ′ of I such that f−1V ′ refines U ′. Note that f(xi) ̸= f(xj) for each i ̸= j.
Indeed, assume f(xi) = f(xj), for some i ̸= j. Take a V ′ ∈ V ′ such that
f(xi) = f(xj) ∈ V ′ and let Wk be an element of W with f−1V ′ ⊆ Wk. Then
xi, xj ∈ X� {x1, . . . , xk−1, xk+1, . . . , xm} ,which implies xi = xj = xk, and
we get a contradiction. Consider I as the carrier of a simplicial complex K
having two vertices 0, 1 and one 1-simplex. Then there is a subdivision L of
K such that a finite open covering S of I consisting of open stars st(v, L) of
the vertices v of L refines V ′. Let L′ be a subdivision of L such that the set
of vertices of L′ contains all vertices of L and all points f(xi), i = 1, . . . ,m.
Denote by {v1, . . . , vn} , n ≥ m, the set of vertices of L′ such that 0 = v1 <
v2 < · · · < vn = 1. An open finite covering S ′ of I consisting of open stars
st(vi, L′) of the vertices vi of L′ refines S and also V ′. Then V = f−1S ′ is an
irreducible chainable covering having required properties.

Let ≼ be a binary relation on a set Λ. A subset Λ′ ⊆ Λ is said to be cofinal
in Λ, if, for each λ ∈ Λ, there exists some λ′ ∈ Λ′ such that λ ≼ λ′. If (Λ,≼) is
a directed preordered set and Λ′ ⊆ Λ is cofinal in Λ, then (Λ′,≼) is a directed
preordered set as well. Let X be an arc-like space X and denote by IC(X)
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a subset of Cov(X) consisting of all irreducible chainable coverings of X.
According to Lemma 2.10, IC(X) is cofinal in (Cov(X),≼) and, consequently,
(IC(X),≼) is a directed preordered set.

Theorem 2.12. Let a Hausdorff space X be arc-like and let IC(X) be a
subset of Cov(X) consisting of all irreducible chainable coverings of X. For
each pair U ,V ∈ IC(X) such that U ≼ V, select a projection pUV : |N(V)| →
|N(U)| . Then the obtained system (|N(U)| , pUV , IC(X)) is not an approxi-
mate system.

Proof. Assume the contrary, i.e. (|N(U)| , pUV , IC(X)) is an approx-
imate system. Let U ∈ IC(X) be an arbitrary index , i.e. U is an irre-
ducible chainable covering of X and assume U = (U1, . . . Un), n ≥ 2. Choose
an open covering A of |N(U)| having property that each member of A con-
tains at most one vertex U ∈ |N(U)| (for instance, such A is an open cov-
ering (st(U,N(U)), U ∈ U) consisting of open stars of vertices U of N(U)).
Since the system (|N(U)| , pUV , IC(X)) is approximate, there exists a covering,
i.e. an index, U0 = (U0

1 , . . . , U
0
m) ∈ IC(X) which refines U , and for each

V,W ∈ IC(X) satisfying U0 ≼ V ≼ W, maps pUVpVW and pUW are A-near.
Take an arbitrary vertex W ∈ |N(W)|. Since the projections are determined
by simplicial maps, points pUVpVW(W ) and pUW(W ) are vertices of the nerve
|N(U)| . On the other hand, each member of A contains at most one vertex
of |N(U)| , and we conclude that pUVpVW(W ) = pUW(W ), for each vertex
W ∈ |N(W)| . This implies pUVpVW(y) = pUW(y), for each y ∈ |N(W)| .
Thus, pUVpVW = pUW , for any V,W ∈ IC(X) such that U0 ≼ V ≼ W. Ac-
cording to Lemma 2.8, for each i = 1, . . . , n, we can choose a point xi ∈ X
such that xi ∈ Ui�(

∪
j ̸=i
Uj). Let U0

i and U0
j be members of the covering U0

with x1 ∈ U0
i and x2 ∈ U0

j . Note that i ̸= j. Indeed, assume that i = j. Since
U1 is the only member of U which contains x1 and U2 is the only member of U
which contains x2, we get U0

i ⊆ U1 and U0
i = U0

j ⊆ U2. Hence, x1 ∈ U1 ∩ U2
and we get a contradiction. Hence, i ̸= j. Note that pUU0(U0

i ) = U1 and
pUU0(U0

j ) = U2. Without loss of generality assume i < j. We claim that there
exists k, i ≤ k < j, such that pUU0(U0

k ) = U1 and pUU0(U0
k+1) = U2. To

prove that consider a finite set F =
{
n : pUU0(U0

n) = U1, i ≤ n < j
}
. F is a

non-empty set, since i ∈ F. Put k := maxF. If k = j − 1, the claim holds,
because pUU0(U0

j ) = U2. Assume k < j − 1. Since pUU0(U0
k ) = U1, it follows

U0
k ⊆ U1. U0 is a chainable covering, so U0

k ∩ U0
k+1 ̸= ∅. Let Ul ∈ U be a

member of U such that pUU0(U0
k+1) = Ul. Then ∅ ̸= U0

k ∩ U0
k+1 ⊆ U1 ∩ Ul

and we conclude that l ∈ {1, 2} . Assume that pUU0(U0
k+1) = U1. Since

i ≤ k + 1 < j, it follows that k + 1 ∈ F which contradicts k = maxF. There-
fore, pUU0(U0

k+1) = U2 and the claim is proved. So, we get pUU0(U0
k ) = U1

and pUU0(U0
k+1) = U2. Note that U0

k ∩ U0
k+1 is an infinite set. Indeed, as-

sume that U0
k ∩ U0

k+1 is a finite set U0
k ∩ U0

k+1 =
{
y1, y2, . . . , yn(k)

}
. Then
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we get {y1} = (U0
k ∩ U0

k+1)�
{
y2, . . . , yn(k)

}
which implies that X has an

isolated point y1 and that contradicts connectedness of X. Choose arbitrary
points x, x′ ∈ U0

k ∩ U0
k+1, x ̸= x′. Let V1 and V2 be open coverings of X

given by V1 = (U0
1 , . . . , U

0
k−1, U

0
k� {x} , U0

k+1� {x′} , U0
k+2, . . . , U

0
m), V2 =

(U0
1 , . . . , U

0
k−1, U

0
k� {x′} , U0

k+1� {x} , U0
k+2, . . . , U

0
m). Note that V1 and V2 are

irreducible chainable coverings of X which refine U0, i.e. V1,V2 ∈ IC(X),
U0 ≼ V1,V2. Moreover, pU0V1(U0

k+1� {x′}) = U0
k+1 and pU0V2(U0

k� {x′}) =
U0
k . According to Lemma 2.11, there exists an irreducible chainable covering
W of X which refines both V1 and V2, each of the points x, x′ belongs to
exactly one member of W and x, x′ belong to different members of W. Hence
W ∈ IC(X) and U0 ≼ V1,V2 ≼ W. Let W ∈ W be the only element of
W which contains x. Note that x′ /∈ W and U0

k+1� {x′} is the only element
of V1 which contains x. This implies pV1W(W ) = U0

k+1� {x′} and we get
pUW(W ) = pUV1pV1W(W ) = pUV1(U0

k+1� {x′}) = pUU0pU0V1(U0
k+1� {x′}) =

pUU0(U0
k+1) = U2. On the other hand, U0

k� {x′} is the only element of V2
which contains x and we get pUW(W ) = pUV2pV2W(W ) = pUV2(U0

k� {x′}) =
pUU0pU0V2(U0

k� {x′}) = pUU0(U0
k ) = U1. This yields a contradiction since U1

and U2 are different vertices of |N(U)| .

Theorem 2.13. The Čech system C(X) = (|N(U)| , [pUV ] , Cov(X)) of a
Hausdorff arc-like space X does not induce approximate systems, i.e. it is not
possible to select one projection qUV in each homotopy class [pUV ] ,U ≼ V, in
such a way that (|N(U)| , qUV , Cov(X)) becomes an approximate system.

Proof. Assume the contrary, i.e. there exists a selection of projections
qUV ∈ [pUV ] , for each pair of coverings U ≼ V, such that the obtained system
(|N(U)| , qUV , Cov(X)) is an approximate system. Then (|N(U)| , qUV , IC(X))
is an approximate system, too, which contradicts Theorem 2.12.
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Čechov sustav ne inducira aproksimativne sustave

Vlasta Matijević

Sažetak. Svakom topološkom prostoru X pridružen je nje-
gov Čechov sustav C(X) = (|N(U)| , [pUV ] , Cov(X)). Dobro je
poznato da je Čechov sustav C(X) od X inverzni sustav u ho-
motopskoj kategoriji HP ol čiji su objekti poliedri, a morfizmi
homotopske klase neprekidnih preslikavanja medu poliedrima.
Sibe Mardešić postavio je sljedeće pitanje: Za dani Čechov su-
stav (|N(U)| , [pUV ] , Cov(X)) prostora X, je li moguće izabrati
član qUV ∈ [pUV ] u svakoj homotopskoj klasi [pUV ] tako da do-
biveni sustav (|N(U)| , qUV , Cov(X)) bude aproksimativni sustav?
Ovdje pokazujemo da je odgovor na to pitanje negativan, budući
da, za svaki Hausdorffov kontinuum X koji je poput luka, svaki
takav sustav (|N(U)| , qUV , Cov(X)) nije aproksimativni sustav.
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