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Introduction
Traditional food analysis as a discipline of food sci-

ence was developed together with other basic sectors of 
analytical chemistry (1). The fi rst and most important aim 

of food analysis has always been to ensure food safety 
and quality, and to protect consumers against adultera-
tion (1,2). New developments in food technology, produc-
tion of fast and ready-to-eat food, globalization of the 

ISSN 1330-9862 review
doi: 10.17113/ft b.55.03.17.5044

Foodomics and Food Safety: Where We Are

Uroš Andjelković1,3, Martina Šrajer Gajdošik2, Dajana Gašo-Sokač5, 
Tamara Martinović1 and Djuro Josić1,4*

1Department of Biotechnology, University of Rĳ eka, Radmile Matejčić 2, HR-51000 Rĳ eka, Croatia
2Department of Chemistry, J. J. Strossmayer University of Osĳ ek, Cara Hadrĳ ana 8/A, HR-31000 Osĳ ek, Croatia

3Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, 
Njegoševa 12, RS-11000 Belgrade, Serbia

4Warren Alpert Medical School, Brown University, 222 Richmond St, Providence, RI 02903, USA
5Faculty of Food Technology, J. J. Strossmayer University of Osĳ ek, Franje Kuhača 20, HR-31000 Osĳ ek, Croatia

Received: November 4, 2016
Accepted: May 31, 2017

Summary

The power of foodomics as a discipline that is now broadly used for quality assurance 
of food products and adulteration identifi cation, as well as for determining the safety of 
food, is presented. Concerning sample preparation and application, maintenance of highly 
sophisticated instruments for both high-performance and high-throughput techniques, 
and analysis and data interpretation, special att ention has to be paid to the development of 
skilled analysts. The obtained data shall be integrated under a strong bioinformatics envi-
ronment. Modern mass spectrometry is an extremely powerful analytical tool since it can 
provide direct qualitative and quantitative information about a molecule of interest from 
only a minute amount of sample. Quality of this information is infl uenced by the sample 
preparation procedure, the type of mass spectrometer used and the analyst’s skills. Techni-
cal advances are bringing new instruments of increased sensitivity, resolution and speed to 
the market. Other methods presented here give additional information and can be used as 
complementary tools to mass spectrometry or for validation of obtained results. Genomics 
and transcriptomics, as well as affi  nity-based methods, still have a broad use in food anal-
ysis. Serious drawbacks of some of them, especially the affi  nity-based methods, are the 
cross-reactivity between similar molecules and the infl uence of complex food matrices. 
However, these techniques can be used for pre-screening in order to reduce the large num-
ber of samples. Great progress has been made in the application of bioinformatics in 
foodomics. These developments enabled processing of large amounts of generated data for 
both identifi cation and quantifi cation, and for corresponding modeling.
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market, and modern nutritional trends lead to new, or in-
creasingly actual problems such as unhealthy diets that 
can cause obesity or food allergies. Large-scale industrial 
food production brings new aspects of microbiological 
safety and safety of genetically engineered food as addi-
tional challenges (1–5).

Food safety is a matt er of global importance, and the 
prevention of health problems caused by false nutrition 
or contaminated food is a worldwide topic of extraordi-
nary social, economic and public health importance (3,6). 
Outbreaks of diseases caused by foodborne pathogens 
such as fungi, bacteria and protozoa are still a problem in 
developing countries, but also in the industrialized, high-
ly developed Western World. Increasing globalization of 
the food market and new nutritional trends, such as con-
sumption of fresh and raw food, ready-to-eat meals, dry 
products and exotic ingredients, cause additional out-
breaks of food poisoning, but also allergies. Firstly, of un-
known origin, the fatal outbreak of food poisoning caused 
by Shiga toxin-producing pathogen bacterium Escherichia 
coli O104:H4 during the year 2011 in both Germany and 
France originated from food imported from a developing 
country (7,8). Changes in world climate and increasing 
environmental pollution in some countries can also cause 
generation of new toxic agents, and as a consequence, 
new toxic eff ects will be identifi ed. Contamination with 
mycotoxins, bacterial toxins and toxins coming from oth-
er organisms via soil, water and air, as well as via livestock 
that was fed with contaminated food, have global impli-
cations (9).

In Croatia and neighboring Southeastern European 
countries, endemic nephropathy is a chronic disease that 
is caused by an unknown agent. There are many hypoth-
eses, but the two most actual ones are focused on food 
contamination either by aristolochic acid, possibly origi-
nating in fl our (10) or by ochratoxin A, a mycotoxin (11). 
These environmental agents are defi ned as main risk fac-
tors for this disease that can end in kidney failure and are 
associated with urothelial cancer (10–13). New regula-
tions in the European Union, such as regulation EC 258/97 
(14) or ISO 9000/EN 29000 (15) and the subsequent ones, 
including the Nutrition Labeling and Education Act 
(16,17) that has been a Federal law in the United States 
since 1990, as well as similar regulations worldwide, had 
a crucial infl uence on further development of food analy-
sis. Consequently, food analysis is becoming one of the 
most important areas in applied analytical chemistry, and 
the newest and most sophisticated up-to-date techniques 
are used in this fi eld. According to these regulations, and 
to the law that is accepted worldwide, food safety is a re-
sponsibility equally shared by all participants in food 
production, from the handling of raw materials and food 
processing to food distribution. Regulatory and control 
agencies are fi nally responsible for compliance with regu-
latory rules regarding food quality and consumer protec-
tion (3,6,9).

The main tasks of food safety regulations are the 
elimination of bacterial, fungal and other pathogens and 
their toxins that cause foodborne diseases, the reduction 
of allergens and the elimination of other agents that can 
contaminate food and have harmful teratogenic, immu-
notoxic, nephrotoxic, estrogenic or similar eff ects. The in-

creasing standards for food safety and new developments 
in analytical methods, especially in high-throughput 
mode and fast data analyses, result in the application of 
new, reliable and rapid test methods. Genomic, proteom-
ic, peptidomic, metabolomic and similar high-throughput 
and high-resolution techniques that are applied for food 
analysis are newly summarized under the highly actual 
term ‘foodomics’ (3,6). According to Herrero et al. (18) 
‘Foodomics has been defi ned as a new discipline that 
studies the food and nutrition domains through the ap-
plication of advanced ‘omic’ technologies to improve con-
sumer’s well-being, health and confi dence. As a global 
discipline, foodomics includes the working areas in which 
food, nutrition, corresponding advanced analytical tech-
niques and bioinformatics are brought together’. These 
techniques are being increasingly applied in food analy-
sis, as well as in food monitoring during harvest, process-
ing, storage and transportation, until fi nal consumption. 
Moreover, they can be used for identifying possible agents 
of food poisoning or food allergies (2,4–6,18–20). In both 
contemporary food science and nutrition, new terms such 
as allergomics, nutrigenomics, nutrigenetics, nutriprote o-
mics, nutrimetabolomics and similar are frequently used. 
Unfortunately, they are connected with poor defi nitions 
and systematics that causes problems regarding their un-
derstanding, so the logical consequence is their relatively 
low acceptance (18).

In this Journal, we have already published two re-
views about the application of proteomics and peptido-
mics in food technology and biotechnology with a focus 
on process development, quality control and product 
safety (2,4). In the last few years several excellent studies 
and reviews dedicated to microbial safety and microbiota 
dynamics have been published (21,22). Investigation of 
allergies and detection of allergens in food is also a focus 
of foodomic investigations (19,23). This paper gives an 
overview of recent developments in foodomics as a new 
discipline that summarizes all high-throughput ‘omic’ tech-
niques applied in food analysis (5,18,19), and their use in 
early, rapid, safe and reliable identifi cation of possible 
hazards, such as foodborne pathogens, toxins and other 
harmful components that can be present in food, or can 
occur as contaminants during food processing and distri-
bution.

Foodomics and the Application of ‘Omic’ 
Methods in Food Analysis

In a recent review, Gallo and Ferranti (1) give an ex-
cellent overview of the historical development of the ap-
plication of instrumental methods in food analysis that 
leads to up-to-date foodomic techniques. As mentioned 
above, the term ‘foodomics’ summarizes genomics, tran-
scriptomics, proteomics, peptidomics, metabolomics, lip-
idomics and similar high-throughput and high-resolution 
techniques that off er considerable opportunities to assess 
quality and safety of food of both plant and animal origin. 
Starting with the health assessment of plants and animals 
as food producers (3), followed by the production and 
monitoring of both food quality and safety by the produc-
er, the process fi nally ends in control of food quality and 
authenticity, and protection against adulteration by au-
thorities in corresponding reference laboratories (2–4,17).
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Foodomic analyses of food during the production un-
til consumation (see Fig. 1) and the presence or the devel-
opment of allergens and/or foodborne pathogens and 
their toxins provide decisive information and help to pre-
vent the outbreak of foodborne infections and develop-
ment of food allergies. In the case of disease and side-ef-
fect outbreaks, foodomics will lead to the identifi cation of 
causative agents and support healing (7–9). Identifi cation 
of proteins or other agents that are relevant for the out-
breaks leads to the discovery of biomarkers for this kind 
of foodborne disease (or side eff ects) (6,24). In this case, 
biomarkers (or only ‘markers’) are polynucleotides, pro-
teins, peptides and metabolites that are relevant for trac-
ing microbial infections and identifi cation of toxins and 
allergens, as well as for the identifi cation of the adultery 
of food products. Consequently, in vivo foodomic analy-
ses can further effi  ciently support eff ective food quality 
control and quality assurance (3,20,25,26, see also Fig. 1).

Analytical tools that concerned parties have at their 
disposal in the struggle for food safety are standardized 
reference methods. Diff erent immunological, spectro-
scopic and chromatographic methods with selected de-
tection techniques are still most frequently used for anal-
ysis and identifi cation of harmful agents in food (6). Most 
of the current standardized reference methods for the de-
tection of bacteria in food are based on traditional culture 
methods (U.S. Food and Drug Administration Bacterio-
logical Analytical Manual (27)). Despite reliability and ro-
bustness, traditional culture methods may display diff er-
ent limitations that should be overcome in order to make 
food safety management systems more effi  cient and eligi-
ble to purpose. These methods can be laborious and time 
consuming, they lack quantitative information and pro-
vide limited identifi cation of post-translational modifi ca-
tions of proteins and peptides, they are unable to detect 
viable but non-culturable bacteria and are far from opti-
mal for the detection of some harmful agents that are 
present in low concentrations (20,28,29). Development of 
new analytical methods for the detection of bacterial con-

tamination in food is a challenging task, which requires a 
multidisciplinary approach. A special concern about new-
ly developed methods is that they have to be validated 
against standard reference methods. It is important to 
note that a gold standard method is not necessarily per-
fect. These methods can also produce false-positive or 
false-negative results. By defi nition, a gold standard meth-
od provides correct results and hence a false-positive 
(negative) result obtained with the gold standard method 
would be interpreted as a false-negative (positive) result 
with the new method being evaluated (30). Thus, stand-
ard reference methods should be reviewed from sample 
preparation procedure through subsequent steps in order 
to perform comparison and validation of a new method 
(31). Increased sensitivity of new methods can cause con-
fusion regarding legal issues since ‘safe levels’ of bacteria 
in a food sample are hard to defi ne. Thus, most countries 
demand ‘absence’ for most pathogens. But, ‘absence’ (‘zero 
tolerance’) usually means ‘below detection limit’ by use of 
a particular method, and confusion arises if a new meth-
od is of higher sensitivity (31). Here we provide a short 
overview on what contemporary proteomic/peptidomic 
tools are providing in the detection and quantifi cation of 
bacteria in food samples.

Advances in the development of up-to-date instru-
mental methods, especially in high-performance mass 
spectrometers (32), but also the introduction of label-free 
quantitative analyses of proteins and other biological 
molecules by use of new bioinformatic tools (33,34) sub-
stantially helped in overcoming these limitations (35). 
The importance of proper sample preparation and the in-
troduction of laboratory robotics for high-throughput 
analyses have also found necessary recognition (1,9,18,20, 
36–40). These developments will improve fast detection 
of foodborne pathogens and their toxins, allergens and 
other harmful components in food, and also help produc-
ers, food control authorities and consumers to detect 
adulterations and protect safe and original food (39–41). 
Ensuring food safety and identifi cation, monitoring and 

FINAL

PRODUCT

In-process control

Production steps

Analysis of food components

Proteomics, peptidomics, metabolomics

Safety, al ergenesl

Genomics, proteomics, peptidomics,

metabolomics

Quality control

Microbial and biological safety

Genomic , proteomics,s

peptidomics, metabolomics
QUALITY

CONTROL

FOOD

PROCESSING

RAW MATERIAL

CLEANING AND SANITATION

OF THE EQUIPMENT

FINAL

PRODUCT

FOODOMICS

genomics, proteomics,

peptidomics, metabolomics

Microbial safety

Quality assurance

Prevention of possible accidents

DISTRIBUTION

AND CONSUMPTION

Fig. 1. Foodomic analyses of food from the production to the consumption



U. ANDJELKOVIĆ et al.: Foodomics and Food Safety, Food Technol. Biotechnol. 55 (3) 290–307 (2017) 293

assessing of both food authenticity and foodborne haz-
ards will require further development of already existing 
mass spectrometry (MS)-based methods (34,38–42). In 
proteomics and peptidomics, MS represents a very pow-
erful, high-performance method and is an excellent tool 
for protein and peptide identifi cation and quantitative 
analysis. High-resolution MS is frequently hyphenated 
with the ultra-high performance chromatography or cap-
illary electrophoresis and does not require a prior knowl-
edge of the proteins and peptides that are to be identifi ed 
and quantifi ed (18,43).

Additionally, the introduction and application of new 
or already known but seldom used techniques, such as 
imaging mass spectrometry, nuclear magnetic resonance 
(NMR) and diff erential scanning calorimetry (DSC), can 
further contribute to faster and more effi  cient foodomic 
analyses (44–46). Further optimization and parallel use of 
the already established reference methods will support 
the control and validation of results acquired by the ap-
plication of these newly developed techniques.

Sample Preparation
Representative sampling and adequate sample prep-

aration are two starting and crucial steps of food analysis 
and correct data interpretation. However, these two steps 
are frequently neglected or carried out incorrectly. Conse-
quently, both wrong sampling and sample treatment in 
the sample preparation stage of the analysis cannot be 
corrected any more, and they can cause very dangerous 
systematic errors. For correct sampling, deep knowledge 
of both the food matrix and the analytical protocol are 
necessary. Sample preparation itself can be a signifi cant 
bias of a foodomic method since the experimental data ac-
curacy, reproducibility and confi dence essentially depend 
on the accuracy and quality of the cleanup technique. 
This becomes even more complex if very low-abundance 
molecules such as mycotoxins, bacterial toxins or biomar-
kers of microbial food contamination are targets of analy-
sis (6). Recent review by Gallo and Ferranti (1) gives an 
extensive overview of sample preparation techniques in 
food analysis and can be highly recommended.

It is diffi  cult to give a short overview of sample prep-
aration for foodomic analyses. Firstly, the food itself is a 
very complex matrix, and the molecules of interest are 
very diff erent. In genomics, DNA, RNA and their degra-
dation products are the topics of investigation. For pro-
teomic and peptidomic analyses, proteins and peptides 
have to be concentrated during sample preparation. 
However, the most complex task is sample preparation 
for metabolomic analysis of small molecules, products of 
microbial metabolism. The fi rst rule is that the choice of 
the sample preparation method in metabolomics depends 
on the type of the molecule(s) of interest.

The simplest sample preparation method mostly 
used for the detection of small molecules such as myco-
toxins, antibiotics or pesticides is the ‘dilute and shoot’ 
approach. It is a direct injection of diluted (or extracted) 
sample into the system for liquid chromatography (LC) 
without a complex cleanup procedure. This approach, when 
followed by LC-MS/MS or less frequently capillary elec-

trophoresis (CE)-MS/MS, provides a robust method for 
detection and quantifi cation (41–43). Conventional sam-
ple preparation methods in food analysis that are used 
especially for the detection of small molecules are liquid- 
-liquid extraction, solid-liquid extraction and supercritical 
fl uid extraction (1). However, these techniques are time 
and/or labor intensive. The introduction of solid-phase 
extraction (SPE) and corresponding pre-packed commer-
cially available columns enabled the application of high- 
-throughput methods and robotics for fast and reproduci-
ble sample preparation, even when multiple steps must 
be introduced (47,48). Campone et al. (49) introduced 
pressurized liquid extraction and online SPE coupled 
with ultra HPLC-MS/MS. By use of this method, small 
molecules like mycotoxins or pesticides can be detected 
and quantifi ed. Recovery and quantifi cation limits of tar-
get substances have to be carefully checked and validated 
(50,51). However, the applied method is time consuming, 
requires large amounts of solvents, and systematic errors 
caused by the absorption loss as well as the interaction 
between the sample and the solid phase were also ob-
served. Next optimization step was the introduction of 
solid phase microextraction, where the amounts of sol-
vent were minimized to a few milligrams (52,53). Use of 
iron oxide-based nanoparticles as materials for so-called 
‘magnetic solid-phase extraction’ is a further step towards 
the introduction of a simple, rapid, selective, sensitive 
and highly effi  cient method for high-throughput enrich-
ment of molecules of interest (54). However, further de-
velopment of very sensitive analytical methods, as well as 
soft ware systems capable of handling very high volumes 
of required data, especially mass spectrometry with a 
very low detection limit for targeted substances, was nec-
essary to enable application of this sample preparation 
method (38,39,41,42,55–58). As mentioned above, there 
are commercially available columns and ready-to-use car-
tridges packed with diff erent chromatographic stationary 
phases for selective enrichment of small molecules (1). 
Commercially available solid phase extraction kit (so- 
-called QuEChErs kit by Agilent, Santa Clara, CA, USA) 
can be used as a fast alternative to traditional liquid-liq-
uid and solid-phase extraction in analysis of small mole-
cules. The sample preparation process involves two steps, 
namely the extraction with organic and salt solutions fol-
lowed by a clean-up with dispersive solid-phase extrac-
tion resins (1,59).

Sampling and sample preparation are also key steps 
in proteomic and peptidomic analyses (60). Wiśniewski et 
al. (61) recommend a fi lter-aided sample preparation by a 
complete solubilization of the proteome in sodium do-
decyl sulfate which is subsequently exchanged by urea on 
a standard fi ltration device (fi lter-aided sample prepara-
tion). According to the authors, ‘peptides eluted aft er di-
gestion on the fi lter were pure, allowing a single-run 
analyses of organelles and unprecedented depth of pro-
teome coverage’. This method summarizes previous ex-
periences in sample preparation for proteomic analyses 
that was reviewed by several authors (62,63). However, if 
cell and tissue samples are prepared using this method, 
some very hydrophobic proteins and proteins with post-
translational modifi cations (PTMs) such as glycosylation 
are frequently not solubilized. In food analysis, the extra-
cellular matrix is frequently only partially (or not at all) 



294 U. ANDJELKOVIĆ et al.: Foodomics and Food Safety, Food Technol. Biotechnol. 55 (3) 290–307 (2017)

destroyed. These proteins are therefore lost for subse-
quent MS analysis. For analysis of matrix proteins that 
are important for meat tenderness, and for overall food 
consistency and quality, as well as tracing of possible 
adulteration and manipulation (such as repeated freezing 
and thawing), D’Alessandro and Zolla (64) recommend a 
stepwise solubilization method, which makes use of de-
tergents, chaotropic agents and reagents for chemical di-
gestion such as cyanogen bromide. This method was de-
veloped by Hill et al. (65), for the analysis of proteins that 
are important for tissue engineering. There are also diffi  -
culties with proteolytic (most frequently tryptic) digestion 
of these proteins. Consequently, they are only partially 
detected or not detected at all, and additional methods for 
their solubilization and proteolytic digestion must be de-
veloped (66). Blonder et al. (67) recommend extraction of 
hydrophobic proteins by organic solvents, most ly metha-
nol, followed by tryptic digestion. This method enables 
detection of diff erent, highly hydrophobic proteins that 
were previously not covered by other approaches. Fur-
thermore, Lu and Zhu (68) developed the so-called ‘tube- 
-gel digestion’ of proteins for more complete proteomic 
analysis and detection of very hydrophobic proteins and 
proteins with postt ranslational modifi cations (PTMs). Use 
of this method enabled identifi cation of diff erent hydro-
phobic membrane proteins that had previously not been 
detected (66). Application of MALDI mass spectrometry, 
requests for miniaturization, and introduction of on-chip 
sample preparation (69), as well as reduction of sample 
amount used for proteomic analyses (70), were the main 
driving forces for the introduction of high-throughput 
methods that enable analyses of hundreds or even thou-
sands of samples. Development of these methods, use of 
laboratory robotics and introduction of special chroma-
tographic supports like monoliths further enhanced the 
development of high-throughput methods for sample prep-
aration, especially in genomics, proteomics and metabo-
lomics (48,71).

Genomic analysis that is followed by transcriptomics 
gives the fi rst information about the changes in the tran-
scription rate of genes in a genome in a particular cell 
type or tissue during development, but also in diff erent 
disease states (72). Preparation of genomic DNA is now a 
routine that is described in several protocols for use of 
commercial kits for sample preparation and preparation 
of DNA microarrays (73). DNA microarrays are genome- 
-wide hybridization devices that are used to get informa-
tion about changes at the transcriptional levels. This tech-
nology is one of the most successful and most eff ective 
methodologies of high-throughput genomic analyses 
(74). Flow-through DNA microarray assay can be success-
fully used for rapid detection and quantifi cation of food 
pathogens (75).

However, analyses of samples have their own rules, 
especially if detection of foodborne bacteria and their tox-
ins, as well as contamination by fungi and mycotoxins, is 
requested. We demonstrated that for the detection of 
Gram-positive bacteria, their thorough decomposition by 
use of diff erent mechanical methods, followed by extrac-
tion with urea and diff erent detergents is necessary (37). 
As a rule, sample preparation for detection of proteins 
and peptides in foodomics has to be carefully elaborated, 

but already published recommendations (37,61–63) can 
be used as basic information and a fi rst step in the devel-
opment of a sample preparation protocol. Aft er solubili-
zation of proteins/peptides of interest, they can be sepa-
rated by gel electrophoresis, i.e. gel-based proteomics (76) 
or by diff erent chromatographic or capillary electro-
phoretic techniques, i.e. gel-free methods (6,39,77,78). In 
proteomic analyses of food, gel-based methods are still 
frequently used. However, when a quantitative analysis 
of detected proteins or polypeptides is necessary, special 
staining and quantifi cation programs have to be used (76).

Analytical Techniques
The strategy of the integration of diff erent analytical 

techniques and approaches is the main power of foodo-
mics. This kind of strategy demonstrates the fl exibility 
and knowledge in order to follow and incorporate fast 
technological developments in all fi elds of instrumental 
techniques and shall be open for new ideas and approach-
es. The foodomics expert shall integrate the sample prep-
aration knowledge with the knowledge of main fi elds of 
advanced analytical technology, strategically integrated 
under a strong bioinformatic environment. The opinion 
of the authors of this review is that a comprehensive 
knowledge of the methods that are actually applied for 
food analysis and quality assurance should be combined 
with recently developed high-throughput methods that 
will be presented here.

Affi  nity-based methods
Affi  nity recognition is usually an antibody- and lec-

tin-based approach that benefi ts from high selectivity. 
This method is based on specifi c affi  nity recognition of 
antibodies and lectins with the epitopes on the cell sur-
face of microbial species of interest, or with the corre-
sponding parts of the molecule of secreted products of 
their metabolism. Affi  nity recognition can also be based 
on other highly specifi c molecular interactions such as af-
fi nity recognition of components of a bacteriophage with 
bacterial cell wall components. Diff erent technical solu-
tions have been developed to exploit affi  nity recognition: 
immuno-diff usion discs, ELISA, lateral fl ow assays, bio-
sensors and fast affi  nity chromatography on monolithic 
supports (78–81). A serious drawback of all affi  nity-based 
methods is the cross reactivity between similar molecules. 
Antibodies developed against surface antigens may cross-
-react with microbial cells within the same genera. In this 
case, cross reactivity would lead to false positive identifi -
cation. However, this method can be used for pre-screen-
ing to reduce the large number of samples to a low 
number of positive ones, which will subsequently be ana-
lyzed by a more stringent technique. Antibody and lectin 
microarrays incorporating several molecules directed 
against the same target substance have been designed to 
overcome the problem of cross reactivity. However, com-
plex food matrices may contain substances (e.g. polyphe-
nols, tannins), which interact or covalently modify target 
molecules. These substances can signifi cantly interfere by 
inducing or reducing specifi c bindings. These phenomena 
can lead to over- or underestimation (79–82).
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Rapid response of foodborne pathogens to their envi-
ronment typically involves altered gene expression in or-
der to favor both their survival and subsequent growth 
under extreme conditions. These changes in the physio-
logical state that frequently result in damages of cellular 
surface (e.g. high/low pH, pressure, temperature, availa-
bility of oxygen, exposure to radiation and UV light, or 
use of specifi c disinfectants) are typical for food process-
ing and can interfere with the affi  nity-based detection 
system (83).

Nuclear magnetic resonance spectroscopy
The discussion about nuclear magnetic resonance 

spectroscopy (NMR) as a very promising method with 
great potential to improve both food safety and taste 
started years ago, before the time of broad use of mass 
spectrometry-based methods started. First applications of 
NMR were performed for measurement of water move-
ment during processing in order to study heat and mass 
transfer, composition and structure of food (84). The main 
goal was to follow the killing and inactivation of food 
pathogens and their toxins (85–89). Diff erent promising 
discussions started, but almost nothing happened for a 
long time. An intensive literature study shows that some 
applications gave very interesting results, but follow-up 
work either failed or was never done (86). More than 
twenty years ago, alterations in food during packaging 
were followed by this technique (87). Later, there were 
some very promising applications in the fi eld of metabo-
lomics, mostly for studying the interaction between dif-
ferent food components, and in the fi eld of food lipid-
omics, for quantitative determination of olive oil quality 
(88,89). Albeit its high potential, NMR was still rarely 
used for food analysis, even less frequently for detection 
of food pathogens, their toxins and other metabolites (90).

More than ten years ago, NMR came back in focus as 
a very eff ective, high-resolution, quality control method 
in food industry (91,92). Moreau and Guichard (88) dem-
onstrated that this method can be used for the determina-
tion of interactions between fl avor compounds and high 
molecular, non-volatile food components, as well as the 
infl uence of these reactions on fl avor perception of proc-
essed foods.

In the last ten years, the number of quantitative NMR 
applications in foodomics has signifi cantly increased 
(93,94), especially toward detection and quantitative de-
termination of specifi c molecules (95–97). NMR can be 
used for determining food origin (98–100), quality and 
purity (97,98,101). The most important application of 
NMR in the fi eld of safety is the use of this method for the 
determination of changes in food during storage, with 
particular emphasis on degradation processes and possi-
ble contamination with food pathogens and their toxins 
(93,94). Changes during freezing and storing at diff erent 
temperatures in dependence of time were determined in 
fi sh (102,103), meat (104) and vegetables (105). NMR was 
also used for detecting metabolic profi les of transgenic 
grapes and their comparison with non-modifi ed fruits 
(106). Although there are only a few NMR applications 
for the determination of food pathogens, they seem to be 
very promising. Ercolini et al. (104) used this technique 
for monitoring the microbial metabolites and bacterial di-

versity in beef during storage under diff erent packaging 
conditions. Picone et al. (107) followed the eff ect of the 
natural terpenoid carvacrol on the metabolome of a mod-
el Escherichia coli strain by use of proton nuclear magnetic 
resonance (1H-NMR) spectroscopy.

In general, 1H NMR spectroscopy is the most fre-
quently used method (95–99,108), but NMR spectroscopy 
can also detect other isotopes such as 13C, 15N, 17O and 31P 
(79,89,91,92,108). The advantages of NMR spectroscopy 
are that minimal sample preparation is necessary, and 
practically every kind of biological fl uids or food extracts 
can be analyzed using this method (91,92,108). However, 
sensitivity is still a problem, and less abundant substances 
cannot be detected. This fact reduces the utilization of this 
method, so that mass spectrometry is still the method of 
choice, when low-abundance food components are the 
targeted substances (108).

Other techniques
There are several methods for visualizing changes in 

food during processing such as X-ray diff raction (109), a 
combination of high-resolution imaging techniques like 
confocal scanning microscopy with specifi c staining of 
food components, and a combination of several physico-
chemical methods (110–112) that are followed by compu-
ter simulation techniques (113). These strategies are still 
either time consuming, or they yield only very specifi c in-
formation, so as a consequence, the use of these methods 
is still limited. However, further development in the di-
rection of simplifi cation and high-throughput can open 
new perspectives for the utilization of these techniques.

Use of diff erential scanning calorimetry for the deter-
mination of melting and caramelization of sugars as an 
important component in food was also discussed, but the 
correct application of this technique is still a topic of con-
troversial debate (45,114,115).

Techniques based on genomic methods
Diff erent PCR/qPCR-based methods (116), second and 

third generation sequencing techniques (117) and other 
nucleic acid-based methods (e.g. microarrays) are power-
ful tools for the detection of foodborne pathogens and 
their metabolites. Simultaneous detection and quantifi ca-
tion of several microorganisms (118) and their serotyping 
(119), performed in a high-throughput fashion, can be 
combined with a microfl uidic technique. However, appli-
cation of polymerase-based techniques also has some lim-
itations, and until now, most gene expression studies 
have been done on monobacterial cultures, mixtures and 
on artifi cially contaminated food samples. As a complex 
matrix, food may contain substances that inhibit polymer-
ase reaction (118,119). Additionally, some compounds 
may be introduced during sample preparation. Specifi c 
design of internal positive control can help to overcome 
these shortcomings (30,120). Gene expression microarrays 
are successfully used for analyses of bacterial transcrip-
tome, and RNA sequencing has also been used as a meth-
od for investigating the physiological state of foodborne 
pathogens at the molecular level (121,122). The quantifi -
cation of expression of specifi c genes and the determina-
tion of both stress resistance and cell viability biomarkers 
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can be performed by the use of reverse transcription qPCR 
(123). Together with the results of targeted proteomic 
analyses, such as detection of endo- and exotoxins, this 
kind of transcriptomic data provide further understand-
ing of the physiology of foodborne pathogens (124). That 
is why proteomic and metabolomic tools are compatible 
with DNA- (and RNA)-based approaches in the analysis 
of foodborne pathogens and can be used for validation of 
these assays. Rosselló-Móra and Amann (125) used a 
strategy that includes comparative analysis of bacterial 
proteomes in search for clone-specifi c proteins whose se-
quences are used for the design of PCR probes for their 
quantitative determination. Such improved understand-
ing of behavior and metabolic activity of microorganisms 
during production is crucial for preserving and improv-
ing food quality, safety and nutritional value (126).

All DNA-based microarray assays are plausible high-
-throughput techniques. The automation and introduc-
tion of laboratory robots resulted in an improved capacity 
and enabled the analysis of a large number of samples. 
Donhauser et al. (127) developed a DNA-based, sensitive 
chemiluminiscence fl ow-through microarray assay for the 
rapid and very sensitive determination and quantifi cation 
of food pathogens Escherichia coli, Salmonella enterica and 
Campylobacter jejuni in water samples. This method was 
further developed and applied for the detection of other 
foodborne pathogenic microorganisms and viruses (128, 
129). However, the use of such microarray chips for anal-
yses of food samples requires further development of high -
-throughput sample preparation methods (6,39,130).

Mass Spectrometry
Mass spectrometry (MS) is one of the most powerful 

analytical tools because it can provide direct qualitative 
and quantitative information about the molecule of inter-
est from a minute amount of sample. In the last 10–15 
years, the increase in the performance and adaptability of 
instrumentation in mass spectrometry has enormously 
contributed to the development of new strategies in food 
analysis, rendering MS as one of its main tools (131). The 
quality of the information gained by MS is infl uenced by 
sample preparation procedure, type of mass spectrometer 
and analyst’s skills. As a consequence, foodomic approach-
es need to be adapted to each analytical problem and the 
special characteristics of each matrix have to be taken into 
consideration. Technical advances are bringing to the 
market new mass spectrometers of increased sensitivity 
and resolution, with a lower sample and solvent consump-
tion, that off er rapid analysis, and even in-fi eld analysis. 
However, all presented advantages still cannot be incor-
porated into one analytical device, thus comprehensive 
knowledge of the current technology status is a prerequi-
site for the successful design of foodomic approaches (3,6,  
18).

Mass analyzers can achieve low accuracy levels of 
100–10 ppm (e.g. quadrupole, ion trap, linear time-of- 
-fl ight (TOF) or can be of medium accuracy with levels 
down to 1 ppm (e.g. refl ectron TOF). This level of accura-
cy is not enough to unambiguously identify a molecule of 
interest. Thus, mass analyzers are oft en combined, to-
gether and with a collision cell (fragmentation cell), into 

tandem mass spectrometers (MS/MS) which can provide 
enough information to unambiguously identify large 
numbers of compounds of interest in food analysis. Im-
provement of existing and development of new mass ana-
lyzers is necessary to achieve higher accuracy, resolution, 
sensitivity, dynamic range and speed. Mass analyzer with 
the highest accuracy and resolving power is Fourier 
transform ion cyclotron resonance (FT-ICR). The platform 
of FT-ICR MS dates from 1974 (132). However, the acqui-
sition speed of FT-ICR of 1 Hz is still not fast enough for 
comprehensive analysis of highly complex mixtures which 
need to be fractioned by liquid chromatography (LC) pri-
or to mass analysis. In the year 2000, a new mass analyzer 
named Orbitrap was described by Makarov (133). In the 
years that followed, this mass analyzer has quickly be-
come a very important mass analyser for LC-MS/MS anal-
ysis of high complex mixtures. With improvements de-
scribed in 2009 (134), Orbitrap, now as part of a hybrid 
mass spectrometer, provides resolving power of 500 000 
(at m/z=200) and accuracy in low-sub ppm range. The ad-
vantage of Orbitrap over FT-ICR is in its speed of up to 20 
Hz, which is much more suitable for coupling with LC in 
analysis of samples of high complexity. However, de-
pending on the particular application, higher resolving 
power is sometimes more benefi cial (135–137).

This chapter gives a short overview of principles of 
high-resolution mass spectrometric methods that are 
most frequently applied in food analysis with a focus on 
food safety. A more general overview of these methods 
was published by Herrero et al. (18) and recently by Ibá-
ñez et al. (138).

MALDI-TOF mass spectrometry
Matrix-assisted laser desorption/ionisation time-of- 

-fl ight mass spectrometry (MALDI-TOF MS) is a frequent-
ly used method that is complementary to other soft  ioni-
sation techniques, such as electrospray ionization (ESI). 
The advantage of MALDI-TOF instruments is their higher 
tolerance toward contaminants arising from the food ma-
trix. This technique can be applied for the analysis of large 
molecules such as proteins, but it is also applicable to 
analysis of intermediate and small size molecules. How-
ever, the signal suppression due to matrix background 
ions presents a limitation when small molecules are ana-
lyzed (139). MALDI-TOF MS is an eff ective and simple 
method for high-throughput analysis, and the main use 
of this technique in food authentication and safety analy-
ses is the identifi cation of foodborne pathogens (140,141). 
Phenotypic tests, such as colony characteristics, growth 
on selective agar plates, biochemical patt ern characteriza-
tion and Gram staining, are methods that are currently 
used for the identifi cation of bacteria. However, they are 
time consuming and less practical if a fast analysis is 
needed. Known for its sensitivity, accuracy and reproduc-
ibility, MALDI-TOF MS is a method most commonly used 
for the identifi cation of bacteria and their toxins (139,141). 
This approach is very rapid since it does not involve a 
sample preparation step, but rather relies upon the intro-
duction of a bacterial colony onto a MALDI plate. The re-
sult is a unique intact or tryptically digested ribosomal or 
intracellular protein and peptide profi le of whole bacteri-
al cells, so called bacterial ‘fi ngerprint’, which allows for 



U. ANDJELKOVIĆ et al.: Foodomics and Food Safety, Food Technol. Biotechnol. 55 (3) 290–307 (2017) 297

an accurate identifi cation of bacterial contamination. Ac-
quired bacterial MALDI-TOF MS fi ngerprints are matched 
against spectral libraries previously collected under iden-
tical MALDI conditions without further identifi cation. 
Consequently, identifi cation success remains highly de-
pendent on the number of well characterized food patho-
gen biomarker sequences available in reference databases 
that are in the majority of cases still not publicly available 
(142–144). It has been demonstrated that sample prepara-
tion is also a critical point that includes destruction of 
bacterial cells and reproducible digestion of liberated pro-
teins (145–147).

MALDI-TOF MS can be successfully used for the dis-
crimination between bacterial subtypes and the detection 
of the foodborne pathogen Mycobacterium avium sub-
species paratuberculosis (MAP) (147). MAP is a pathogenic 
bacte  rium that aff ects catt le and causes paratuberculosis. 
This microorganism is heat resistant, making its contami-
nation of milk a major cause of MAP transmission to hu-
mans (148). The most common diagnostic method used to 
detect MAP in catt le is ELISA, using specifi c monoclonal 
antibodies. However, the use of this technique is limited 
because of its relatively low sensitivity and possible cross-
reaction of antibodies with environmental mycobacteria. 
Moreover, because of the above-mentioned relatively low 
sensitivity, ELISA cannot be used for specifi c detection of 
early infections. Thus, more sensitive proteomic approach-
es have been developed for MAP detection, such as 2D 
gel electrophoresis coupled with MS (148). Lin et al. (149) 
have eff ectively shown that MALDI-TOF MS is applicable 
for rapid discrimination of M. avium from other Mycobac-
terium species. These results also demonstrate a serious 
potential of this method for clinical application, as well as 
for early detection of these bacteria. MALDI-TOF MS as a 
tool for classifi cation and identifi cation of bacteria has 
been systematically used for about ten years (150), and its 
use as an alternative to conventional methods for identifi -
cation of food pathogens was described by Schumann 
and Maier (151). It was also shown that this method can 
be used as a very effi  cient tool for the identifi cation of 
high-risk toxin-producing E. coli strains (152). The major 
bott leneck for further implementation of MALDI-TOF MS 
in food monitoring systems remains sample preparation. 
It covers the isolation of microorganisms, culturing by con-
ventional methods and/or enrichment of anaerobic, de-
manding or slow-growing bacterial strains (153). For that 
reason, sample preparation protocols for viable but non-
culturable (VBNC) or diffi  cult to culture food poisoning 
bacterial strains Vibrio cholerae, enterohemorrhagic E. coli, 
Shigella fl exneri and Salmonella enterica should still be de-
veloped (154). It is important to note that not all food 
pathogens pose a health threat themselves, but proteins 
and other metabolites that they secrete can be severely 
toxic to humans. The signifi cant disadvantage of MALDI-
-TOF MS is that this technique can only provide informa-
tion on the occurrence or absence of food-contaminating 
food pathogens, and it does not give any data about the 
expression of toxin-encoding genes or levels of toxins and 
other microbial metabolites or other secreted substances 
in food. For this sake, other methods, again mostly based 
on mass spectrometry, have to be employed for their de-
tection (6,9).

Imaging mass spectrometry
Imaging mass spectroscopy is a combination between 

MALDI-TOF MS and histochemistry. This technique gives 
information about both the molecular size of the sub-
stance and its localization in tissue samples (44,155). How-
ever, this potentially powerful strategy was seldom used 
in foodomics (44,156–158). Hong et al. (156) used MALDI 
imaging mass spectrometry for enhanced visualization of 
small peptides in rat intestine, presenting only the opti-
mization of the method. An example of the application of 
imaging mass spectrometry in the fi eld of food safety is 
the detection of procymidone, a frequently used fungi-
cide in cucumber samples by nanoparticle-assisted laser 
desorption-ionization mass spectrometry imaging (157). 
Recently, Yoshimura et al. (158) have given an extensive 
overview about the state-of-the art and future use of im-
aging mass spectrometry in food analysis.

Similar strategies based on both transmission elec-
tron microscopy and single particle inductively coupled 
plasma-mass spectrometry were used for the analysis of 
the release of potentially harmful silver nanoparticles that 
are used as pastry decorations (159).

Together with MALDI-TOF, additional mass spectro-
metric methods were used for the determination of struc-
tural elements and large molecules that are cellular com-
ponents of foodborne pathogens as well as their metabolites. 
These substances are used as biomarkers for indirect de-
tection of pathogens in food (160).

Fourier transform ion cyclotron resonance mass 
spectrometry

Mass analyzer with highest accuracy and resolving 
power is Fourier transform ion cyclotron resonance (FT- 
-ICR). As already mentioned above, the platform of FT- 
-ICR MS dates already from 1974 (132). Development of 
stronger magnets, improvement of the ICR cell, ion op-
tics, data acquisition systems and signal processing are 
only some of the possible ways for improvements in FT- 
-ICR performance (161,162). Nowadays, commercial FT- 
-ICR instruments with a resolving power of 10 000 000 (at 
m/z=400) and with accuracy in low-sub ppm or ppb range 
are available. Acquisition speed of FT-ICR of 1 Hz is not 
fast enough for a comprehensive analysis of highly com-
plex mixtures, which is needed for the fractionation by 
LC prior to mass analysis, but the improved instrument 
can be used for the analysis of complex mixtures contain-
ing large molecules such as proteins (135,136). The large 
potential of FT-ICR MS for metabolite analysis was dis-
covered relatively early (163), and a big advantage of this 
method is the possibility of direct infusion (164). The hy-
phenation with a liquid chromatograph is also practica-
ble, but there are some limitations caused by relatively 
slow analysis by this instrument (165–167). For analysis of 
small molecules, Oliveira et al. (168) demonstrated the 
power of ultra-high resolution of FT-ICR operating in 
negative ESI mode with a direct infusion of complex ex-
tract of mango fruit for characterization of primary and 
secondary metabolites in order to achieve higher nu-
traceutical value of this fruit. The application of FT-ICR 
MS in lipidomics (169,170) is increasingly pushed back by 
faster and easier-to-use Orbitrap and other hybrid mass 
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spectrometers (171–173). According to Schwudke et al. 
(173), ‘Despite its recognized potential, the scope of FT 
MS-driven lipidomics remined rather limited. Sampling 
of abundant ions of chemical background could exceed 
the storage capacity of an ion cyclotron resonance (ICR) 
cell and impair the accuracy of isotopic profi les, thus 
compromising the species quantifi cation’. However, al-
though published in a very high quality peer-reviewed 
journal, this prett y critical evaluation is coming from two 
competitors, and careful analysis of the instrument (174) 
yielded in signifi cant improvements, so that this method 
is again gaining in popularity for lipidomic and other 
analyses of biological samples (175). For example, He et 
al. (176) used this method for characterization of polar lip-
ids by online LC hyphenated with hybrid linear quadru-
pole ion trap FT-ICR MS. Furthermore, Le et al. (177) ap-
plied MALDI FT-ICR MS for tissue imaging of lipids. In a 
metabolomic analysis, Milev et al. (178) used this MS ap-
proach for the analysis of fermented raw cocoa beans and 
the determination of their origin by direct infusion of pu-
rifi ed raw extract. Together with other high-performance 
MS and LC methods, Chen et al. (179) used FT-ICR mass 
spectrometry for the screening of antioxidants of longan 
seed extract. There are further applications of FT-ICR for 
determining protein glycosylation, glycoscreening and 
sequencing (180–182). In food safety, these analyses are 
important for the determination of allergenicity of pro-
teins and peptides (183,184). Recently, Ghaste et al. (185) 
gave a comprehensive overview about the use of FT-ICR 
MS in metabolomics and lipidomics. However, a clear dif-
ferentiation between the use of this kind of instrument 
and Orbitrap-based metabolomics is not given. In conclu-
sion, the use of this powerful method in foodomics, espe-
cially in both proteomics and metabolomics, is still not 
fully exploited, and the use of the newly developed in-
struments with increased throughput will contribute to a 
more frequent use of FT-ICR mass spectrometry in food 
analysis (186). A recent impressive investigation of the E. 
coli proteome by LC FT-ICR MS (187) and a metabolomic 
study by Witt ing et al. (188) of both worm Caenorhabditis 
elegans and bacterium Pseudomonas aeruginosa opened the 
way for use of this method for high-throughput analysis 
of food pathogen metabolomes.

Hybrid mass spectrometers – Orbitrap and other 
instruments

In the year 2000 a new mass analyzer, Orbitrap, was 
described (133). In the years that followed, the interfacing 
of the Orbitrap mass analyzer with an electrospray ion 
source was realized (189), and this MS instrument has 
quickly become a very important tool for LC-MS/MS 
analysis of highly complex mixtures. Further optimiza-
tion of the instrument was described in 2009 (134) and the 
development of corresponding data acquisition has been 
constantly improved since (190). Orbitrap, now as part of 
a hybrid mass spectrometer, provides resolving power of 
500 000 (at m/z=200) and accuracy in the low-sub ppm 
range (134,191). The advantage of Orbitrap over FT-ICR is 
in its speed of up to 20 Hz, which is much more suitable 
for coupling with LC when analyzing samples of high 
complexity. Hybrid Orbitrap mass spectrometers can per-
form combined fragmentations, and this property of the 

instrument is currently the most important fragmentation 
scheme for the analysis of postt ranslational modifi cations 
of proteins (134,183,184,192). In food safety, these investi-
gations have been shown to be crucial for the studying of 
allergenicity of proteins (183,184). It has to be stressed 
that the ongoing optimization of speed, performance, 
practicability, collaboration with leading scientist in this 
fi eld from both academia and industry (33,34,134,173,183, 
184), its user friendliness and excellent marketing, make 
the Orbitrap a leading instrument for mass spectrometry 
analyses in foodomics (33,133,134,135,183,186,193), as well 
as one of the most expensive ones.

As mentioned above, Orbitrap is both a very popular 
and frequently used instrument for high-resolution mass 
spectrometric experiments in foodomics. The detection of 
marker molecules is highly important for food safety, and 
there is no surprise that most references regarding the ap-
plication of this method point to works that were per-
formed by this instrument (18,33–36,55,57,138,141,173). A 
further interesting application of this method for control 
of food safety and authenticity is the determination of the 
triacylglycerol profi le of Iberian dry-cured ham (194). The 
results were further combined with chemometrics to 
prove the authenticity of this product (195). The use of the 
ESI-Orbitrap method for profi ling of epicuticular wax 
from olive fruits shortened the analysis, and a detailed 
compositional overview of a wide range of chemical spe-
cies was obtained. Otherwise, this profi le could be ob-
tained by applying a combination of multiple analytical 
techniques (196). Proteomic investigation of the interaction 
of foodborne pathogen Salmonella enterica with macro-
phages gave important information about the pathogenic-
ity of this bacterium (197). Orbitrap mass spectro meters 
are also frequently used for the determination of food 
contaminants and metabolites (55,56). This kind of infor-
mation is also very important for the determination of 
metabolites in genetically modifi ed food (138,198). How-
ever, with corresponding sample preparations and in- 
-front separation by liquid chromatography or capillary 
electrophoresis, FT-ICR MS (199), MALDI-TOF MS (200) 
and other mass spectrometry techniques (201) have been 
proven to be equally effi  cient analytical tools for these 
kinds of tests.

The use of other hybrid instruments has recently 
been reviewed by Ibañez et al. (138), and the conclusion 
can be made that there are diff erent alternatives, especial-
ly if corresponding sample preparation and separation of 
the component of interest were done by LC and capillary 
electrophoresis. These strategies are applied for both the 
identifi cation of bacterial proteins (202) and food authen-
tication (187,203,204), as well as for the identifi cation of 
peptides that refl ect changes in food products during 
processing and storage (205). While 2D electrophoresis as 
a sample preparation method is mostly coupled with 
MALDI-TOF, LC-MS/MS can be used as well. The com-
parison of isotope dilution MALDI-TOF MS and LC ESI- 
-MS/MS (with a hybrid instrument, diff erent than Orbi-
trap) used for quantifi cation of anthrax lethal toxin in 
plasma and serum by Kuklenyik et al. (206) gave similar, 
very precise quantitative results. Detection of foodborne 
pathogen bacteria and their toxins can be performed by 
isotope dilution MALDI-TOF MS, but other, more target-
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ed investigations and detections of food pathogens such 
as E. coli, Salmonella sp., Clostridium sp., Mycobacteria sp. 
and their toxins, as well as possible antibiotic resistance, 
were performed by high-performance LC (less frequently 
CE)–MS/MS and by using diff erent instruments (138,141, 
207,208). At the same time, hybrid type mass spectrome-
ters were used for investigation of proteins in milk as pu-
tative biomarkers of milk contamination (208) and antibi-
otic resistance of potential foodborne pathogens (209,210). 
Picariello et al. (211) and Andjelkovic et al. (19) reviewed 
the use of mass spectrometry-based techniques for the de-
termination of allergens in food. A comprehensive over-
view of applied techniques and instruments that can also 
be used for the determination of other quality and toxicity 
markers in food was given (like the above-mentioned iso-
tope dilution MALDI-TOF MS). Use of diff erent methods 
and MS–based techniques in allergenomics, frequently 
combined with corresponding sample preparation, was 
recently published, among others, for the determination 
of barley contamination (212), peptidomic analysis of the 
possibly immunogenic potential of polypeptides in beer 
(213), whey-based supplements (214), glycosylation of soy-
bean proteins (215), as well as new food allergens from 
hazelnut (216). Peptidomics are also a useful tool for qual-
ity control and control of curing time of processed meat 
products such as Spanish dry-cured ham. Gallego et al. 
(217) identifi ed two signature peptides that can be used 
for the determination of the curing process. In a practical-
ly parallel investigation, Bayés-García et al. (195) used a 
relatively complicated analytical approach based on the 
analysis of the lipid fraction extracted from Iberian dry- 
-cured ham by ultrahigh resolution mass spectrometry 
(UHRMS) using an Orbitrap–mass spectrometer combined 
with scanning calorimetry, X-ray diff raction and thermo- 
-optical polarized microscopy analysis, in combination 
with chemometrics. The resulting lipidomic profi le ob-
tained by UHRMS and the fi ngerprint obtained by other 
methods can be used for analytical discrimination of this 
high-value nutritional product. However, the question of 
practicability of this very complicated and time-consum-
ing method remains open. The fi nal goal should always 
be to develop a validated rapid, simple and highly relia-
ble method for the detection of safety risks and the identi-
fi cation of foodborne pathogens. The use of specifi c vali-
dated markers for undesirable changes and contamination 
of food enables fast and reliable recognition of safety risks 
(9).

Data Processing and Bioinformatics
The acquisition of large amounts of data during ge-

nomic, proteomic, peptidomic and especially metabolo-
mic analyses requires highly sophisticated soft ware for 
further data processing (9,58,171,218,219). There are pub-
lished databases and specifi c applications in genomics 
(34), peptidomics (220), proteomics (34,221), metabolo-
mics (58) and lipidomics (171,172). In the last ten years 
(so-called the ‘years of bioinformatics’) of their applica-
tion in foodomics, including automated data processing, 
interactome analyses and modeling, great progress has 
been made (173,222). Large amounts of data are generat-
ed during each non-targeted MS analysis of food samples 

for both identifi cation and quantifi cation of components 
of interest. We have recently presented a comprehensive 
overview of some omic data repositories (9) that are in a 
process of constant improvement and completion (171), 
and bioinformatic research is without doubt a crucial tool 
in the whole fi eld of foodomics (4,9,18). It is diffi  cult, 
sometimes practically impossible, to implant them in a 
laboratory for routine foodomic analyses. During the last 
twenty years, the development of high-speed computer 
technology and sophisticated hardware capable of process-
ing a large number of results has growth enabled a fast 
growth of chemometrics. The most common defi nition of 
chemometrics is that it is ‘a chemical discipline that uses 
mathematical, statistical and other methods based on for-
mal logic for the construction or selection of optimum 
measurement methods and experimental designs and 
also the extraction of the most important information in 
the analysis of experimental data’ (92,222). In a chemo-
metric analysis, projecting tens of thousands of initial 
multidimensional data onto only a few axes is possible. 
When placed in such new coordinates, interpretation of 
presented data is relatively easy. Consequently, it is not 
necessary to know the mathematical fundaments of a 
method in detail for the eff ective practical application of 
chemometrics – it is suffi  cient to understand the main 
ideas of this approach (92). Bayés-García et al. (195) used 
chemometrics for authentication of Iberian dry-cured ham. 
Diff erent foodomic methods based on ultrahigh resolu-
tion mass spectrometry, diff erential scanning calorimetry, 
X-ray diff raction and microscopy analysis were combined 
with chemometrics and were used for analytical discrimi-
nation of this highly valuable product. Köbler et al. (223) 
presented a combination of NMR spectroscopy, sensory 
analysis and chemometrics for the identifi cation of pine 
nuts that cause taste disturbance.

Conclusions
The power of foodomics, as omics in general, is in the 

integration of diff erent techniques and approaches which 
all show an increased trend of development. However, 
the educational system should demonstrate more fl exibil-
ity to follow and incorporate fast technological develop-
ments that are necessary to reach the full power of foodo-
mics. Use and maintenance of highly sophisticated mass 
spectrometers, data analysis and data interpretation re-
quire a special att ention to be paid to the development of 
skilled analysts. A new curriculum for analysts in the food 
sector should integrate basic biochemistry, molecular bio-
logy, biophysics, food technology and sample preparation 
knowledge, together with the knowledge of advanced 
analytical technologies, some of which are mentioned in 
this review. All this should be integrated under a strong 
bioinformatic environment which would enable integra-
tive data analysis and meaningful interpretation of data 
obtained from the analyzed material.

According to our experience, targeted and careful 
sample preparation in combination with a sophisticated 
up-to-date mass spectrometer is an essential part of food-
omic analysis that guarantees reproducibility of quantita-
tive analyses and enables the detection of low-abundance 
components. Additional methods presented here, such as 
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NMR, give further information and can be used as com-
plementary tools or for the validation of obtained results, 
especially in the case of glycomic investigations.

Genomic and transcriptomic techniques, as well as 
affi    nity-based methods, still have a broad use in food 
analysis. A serious drawback of all affi  nity-based meth-
ods is the cross reactivity between similar molecules that 
can lead to a false-positive identifi cation. Additionally, 
complex food matrices may contain substances (e.g. poly-
phenols, tannins), which interact or covalently modify 
target molecules. These substances can signifi cantly inter-
fere by inducing or reducing specifi c bindings. These phe-
nomena can lead to over- or underestimation. However, 
these techniques can be used for the prescreening to re-
duce the large number of samples to a low number of 
positive ones. The subsequent fi nal validation will be 
achieved by use of a more stringent technique such as 
high-resolution mass spectrometry.

During the last ten years, great progress has been 
made in the application of bioinformatics in foodomics. 
These progressive developments enabled the processing 
of large amounts of data that are generated during the 
analysis of food samples for both identifi cation and quan-
tifi cation of components of interest, and for the corre-
sponding modeling and generation of interactome.
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