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ABSTRACT

Increased attention has been given to promoting e-bike 
usage in recent years. However, the research gap still exists 
in understanding the effects of spatial interdependence on 
e-bike choice. This study investigated how spatial interde-
pendence affected the e-bike choice. The Moran’s I statistic 
test showed that spatial interdependence exists in e-bike 
choice at aggregated level. Bayesian spatial autoregressive 
logistic analyses were then used to investigate the spatial 
interdependence at individual level. Separate models were 
developed for commuting and non-commuting trips. The 
factors affecting e-bike choice are different between com-
muting and non-commuting trips. Spatial interdependence 
exists at both origin and destination sides of commuting and 
non-commuting trips. Travellers are more likely to choose 
e-bikes if their neighbours at the trip origin and destination 
also travel by e-bikes. And the magnitude of this spatial in-
terdependence is different across various traffic analysis 
zones. The results suggest that, without considering spatial 
interdependence, the traditional methods may have biased 
estimation results and make systematic forecasting errors.
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1. INTRODUCTION
World is facing a great challenge in environmental 

problems resulting from the increasing vehicle use 
and rapid urbanization. Vehicle emissions are consid-
ered the main source of urban air pollution. To reduce 
the climate impacts of urban vehicle use, increased 
attention has been given to promoting the usage of en-
vironmentally friendly and sustainable traffic modes, 
such as electric bikes (e-bikes) [1]. With the power 
assistance of electric motors and integrated batteries, 

e-bikes address the limits of trip distance and terrain 
associated with the traditional man-powered bicycles. 
It is expected to increase bicycle use in urban areas.

To develop effective policies and strategies for pro-
moting e-bike usage, numerous studies have been 
conducted to investigate the characteristics of e-bike 
trips and mode choice behaviour [2-9]. E-bike choice 
models have been developed to link the likelihood of 
e-bike trips with various contributory factors, including 
socio-demographic characteristics, physically built en-
vironment, attitudinal factors, and trip features. Cherry 
and Cervero developed an e-bike choice model based 
on survey data collected in Kunming and Shanghai cit-
ies in China. The ownership of bikes, travel time, age 
and gender are the main contributing factors to the 
choice of e-bikes [2]. Sylvia et al. investigated the re-
lationship between the e-bike choice and trip charac-
teristics based on surveyed travel diary data for two 
weeks. The attitude towards environment, the trip 
characteristics, and the socio-demographic character-
istics affects the choice of e-bike in a trip.

A number of studies have also been conducted to 
investigate the effects of e-bike use on the mode share 
of other travel modes [10-13]. Fyhri and Fearnley ex-
plored the potential effects of e-bike use in reducing 
motorized trips. Based on a case-control study, they 
found that e-bike use decreases the percentage of 
motorized trips by about 20%, and that this effect in-
creases with an increase in the usage time of e-bikes 
[13]. In a study conducted by Montgomery, an origin–
destination survey of e-bikes was conducted to explore 
the competition between e-bikes and bus rapid transit 
in China. The results showed that e-bike is a highly at-
tractive alternative to bus rapid transit (BRT), and trav-
ellers may shift from BRT to e-bikes.
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of China. In 2007 the population was 908,500 and the 
total area covered 59.96 km2. The city area was divid-
ed into 25 traffic analysis zones (TAZs). The household 
survey was conducted by the local government on one 
typical weekday to make transportation system plan-
ning. Each member in the randomly selected house-
hold was asked to complete a questionnaire. A total of 
valid 7,320 questionnaires were used. 

The survey contained two parts: (1) individual and 
household characteristics; and (2) travel information 
of all trips in the whole day. The travel information in-
cluded the geocodes and time for all trip origins and 
destinations, allowing the estimations of detailed 
travel time, origins and destinations of all trips. The 
purpose and transportation mode were also recorded 
for each trip. The travel purpose included work, shop-
ping, education, home, entertainment, sports, medical 
care, and official business. Finally, the ODs between 
different origins and destinations, as well as the popu-
lation density, trip production, and trip attraction data 
for each TAZ were obtained from the transportation 
system planning documents of the Shaoxing City.

The individual and household characteristics in-
formation included gender, occupation, number of 
household members, number of automobiles in the 
household, age, and annual household income. In the 
survey, age was divided into eight categories, including 
0 to 14, 15 to 19, 20 to 24, 25 to 29, 30 to 39, 40 to 
49, 50 to 59, and older than 60. The annual household 
income was divided into five categories, lower than 
RMB 10,000, 10,000 to 20,000, 20,000 to 50,000, 
50,000 to 100,000, and higher than 100,000. The 
data about the intention to buy an automobile was 
also collected in the survey. The mode choice mod-
el for commuting trips was developed using the trips 
from home to work, and the model for non-commuting 
trips was developed using the first non-commuting trip 
in the surveyed day.

3. METHODOLOGY

The unobserved latent factors such as location 
amenities, road characteristics and traffic control 
conditions would lead to spatial interdependence of 
e-bike choice. Such spatial interdependence indicates 
that nearby travellers may have similar preference in 
choosing e-bikes than more distant travellers. To eval-
uate whether spatial interdependence plays a role in 
e-bike choice, the following statistical methods were 
used. The Moran’s I statistic was used to test whether 
e-bike choice is spatially correlated at the aggregate 
level. The Bayesian spatial autoregressive logistic re-
gression was used to detect whether e-bike choice is 
spatially correlated at disaggregate level, and to eval-
uate the impact of spatial interdependence on the 
e-bike choice for commuting and non-commuting trips.

While numerous studies have been conducted to 
understand the factors that influence the e-bike choice, 
most studies did not consider the effects of spatial 
interdependence. Such spatial interdependence in-
dicates that the probabilities of choosing e-bikes of 
nearby travellers are correlated. In other words, near-
by travellers may have similar preferences in choos-
ing e-bikes than more distant travellers. Such spatial 
interdependence is caused by the unobserved latent 
factors such as public transport service, road charac-
teristics, traffic control conditions, etc. The spatial au-
toregressive structure in statistical regression models 
can be used to capture the spatial interdependence in 
e-bike choice. The existing e-bike mode choice models 
were generally developed by the discrete choice mod-
el without incorporating spatial autoregressive struc-
ture. The conventional modelling technique may lead 
to bias and invalid parameter estimates, if, in fact, the 
spatial interdependence affects the mode choice [14-
15]. The policies and strategies based on the biased 
model may not effectively promote the e-bike use. This 
study fills the gaps in understanding the spatial inter-
dependence in e-bike choice.

Recently, increased interest has been shown to 
investigate the spatial interdependence and its im-
pacts on travel behaviour. This spatial interdepen-
dence has been increasingly found in various travel 
behaviour studies, such as public transit use [14], 
automobile ownership [15], and travel time loss [16]. 
Although considering spatial interdependence in trav-
el behaviour studies is not completely new, relatively 
few studies investigated the spatial interdependence 
in e-bike choice. Moreover, previous studies generally 
assumed that the effects of spatial interdependence 
were the same for different persons. The spatially au-
toregressive mode choice model with varying spatial 
interdependence among different persons has not 
been implemented.

The aim of this study is to detect the spatial inter-
dependence in e-bike choice and to evaluate its im-
pact on e-bike choice. This study has the potential to 
contribute to the field of e-bike mode choice modelling 
by: (1) investigating whether the spatial dependence 
exists in both commuting and non-commuting e-bike 
trips, and how spatial dependence affects the travel-
ler’s choice of e-bikes; (2) providing a relatively new 
spatial autoregressive model to allow spatial interde-
pendence to vary among different travellers. This new 
model is expected to better capture spatial interde-
pendence and improve model estimation accuracy.

2. DATA SOURCES
Data were collected from an extensive household 

travel survey conducted in Shaoxing City in 2007. Sha-
oxing is a typical medium-sized city on the east coast 
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where zm is the latent variable for the logistic regres-
sion; εm denotes the error term and is assumed to be 
logistically distributed with the probability density func-
tion given by f(ε)=e-ε/(1+e-ε)2.

θm captures the correlations of e-bike choices 
among different travellers. It is assumed that travel-
lers are more likely to choose e-bikes if their neigh-
bours also travel by e-bikes. To define the neighbour-
hood for each traveller, an M×M neighbourhood matrix 
C=(cij) is defined as: cij=1 if individual i and j is located 
in the same TAZ and cij=0, otherwise θm takes the fol-
lowing form:

, , ...,w y m M1m ij m
m

M

1
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=
/  (4)

where wij is an element of spatial weight matrix W with 
M×M dimension; In addition, it is assumed that row 
sums Σjwij are normalized to one as follows:
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Equation 4 can be summarized in vector form as: 
θ=ρWY. The product term WY represents the spatially 
weighted average mode share of e-bike over the trav-
ellers neighbouring each individual m; parameter ρ 
is taken to describe the effect of spatial interdepen-
dence on e-bike choice. Although the model specified 
in Equation 3 does not immediately present the spatial-
ly autoregressive structure, it can be observed when 
converting ym into a function of the latent variable of 
zm as ym=f(zm). Equation 3 is then given as follows:
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Following suggestions in previous studies [14-15], 
the spatial interdependence in e-bike choice is deter-
mined as an exogenous process. This can help to im-
prove model estimation efficiency. In previous studies, 
spatial interdependence effect is assumed to be the 
same across different samples. However, spatial in-
terdependence should differ across different samples 
[14-15]. To overcome these associations, parameter ρ 
in Equation 6 was allowed to be different across various 
TAZs. Random parameter ρ is assumed to be normally 
distributed as ρ~(mρ, Σρ).

Based on the above specifications, full data likeli-
hood of Bayesian spatially autoregressive logistic re-
gression model is given as:

3.1 Spatial correlations tests

The Moran’s I is one of the most commonly used 
statistics to measure the spatial dependence. It was 
used to identify whether the proportions of e-bike trips 
in various TAZs are spatially correlated. The Moran’s I 
statistic for an unstandardized spatial weight matrix C 
takes the following forms [17]:
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where N is the number of spatial units (i.e. TAZ); Ei and 
Ej is the proportion of e-bike trips in the i-th and j-th 
TAZ; E  represents the average proportion of e-bike 
trips across different TAZs; cij denotes an element of 
an unstandardized spatial weight matrix C, which mea-
sures the connection between areas i and j; cij equals 
1 if TAZ i and j are neighbours, and 0 otherwise. The 
range of Moran’s I statistic is between -1 and +1. High-
er positive value indicates greater degrees of spatial 
interdependence while negative value indicates spa-
tial dispersion. A value near zero indicates a spatially 
random pattern.

The statistical significance of the Moran’s I index is 
usually tested by the Z-scores. The null hypothesis is 
that the proportion of e-bike trips is spatially indepen-
dent in the study area. The z-score of Moran’s I can be 
calculated by:

( )
( )Z SD I

I E I
I = -  (2)

where E(I) and SD(I) are expectation and standard de-
viation of Moran’s I. A positive ZI score denotes that 
the neighbouring TAZs tend to have similar proportions 
of e-bike trips, whereas a negative Z score indicates 
that the proportions of e-bike trips tend to be more dis-
similar among neighbouring TAZs.

3.2 Bayesian spatially autoregressive logistic 
regression

The Bayesian spatial autoregressive logistic regres-
sions were used to detect the spatial interdependence 
in e-bike choice at individual level. In this model, a spa-
tially autoregressive term was included to account for 
the spatial correlations of e-bike choices at disaggre-
gate level. Assuming that Y={ym} is a vector of binary 
observed e-bike choice indicators (m=1, 2, …, M). If 
e-bike was chosen for a trip, ym=1; otherwise, ym=0. 
With regard to each ym, xm=[x1,m, x2,m, …, xK,m]’ is corre-
spondingly a 1×K vector of explanatory variables with 
coefficient vector β=[β1, β2, …, βK]. The Bayesian spa-
tial autoregressive logistic regression is written as:
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pseudo-elasticity (see Equation 11) [20]. It can be ex-
plained as the percent change in the probability of 
choosing e-bike when the indicator variable is changed 
from 0 to 1.
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3.3 Bayes factors analysis

Bayesian comparison of two competing models M1 
and M2 can be performed by the ratio of the models’ 
posterior probabilities which is defined as Bayes fac-
tors [19]. Assuming that we have equal preferences of 
these two models, the prior probability of model m1 is 
equal to model m2. In this case, the ratio of the mod-
els’ posterior probabilities can be expressed as:
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where PO21 is termed the posterior model odds of 
model M2 versus model M1; f(M|Y) is the posterior 
probability for model M; f(Y|M) is the marginal likeli-
hood of the data under model M; B21 is the Bayes fac-
tors of model M2 versus model M1. The previous study 
in Bayesian statistics suggested that significant differ-
ence exists between two models if the log of Bayes fac-
tor for these two models is larger than 3 [19].

4. DATA ANALYSIS AND RESULTS

4.1 Results of spatial correlations tests

The Moran’s I statistic was calculated to investigate 
whether the e-bike choice is spatially correlated at an 
aggregated TAZ level. Table 1 gives the Moran’s I sta-
tistics and test results. The e-bike choice percentag-
es at both origin and destination for commuting and 
non-commuting trips are all positively spatially cor-
related with a p-value lower than 5%. The test results 
indicate the presence of considerable spatial inter-
dependencies in e-bike choice at both trip origin and 
destination. Accordingly, spatial interdependencies 
should be incorporated in the e-bike choice models for 
both commuting and non-commuting trips.
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where Θ represents the vector of all parameters, in-
cluding constant β0, variables coefficient β, random 
parameter vector ρ, variance Σρ for ρ and mean mρ for 
ρ. Accordingly, Θ= [β0, β, ρ, mρ, Σρ]. A Markov Chain 
Monte Carlo (MCMC) simulation-based Bayesian ap-
proach is used to estimate the posterior distribution of 
model parameters Θ. The non-informative prior distri-
butions for all parameters Θ is specified as:
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where all the priors of fixed parameters vector, and 
the mean of random parameters ρ follow normal dis-
tributions. The variance of random parameter ρ was 
assumed to follow an inverse gamma distribution [18-
19]. The non-informative prior distribution was used 
for each parameter. Accordingly, the hyper-parameters 
with over lines in Equation 8 were set as:
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To assess the effects of variables on e-bike choice 
preference, elasticity is computed as:
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where βk represents the estimated parameter associ-
ated with the k-th variable xk. Elasticity for a continu-
ous independent variable represents the percentage 
change in the dependent variable resulting from a 1% 
change in an independent variable [20]. Each sample 
in the dataset has an elasticity that depends on the 
value of xi and the estimated probability of choosing 
e-bike; it is usually to report the average elasticity in 
the sample. Note that Equation 10 cannot be used to 
calculate the elasticity of an indicator variable. The 
elasticity of an indicator variable xi is computed as a 

Table 1 – Test of Moran’s I for spatial correlations

Characteristics Moran’s I Z Score p-value

The percentage of e-bike at commuting trip origin 0.197 2.382 0.017

The percentage of e-bike at commuting trip destination 0.402 4.135 <0.001

The percentage of e-bike at non-commuting trip origin 0.851 9.321 <0.001

The percentage of e-bike at non-commuting trip destination 0.224 2.478 0.013
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Spatially Autoregressive Model for Commuting Trips
The results of the e-bike choice models for com-

muting trips are given in Table 3. The Bayes factor was 
calculated using Equation 12 to compare the fitness of 
the model without spatial interdependence and the 
model with fixed spatial interdependence for commut-
ing trips. The logarithms of the marginal likelihoods of 
these two models are -6,651.336 and -6,625.851, re-
spectively. The logarithm of the Bayes factor of these 
two models is 25.485, indicating that inclusion of the 
spatial interdependence significantly increases the fit-
ness of the e-bike choice model for commuting trips. 
Similarly, the Bayes factor was also used to compare 
the fitness of the model with fixed spatial interdepen-
dence and the model with random spatial interdepen-
dence. The marginal likelihood of the random spatial 
interdependence model is -6,614.740. Accordingly, 
their Bayes factor is 10.111, indicating that the mod-
el with random spatial interdependence has better 
fitness than the model with fixed spatial interdepen-
dence.

As indicated by the negative regression parameter 
(see Table 3), females are less likely to choose e-bikes 
for commuting travels. According to the estimated 
pseudo-elasticity presented in Table 5, the likelihood 
of choosing e-bikes by females is about 7.315% lower 
than the likelihood by male. The parameter of public 
officials is positive, indicating that the public officials 

4.2 Estimation results of Bayesian spatial 
autoregressive logistic regressions

To investigate whether spatial interdependence 
exists in e-bike choice at the disaggregated level, the 
Bayesian spatial autoregressive logistic regressions 
were developed for commuting and non-commut-
ing trips separately. The probability of e-bike choice 
was linked with travel time, gender, occupation, age, 
household characteristics, and traffic volume. A spa-
tial autoregressive term was included in each model 
to capture the potential spatial interdependence in 
e-bike choice (see Equation 4). The descriptive statis-
tics of the initially considered explanatory variables for 
model developments are given in Table 2. 

Three different models were developed for both 
commuting and non-commuting trips. More specifi-
cally, the first model was developed by the traditional 
logistic regression approach, in which spatial autore-
gressive term was not included. This model represents 
the conventional technique of e-bike choice modelling. 
The spatial autoregressive term was included in the 
following two models. In the e-bike choice model with 
fixed spatial interdependence, the parameter of the 
spatial autoregressive term was fixed across different 
observations in the dataset. While in the model with 
random spatial interdependence, the parameter of the 
spatial autoregressive term was allowed to be different 
across various TAZs.

Table 2 – Summary of candidate variables

Variables Min Max Mean SD a

Trip duration (minutes) 2 90 19.21 12.674

Gender
Male - - 0.52 - b

Female - - 0.48 -

Occupation

Student - - 0.16 -
Worker - - 0.11 -
Public officials - - 0.29 -
Other occupations - - 0.44 -

Traveller's age

Traveller’s age lower than 20 - - 0.14 -
Traveller’s age between 20 and 40 - - 0.34 -
Traveller’s age between 40 and 50 - - 0.37 -
Traveller’s age above 50 - - 0.15 -

Annual household income
Higher than RMB 20,000 - - 0.78 -
Lower than RMB 20,000 - - 0.22 -

Intention of buying  
an automobile

Buying automobile in the next five years - - 0.087 -
Others - - 0.913 -

Population density of origin
Higher than 0.015 persons/m2 - - 0.522 -
Lower than 0.015 persons/m2 - - 0.478 -

Residents at destination
Higher than 0.015 persons/m2 - - 0.523 -
Lower than 0.015 persons/m2 - - 0.477 -

Origin–destination volumes (×1,000/day) 0.123 33.150 5.075 6.896

Note: a standard deviation; b not applicable
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average elasticity of -0.095 suggests that one-percent 
increase in travel time is associated with -0.095% de-
crease in the probability of choosing e-bikes. The pa-
rameter of origin–destination traffic volume is nega-
tive, indicating that the probability of choosing e-bike 
decreases as traffic volume increases. Possible expla-
nation is that traffic congestion may reduce travellers’ 
preference to travel by e-bikes. Increasing bicycle vol-
ume decreases cyclists’ perceptions of comfort. More-
over, heavy vehicle traffic volume is also negatively re-
lated to cyclists’ comfort for on-street bicycle facilities 
because of the increased risks of collision [22-23]. 
This result is consistent with the finding from previous 
studies [22-23].

Interestingly, the parameter of intention of buying 
an automobile is positive, indicating that travellers 
with intention to buy an automobile are currently more 
likely to travel by e-bikes. This may suggest that e-bike 

are more likely to travel by e-bikes, compared with trav-
ellers of other occupations. The average pseudo-elas-
ticity of 14.576 suggests that the likelihood of choos-
ing e-bikes by public officials is about 14.576% higher 
than the likelihood by travellers of other occupations. 
The parameter estimates of the traveller’s age suggest 
that 20- to 50-year-old travellers are more likely to use 
e-bikes for commuting trips than travellers older than 
50. The travellers of age between 20 and 40 have the 
largest probability of choosing e-bikes. 

With regard to trip characteristics, travel time and 
origin–destination volumes significantly affect the 
probability of choosing e-bikes. More specifically, the 
estimated parameter of trip duration is negative, indi-
cating that travellers are less likely to choose e-bikes 
for a commuting trip with longer travel time. Travellers 
would like to use motorized trip mode, such as the 
public transit and passenger car, for longer trips. The 

Table 3 – E-bike choice models with and without spatial interdependencies for commuting trips

Variables
Without spatial  

interdependence
Without fixed spatial  

interdependence
With random spatial  

interdependence
Parameter 95% CI a Parameter 95% CI Parameter 95% CI

Constant -3.707 (-4.062, -3.314) -5.950 (-6.504, -5.502) -5.777 (-6.173, -5.308)
Trip duration (minutes) -0.006 (-0.010,-0.002) -0.007 (-0.010, -0.003) -0.007 (-0.010,-0.003)
Gender Female -0.132 (-0.214,-0.048) -0.143 (-0.227, -0.061) -0.142 (-0.228,-0.059)

Occupation
Student - - - b - - -
Worker - - - - - -
Public official 0.300 (0.214,0.386) 0.306 (0.221,0.396) 0.313 (0.225,0.405)

Traveller's 
age

Lower than 
20 0.764 (0.421,1.084) 0.689 (0.392,1.002 0.733 (0.407,1.047)

Between  
20 and 40 2.492 (2.206, 2.759) 2.403 (2.174,2.662) 2.483 (2.210, 2.740)

Between  
40 and 50 1.950 (1.669, 2.215) 1.863 (1.637,2.123) 1.928 (1.656,2.183)

Annual 
household 
income

Higher than 
RMB 20,000 0.206 (0.150,0.263) 0.190 (0.138,0.239) 0.201 (0.137,0.256)

Intention of 
buying an 
automobile

Buying in the 
next 5 years 0.108 (0.076,0.139) 0.108 (0.076,0.140) 0.113 (0.076,0.145)

Origin–destination  
volumes -0.033 (-0.040,-0.0267) -0.039 (-0.046,-0.032) -0.039 (-0.046,-0.032)

Spatial interdependence 
at origin 3.794 (2.836, 4.831) 3.486 (3.148, 3.752)

S.D. of spatial  
interdependence at origin 0.694 (0.429, 1.178)

Spatial interdependence 
at destination 4.080 (3.012,5.295) 3.350 (2.740,3.848)

S.D. of spatial interdependence 
at destination 0.886 (0.622,1.171)

Logarithms of the  
marginal likelihood -6651.336 -6625.851 -6614.740

Note:  a 95% confidence interval of parameter estimates, b this variable was not significant in the model
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average mode share of e-bikes at trip origin. And the 
magnitude of such spatial interdependence is differ-
ent across various trip origins. 

The parameter of the spatial interdependence at 
trip destination is also normally distributed, with a 
mean of 3.350 and a variance of 0.886. It indicates 
that the positive spatial interdependence also exists 
on the destination side of the trips. Travellers are also 
more likely to choose e-bikes if their neighbours at the 
same trip destination also travel by e-bikes. The possi-
ble explanation for the spatial interdependence at trip 
destination is that travellers choose trip mode based 
on both origin characteristics and destination charac-
teristics [14]. Like the spatial interdependence at trip 
origin, the magnitude of such spatial interdependence 
is also different across various trip destinations.
Spatially Autoregressive Model for Non-commuting  
Trips

Table 4 gives the estimation results of the Bayes-
ian spatial autoregressive logistic regression models 
for non-commuting trips. The contributing factors to 

is just intermediate mode for these travellers before 
buying an automobile, and they are likely to shift from 
e-bikes to passenger cars [4]. Therefore, appropriate 
policy initiatives should be implemented to prevent the 
transition from e-bike to passenger car. As expected, 
the annual household income is positively related to 
the probability of taking trips by e-bikes. This explains 
the positive parameter of the annual household in-
come.

Both spatial interdependence at trip origin and 
destination produce statistically significant random 
parameters (see Table 3). The spatial interdependence 
at trip origin results in a random parameter that is nor-
mally distributed, with a mean of 3.486 and a variance 
of 0.694. Given these distributional parameters, the 
spatial interdependence at the trip origin is always 
positive with varying magnitude across different TAZs. 
This indicates that travellers are more likely to choose 
e-bikes if their neighbours at the same trip origin also 
travel by e-bikes. The probability of choosing e-bikes 
increases with an increase in the spatially weighted 

Table 4 – E-bike choice models with and without spatial interdependencies for non-commuting trips

Variables
Without spatial  

interdependence
Without fixed spatial  

interdependence
With random spatial  

interdependence
Parameter 95% CI a Parameter 95% CI Parameter 95% CI

Constant -3.162 (-3.536, -2.778) -4.656 (-5.173,-4.142) -4.853 (-5.464,-4.308)
Shopping -0.449 (-0.653,-0.261) -0.456 (-0.653,-0.261) -0.494 (-0.740,-0.273)
Trip duration (minutes) -0.019 (-0.026,-0.012) -0.019 (-0.027,-0.012) -0.022 (-0.031,-0.013)

Occupation
Student -0.485 (-0.897,-0.052) -0.473 (-0.895,-0.063) -0.487 (-0.980,-0.014)
Worker - - - b - - -
Public official - - - - - -

Traveller's 
age

Lower than 
20 1.176 (0.641,1.687) 1.031 (0.519,1.544) 1.080 (0.511,1.688)

Between  
20 and 40 2.347 (2.047, 2.346) 2.293 (2.018,2.583) 2.528 (2.142, 3.001)

Between  
40 and 50 1.499 (1.208,1.795) 1.411 (1.146,1.702) 1.543 (1.211, 1.912)

Annual 
household 
income

Higher than 
RMB 20,000 0.241 (0.151,0.331) 0.237 (0.141,0.333) 0.264 (0.164,0.376)

Origin–destination  
volumes -0.026 (-0.039,0.014) -0.031 (-0.044,-0.019) -0.036 (-0.053,-0.022)

Spatial interdependence 
at origin 5.746 (4.208, 7.256) 6.060 (4.632, 7.373)

S.D. of spatial  
interdependence at origin 0.224 (0.082, 0.464)

Spatial interdependence 
at destination 4.590 (2.664, 6.547) 3.620 (2.611, 4.988)

S.D. of spatial  
interdependence at destination 0.296 (0.067, 0.636)

Logarithms of the  
marginal likelihood -1888.912 -1865.869 -1862.307

Note:  a 95% confidence interval of parameter estimates, b this variable was not significant in the model
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likelihood of choosing e-bikes for shopping is 25.484% 
lower than the likelihood for other travel purposes. 

Finally, the spatial interdependence at trip origin 
and destination also significantly affect the probability 
of choosing e-bikes for non-commuting trips, and re-
sult in statistically significant random parameters. The 
parameter for the spatial interdependence at trip ori-
gin follows a normal distribution with a mean of 6.060 
and a variance of 0.224. The spatial interdependence 
at trip destination results in a random parameter that 
is normally distributed, with a mean of 3.620 and a 
variance of 0.296. Therefore, the spatial interdepen-
dence also exists in the e-bike choice for non-commut-
ing trips. The average elasticities of the spatial interde-
pendence at trip origin and destination are 0.754 and 
0.456, indicating that one-percent increase in spatial 
interdependence is associated with the 0.754%, and 
0.456% increases in the likelihood of choosing e-bikes 
for non-commuting trips, respectively.
Effects of spatial interdependence on E-bike choice  
prediction

To evaluate the effects of spatial interdependence 
on predicted e-bike choice probability, the estimation 
results of the model without spatial interdependence 
and the model with random spatial interdependence 
were compared. The parameters of explanatory vari-
ables are quite similar between these two models. 
However, the constant of the model without spatial 
interdependence is much greater than the constant 
of the model with spatial interdependence. This result 
indicates that the model without spatial interdepen-
dence may provide biased forecasting of e-bike choice 
probability. 

e-bike choice are different between commuting and 
non-commuting trips. Some variables are significant in 
the model for commuting trips but are not significant in 
the model for non-commuting trips, and their impacts 
are also quite different. The Bayes factor analyses also 
indicate that including spatial interdependence signifi-
cantly increases the model fitness for non-commuting 
trips, and that the model with random spatial interde-
pendence has better fitness than the model with fixed 
spatial interdependence.

As shown in Table 4, the parameter of student is 
negative, with an average pseudo- elasticity of -24.956 
(see Table 5), indicating that the likelihood of choos-
ing e-bikes by students for non-commuting trips is 
24.956% lower than the likelihood of travellers of oth-
er occupations. Regarding traveller’s age, the model 
estimation results suggest that travellers older than 
50 are less likely to travel by e-bikes for non-commut-
ing trips, and travellers of the age between 20 and 
40 have the largest probability of choosing e-bikes for 
non-commuting trips.

As expected, an increase in annual household in-
come was found to increase the probability of choos-
ing e-bikes for non-commuting trips. With regard to trip 
characteristics, shopping, travel time and origin–des-
tination volumes are the main contributing factors to 
the choice of e-bikes for non-commuting trips. The re-
sults are similar to those in the model for commuting 
trips. Specifically, the increasing travel time and traffic 
volume reduce the probability of choosing e-bikes. The 
negative parameter of shopping indicates that trav-
ellers are less likely to travel by e-bikes for shopping. 
The pseudo-elasticity of -25.484 suggests that the  

Table 5 – Elasticity analyses for different variables

Variables
Commuting trip Non-commuting trip

Mean S.D.a Mean S.D. 

Trip duration (minutes) -0.095 0.071 -0.363 0.288
Shopping -b - -25.484 1.930
Gender Female -7.315 0.232 - -

Occupation
Student - - -24.956 1.806
Worker - - - -
Public official 14.576 1.295 - -

Traveller's age
Lower than 20 33.695 4.330 42.384 12.411
Between 20 and 40 53.823 37.711 70.374 30.597
Between 40 and 50 49.491 30.615 51.161 21.861

Annual household income
Higher than RMB 20,000 11.294 0.721 11.721 0.848
Lower than RMB 20,000 c

Intention of buying an automobile Buying in the next 5 years 35.893 14.489 - -
Origin–destination volumes -0.143 0.223 -0.174 0.223
Mean of spatial interdependence at origin 0.735 0.171 0.754 0.241
Mean of spatial interdependence at destination 0.708 0.163 0.456 0.124

Note:  a Standard deviation of elasticity; b This variable was not significant in the model, c Reference level
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in travel demand forecasting in traffic planning. How-
ever, the above analyses clearly illustrate that without 
considering spatial interdependence, the traditional 
e-bike choice model will produce biased mode share 
for travel demand forecasting.

4.3 Predictive performance

The receiver operating characteristic (ROC) curves 
were further used to test the predictive performance 
of the developed spatial autoregressive models for 
commuting and non-commuting trips [21]. The ROC 
curves illustrate the relationship between sensitivity 
and 1 - specificity. The sensitivity is usually called the 
true positive rate, which measures the proportion of 
the cases of choosing e-bikes that are correctly identi-
fied. And 1- specificity is usually called the false alarm 
rate, which represents the proportion of the cases of 
not choosing e-bikes that are mistakenly identified as 
the cases of choosing e-bikes.

The ROC curves of the models with random spatial 
interdependence for commuting and non-commuting 
trips are given in Figure 2. The areas under the ROC 
curve (AUCs) for these two models are 0.771 and 
0.794, respectively, indicating that the e-bike choice 

Figure 1a and 1b were used to illustrate more clear-
ly this point. Figure 1a compares the predicted e-bike 
choice probabilities with different mode shares of 
e-bikes at trip origin. Note that the sample means of 
the explanatory variables were used to calculate the 
probability in Figure 1a and 1b. As shown in Figure 1a, 
the model without spatial interdependence provides 
an overestimated e-bike choice probability when the 
mode share of e-bikes at commuting trip origin is low; 
while it provides an underestimated e-bike choice prob-
ability when the mode share of e-bikes at commuting 
trip origin is high. This systematic prediction error also 
exists in Figures 1b, 1c and 1d. The unobserved factors 
such as public transport service, road characteristics 
and traffic conditions lead to spatial interdependence 
that the e-bike choice probabilities of nearby travellers 
are correlated. The conventional e-bike choice model 
generally did not account for such spatial interdepen-
dence. Accordingly, the model without spatial interde-
pendence will have biased parameter estimates and 
systematic forecasting errors.

Attention should be paid to such systematic predic-
tion errors. The traditional e-bike mode choice model 
generally did not consider the spatial interdependence. 
It is usually used to predict the mode share of e-bikes 
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Figure 1 – Comparisons of E-bike choice probability between models with and without spatial interdependence
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decision-making are different between commuting 
and non-commuting trips.

The estimation results of the e-bike choice models 
for both commuting and non-commuting trips indicat-
ed that the spatial interdependence exists not only 
at the origin side of e-bike trips, but also at the des-
tination side of e-bike trips. Travellers are more likely 
to choose e-bikes if their neighbours at the same trip 
origin and destination also travel by e-bikes. And the 
magnitude of this spatial interdependence in e-bike 
choice decision-making is different across various 
TAZs. The Bayes factor analyses showed that the inclu-
sion of spatial interdependence significantly increases 
the fitness of the e-bike choice models for both com-
muting and non-commuting trips. 

One of the important findings is that without con-
sidering spatial interdependence, the traditional e-bike 
choice model may have biased estimation results and 
make systematic forecasting errors. More specifically, 
the traditional model without considering the spatial 
interdependence provides an overestimated e-bike 
choice probability when the mode share of e-bikes at 
the trip origin is low; while providing an underestimat-
ed e-bike choice probability when the mode share of 
e-bikes at the trip origin is high. 

The ROC curves suggest that the predictive per-
formance of e-bike choice models for commuting 
and non-commuting trips are satisfactory. The e-bike 
choice model with random spatial interdependence 
provides better prediction accuracy than the model 
with fixed spatial interdependence. The results can 
help transportation agencies to better understand 
how spatial interdependence affects the e-bike choice 
decision-making, and to develop policy initiatives 
and engineering measures to promote e-bike usage. 
Moreover, the developed models have the potential to  

models with random spatial interdependence can pro-
vide good predictive performance for both commuting 
and non-commuting trips. For comparison, we have 
also developed the ROC curves of the e-bike choice 
models with fixed spatial interdependence for com-
muting and non-commuting trips. As shown in Figure 2, 
the ROC curves for the models with random spatial in-
terdependence are always to the above of the models 
with fixed spatial interdependence, indicating that al-
lowing the spatial interdependence to be different for 
various TAZs can further improve the predictive perfor-
mance of the spatial autoregressive logistic regression 
models.

5. CONCLUSION
To promote the e-bike usage, numerous studies 

have been conducted to develop the e-bike choice 
model. However, most studies did not consider the 
effects of spatial interdependence on the choice of 
e-bikes. Without considering the spatial interdepen-
dence, the conventional e-bike choice model may pro-
duce biased parameter estimates and forecast errors. 
The aim of this study is to detect whether the spatial 
interdependence exists in the e-bike choice, and to 
investigate how spatial interdependence affects the 
mode choice of e-bikes. The Moran’s I statistics was 
first used to investigate whether the e-bike choice is 
spatially correlated at an aggregated TAZ level. The 
results showed that considerable spatial interdepen-
dencies exist in e-bike choice at both trip origin and 
destination. The Bayesian spatial autoregressive lo-
gistic regressions were developed for commuting and 
non-commuting trips separately to explore the effects 
of the spatial interdependence on e-bike choice at in-
dividual level. The contributing factors to e-bike choice 
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徐铖铖，王晨，王炜，包杰，杨梦琳

电动自行车选择行为的空间相关性研究

摘要：论文研究空间相关性对电动自行车选择行为
的影响。莫兰统计量检验表明电动自行车选择行为
在交通小区宏观层面上呈现显著的空间相关性，贝
叶斯空间自回归模型被进一步用来研究电动自行车
选择行为在微观层面上的空间相关性，针对通勤和
非通勤出行分别构建模型，结果表明在两种出行的
起点和终点都存在空间相关性，即某个出行者所在
出行起点和终点的邻居选择电动自行车出行，则该
出行者将更容易选择电动自行车出行，并且这种空
间相关性的强度在不同交通小区中存在差异。论文
研究结果表明不考虑空间相关性的传统模型对电动
自行车分担率的预测存在系统性误差。

关键词：电动自行车；空间自相关；空间自回归模
型；随机参数回归
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