Existence and behaviour of some radial solutions of a semilinear elliptic equation with a gradient-term*

Božo Vrdoljak ${ }^{\dagger}$

Abstract

In this paper we study the existence, behaviour and approximation of some positive radial solutions $u(|x|)$ of the equation $\Delta u+\frac{1}{2} x \nabla u+u^{p}-\lambda u^{q}=0, x \in \mathbb{R}^{n} \forall|x| \geq a>0$. The errors of the approximations for solution u and the first derivative u^{\prime} are defined by the functions which can be sufficiently small $\forall|x| \geq a$.

Key words: semilinear elliptic equation, radial solutions, existence, approximation

AMS subject classifications: 35B40, 35J60

1. Introduction

Let us consider the equation

$$
\begin{equation*}
\Delta u+\frac{1}{2} x \nabla u+u^{p}-\lambda u^{q}=0, \quad x \in \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

where $\lambda \in \mathbb{R}, p>1$ and $n \geq 2$. Since we are interested in radial solutions $u=$ $u(r), r=|x|$, we shall study the ordinary differential equation (${ }^{\prime}=d / d r$)

$$
\begin{equation*}
u^{\prime \prime}+\left(\frac{n-1}{r}+\frac{r}{2}\right) u^{\prime}+u^{p}-\lambda u^{q}=0, \quad r \geq a>0 \tag{2}
\end{equation*}
$$

Many authors have studied the equation (2). For example, in [2] the equation (2) is considered and the existence of a positive radial solution satisfying the condition

$$
\begin{equation*}
u(r)=O\left(r^{-n} \exp \left(-\frac{r^{2}}{4}\right)\right) \quad \text { as } r \rightarrow \infty \tag{3}
\end{equation*}
$$

is proved for

$$
\lambda=0, \quad 1<p<\frac{n+2}{n-2} \quad \text { and } \quad \mathrm{n} \geq 3
$$

In this paper we shall establish the existence of some positive solutions of (2) satisfying condition (3) and their approximation for every $r \geq a$.

[^0]
2. The main results

Theorem 1. Let $\alpha, \eta, s \in \mathbb{R}_{+}=(0, \infty), \lambda=0$,

$$
\begin{gather*}
p \geq 1+\frac{s}{n}, \quad 0<s \leq 2, \tag{4}\\
\frac{1}{s}\left[2(2 \alpha)^{p}+4 n \alpha a^{s-2}\right] \leq \eta \leq \alpha a^{s}, \tag{5}\\
a>1 \quad \text { and } \quad s a^{s} \geq 4 n a^{s-2}+4(2 \alpha)^{p-1} . \tag{6}
\end{gather*}
$$

Then the equation $(2)(\lambda=0)$ has at least one positive solution $u(r)$ satisfying the

$$
\begin{align*}
& \text { conditions } \\
& \left|u(r)-\alpha r^{-n} \exp \left(-\frac{r^{2}}{4}\right)\right|<\eta r^{-n-s} \exp \left(-\frac{r^{2}}{4}\right) \tag{7}\\
& \left|u^{\prime}(r)+\alpha\left(\frac{1}{2}+\frac{n}{r^{2}}\right) r^{-n+1} \exp \left(-\frac{r^{2}}{4}\right)\right|<\eta\left(\frac{1}{2}+\frac{n+s}{r^{2}}\right) r^{-n-s+1} \exp \left(-\frac{r^{2}}{4}\right) \tag{8}
\end{align*}
$$

$\forall r \geq a$.
Theorem 2. Let (4), (5) and (6) hold true, $\alpha, \eta, s \in \mathbb{R}_{+}$,

$$
q \geq 1+\frac{s}{n}, \quad 0<\lambda \leq \frac{s \eta}{2}(2 \alpha)^{q}
$$

Then the equation (2) has at least one positive solution $u(r)$ satisfying the conditions (7) and (8) $\forall r \geq a$.

Theorems 1 and 2 can be generalised. Let $\zeta \in C^{2}\left(\mathbb{R}_{+}, \mathbb{R}_{+}\right)$and

$$
H(\zeta):=\zeta^{\prime \prime}+\left(\frac{n-1}{r}+\frac{r}{2}\right) \zeta^{\prime}
$$

Theorem 3. Let $\lambda=0, \varphi, \rho \in C^{2}\left(\mathbb{R}_{+}, \mathbb{R}_{+}\right)$such that

$$
\begin{gather*}
\varphi(r) \geq \rho(r), \quad \rho^{\prime}(r)<0 \quad \forall r \geq a \tag{9}\\
\varphi(r) \rightarrow 0 \quad \text { and } \quad \rho(\mathrm{r}) \rightarrow 0 \quad \text { as } \quad \mathrm{r} \rightarrow \infty \tag{10}
\end{gather*}
$$

If the functions φ and ρ satisfy the conditions

$$
\begin{gathered}
H(\varphi)+H(\rho)+(\varphi-\rho)^{p}>0 \quad \text { and } \\
-H(\varphi)+H(\rho)-(\varphi+\rho)^{p}>0 \quad \forall r>a
\end{gathered}
$$

then the equation (2) $(\lambda=0)$ has at least one positive solution $u(r)$ satisfying the conditions

$$
\begin{align*}
|u(r)-\varphi(r)|<\rho(r) & \text { and } \tag{11}\\
\left|u^{\prime}(r)-\varphi^{\prime}(r)\right|<-\rho^{\prime}(r) & \forall r \geq a \tag{12}
\end{align*}
$$

Theorem 4. Let $\varphi, \rho \in C^{2}\left(\mathbb{R}_{+}, \mathbb{R}_{+}\right)$, such that the conditions (9) and (10)
hold true. If the functions φ and ρ satisfy the conditions

$$
\begin{gathered}
H(\varphi)+H(\rho)+(\varphi-\rho)^{p}-\lambda(\varphi+\rho)^{q}>0 \quad \text { and } \\
-H(\varphi)+H(\rho)-(\varphi+\rho)^{p}+\lambda(\varphi-\rho)^{q}>0 \quad \forall r>a
\end{gathered}
$$

then the equation (2) has at least one positive solution $u(r)$ satisfying the conditions (11) and (12).

3. Proofs of the theorems

We shall study the equation (2) by means of the equivalent system

$$
\begin{gather*}
u^{\prime}(r)=v \\
v^{\prime}(r)=-\left(\frac{n-1}{r}+\frac{r}{2}\right) v-u^{p}+\lambda u^{q} \tag{13}\\
r^{\prime}=1, \quad r \geq a
\end{gather*}
$$

According to known theorems, the Cauchy problem for the system (13) has the unique solution in $\Omega=\mathbb{R}_{+} \times \mathbb{R} \times \mathbb{R}_{+}$.

Let us consider the behaviour of integral curves $(u(r), v(r), r)$ of (13) with respect to the set

$$
\omega=\left\{(u, v, r) \in \Omega:|u-\varphi|<\rho,\left|v-\varphi^{\prime}\right|<-\rho^{\prime}, r>a\right\}
$$

where $\varphi, \rho \in C^{2}\left(\mathbb{R}_{+}, \mathbb{R}_{+}\right)$such that the conditions (9) and (10) hold true.
The boundary surfaces of ω are

$$
\begin{aligned}
U_{i} & =\left\{T \in \bar{\omega}: \Phi_{i}:=(-1)^{i}\left[u-\varphi_{i}(r)\right]=0\right\} \\
V_{i} & =\left\{T \in \bar{\omega}: \Psi_{i}:=(-1)^{i}\left[v-\psi_{i}(r)\right]=0\right\}, i=1,2
\end{aligned}
$$

where

$$
\varphi_{i}(r):=\varphi(r)+(-1)^{i} \rho(r), \quad \psi_{i}(r):=\varphi^{\prime}(r)-(-1)^{i} \rho^{\prime}(r)
$$

Let us denote the tangent vector field to an integral curve $(u(r), v(r), r)$ of (13) by X, i.e.

$$
X=\left(v,-\left(\frac{n-1}{r}+\frac{r}{2}\right) v-u^{p}+\lambda u^{q}, 1\right) .
$$

The vectors $\nabla \Phi_{i}$ and $\nabla \Psi_{i}, i=1,2$, are the external normals on surfaces U_{i} and V_{i}, respectively:

$$
\begin{aligned}
\nabla \Phi_{i} & =\left((-1)^{i}, 0, \quad(-1)^{i+1} \varphi_{i}^{\prime}(r)\right) \\
\nabla \Psi_{i} & =\left(0, \quad(-1)^{i}, \quad(-1)^{i+1} \psi_{i}^{\prime}(r)\right), i=1,2
\end{aligned}
$$

By means of scalar products

$$
P_{i}=\left(\nabla \Phi_{i}, X\right) \text { on } \mathrm{U}_{\mathrm{i}}, \quad \mathrm{Q}_{\mathrm{i}}=\left(\nabla \Psi_{\mathrm{i}}, \mathrm{X}\right) \text { on } \mathrm{V}_{\mathrm{i}}, \mathrm{i}=1,2
$$

we shall establish the behaviour of integral curves of the system (13) with respect to the set ω. For the proof of Theorems $1-4$ we shall use the same scalar products $P_{i}, i=1,2$. We have

$$
\begin{gathered}
P_{1}=-v+\varphi_{1}^{\prime}>-\psi_{2}+\varphi_{1}^{\prime} \equiv 0 \text { on } U_{1} \backslash L, \quad P_{1} \equiv 0 \text { on } L=U_{1} \cap V_{2}, \\
P_{2}=v-\varphi_{2}^{\prime}>\psi_{1}-\varphi_{2}^{\prime} \equiv 0 \text { on } U_{2} \backslash M, \quad P_{2} \equiv 0 \text { on } M=U_{2} \cap V_{1}
\end{gathered}
$$

and

$$
\begin{aligned}
u^{\prime}(L) & =v(L)=\psi_{2}=\varphi_{1}^{\prime} \\
u^{\prime \prime}(L) & =v^{\prime}(L)=-\left(\frac{n-1}{r}+\frac{r}{2}\right) \psi_{2}-\varphi_{1}^{p}>\varphi_{1}^{\prime \prime} \\
u^{\prime}(M) & =v(M)=\psi_{1}=\varphi_{2}^{\prime} \\
u^{\prime \prime}(M) & =v^{\prime}(M)=-\left(\frac{n-1}{r}+\frac{r}{2}\right) \psi_{1}-\varphi_{2}^{p}<\varphi_{2}^{\prime \prime}
\end{aligned}
$$

For scalar products $Q_{i}, i=1,2$, first note that (in all theorems)

$$
\begin{align*}
Q_{1} & =\left(\frac{n-1}{r}+\frac{r}{2}\right) v+u^{p}-\lambda u^{q}+\psi_{1}^{\prime} \\
& \geq\left(\frac{n-1}{r}+\frac{r}{2}\right) \psi_{1}+\psi_{1}^{\prime}+u^{p}-\lambda u^{q} \tag{14}\\
Q_{2} & =-\left(\frac{n-1}{r}+\frac{r}{2}\right) v-u^{p}+\lambda u^{q}-\psi_{2}^{\prime} \tag{15}\\
& \geq-\left(\frac{n-1}{r}+\frac{r}{2}\right) \psi_{2}-\psi_{2}^{\prime}-u^{p}+\lambda u^{q} .
\end{align*}
$$

Moreover, in case of Theorem 1 we have

$$
\begin{equation*}
\varphi(r)=\alpha r^{-n} \exp \left(-\frac{r^{2}}{4}\right), \quad \rho(r)=\eta r^{-n-s} \exp \left(-\frac{r^{2}}{4}\right) \tag{16}
\end{equation*}
$$

and in view of (14) and (15) scalar products Q_{i} on V_{i} are

$$
\begin{aligned}
Q_{1} \geq & {\left[2 n \alpha+\frac{1}{2} \eta s r^{2-s}+\eta(n+s)(s+2) r^{-s}\right] r^{-n-2} \exp \left(-\frac{r^{2}}{4}\right)>0 \quad \text { on } \mathrm{V}_{1} } \\
Q_{2} \geq & {\left[\frac{\eta s}{2}-2 n \alpha r^{s-2}+\eta(n+s)(s+2) r^{-2}\right] r^{-n-s} \exp \left(-\frac{r^{2}}{4}\right) } \\
& -(2 \alpha)^{p} r^{-n p} \exp \left(-\frac{r^{2}}{4} p\right) \\
> & {\left[\frac{\eta s}{2}-2 n \alpha r^{s-2}+\eta(n+s)(s+2) r^{-2}-(2 \alpha)^{p}\right] r^{-n-s} \exp \left(-\frac{r^{2}}{4}\right) } \\
> & {\left[\frac{\eta s}{2}-2 n \alpha r^{s-2}-(2 \alpha)^{p}\right] r^{-n-s} \exp \left(-\frac{r^{2}}{4}\right) \geq 0 \quad \text { on } \quad \mathrm{V}_{2} . }
\end{aligned}
$$

Consequently, $E=U_{1} \cup U_{2} \cup V_{1} \cup V_{2}$ is a set of points of strict exit of integral curves of (13) with respect to sets Ω and ω. Hence, according to the retraction method (see [5]), the system (13) has at least one solution $(u(r), v(r))$ which satisfies the conditions

$$
|u(r)-\varphi(r)|<\rho(r), \quad\left|v(r)-\varphi^{\prime}(r)\right|<-\rho^{\prime}(r) \quad \forall r \geq a
$$

That means that Theorem 1 holds true.
In case of Theorem 2 we have the functions φ and ρ which are defined by (16). Here, it is sufficient to notice that scalar products Q_{i} are

$$
\begin{aligned}
Q_{1} & >\left[2 n \alpha r^{-n-2}+\frac{1}{2} \eta s r^{-n-s}\right] \exp \left(-\frac{r^{2}}{4}\right)-\lambda(2 \varphi)^{q} \\
& >\left[\frac{1}{2} \eta s-\lambda(2 \alpha)^{q}\right] r^{-n-s} \exp \left(-\frac{r^{2}}{4}\right)>0 \quad \text { on } \mathrm{V}_{1}, \\
Q_{2} & >\left[-2 n \alpha r^{-n-2}+\frac{1}{2} \eta s r^{-n-s}\right] \exp \left(-\frac{r^{2}}{4}\right)-(2 \varphi)^{p} \\
& >\left[\frac{1}{2} \eta s-2 n \alpha a^{s-2}-(2 \alpha)^{p}\right] r^{-n-s} \exp \left(-\frac{r^{2}}{4}\right) \geq 0 \quad \text { on } \mathrm{V}_{2} .
\end{aligned}
$$

In case of the Theorem 3 we have

$$
\begin{aligned}
Q_{1} & \geq \varphi^{\prime \prime}+\left(\frac{n-1}{r}+\frac{r}{2}\right) \varphi^{\prime}+\rho^{\prime \prime}+\left(\frac{n-1}{r}+\frac{r}{2}\right) \rho^{\prime}+(\varphi-\rho)^{p} \\
& =H(\varphi)+H(\rho)+(\varphi-\rho)^{p}>0 \quad \text { onV }_{1} \\
Q_{2} & \geq-\varphi^{\prime \prime}-\left(\frac{n-1}{r}+\frac{r}{2}\right) \varphi^{\prime}+\rho^{\prime \prime}+\left(\frac{n-1}{r}+\frac{r}{2}\right) \rho^{\prime}-(\varphi+\rho)^{p} \\
& =-H(\varphi)+H(\rho)-(\varphi+\rho)^{p}>0 \quad \text { onV }_{2}
\end{aligned}
$$

For the proof of Theorem 4 it is sufficient to notice that

$$
\begin{aligned}
Q_{1} & \geq \varphi^{\prime \prime}+\left(\frac{n-1}{r}+\frac{r}{2}\right) \varphi^{\prime}+\rho^{\prime \prime}+\left(\frac{n-1}{r}+\frac{r}{2}\right) \rho^{\prime}+(\varphi-\rho)^{p}-\lambda(\varphi+\rho)^{q} \\
& =H(\varphi)+H(\rho)+(\varphi-\rho)^{p}-\lambda(\varphi+\rho)^{q}>0 \quad \text { onV }_{1}, \\
Q_{2} & \geq-\varphi^{\prime \prime}-\left(\frac{n-1}{r}+\frac{r}{2}\right) \varphi^{\prime}+\rho^{\prime \prime}+\left(\frac{n-1}{r}+\frac{r}{2}\right) \rho^{\prime}-(\varphi+\rho)^{p}+\lambda(\varphi-\rho)^{q} \\
& =-H(\varphi)+H(\rho)-(\varphi+\rho)^{p}+\lambda(\varphi-\rho)^{q}>0 \quad \text { on } \mathrm{V}_{2} .
\end{aligned}
$$

4. Some particular results

Using the obtained theorems (and their proofs), we can give the following particular results, with

$$
\varphi(r)=\alpha r^{-n} \exp \left(-\frac{r^{2}}{4}\right)
$$

Corollary 1. If $\lambda=0$,

$$
\begin{equation*}
p \geq 1+\frac{1}{n}, \quad a \geq \max \left\{4, \frac{n}{1-(2 \alpha)^{p-1}}\right\}, \quad 0<\alpha<\frac{1}{2} \tag{17}
\end{equation*}
$$

then the equation (2) ($\lambda=0$) has at least one positive solution $u(r)$ satisfying the

$$
\begin{align*}
& \left|u(r)-\alpha r^{-n} \exp \left(-\frac{r^{2}}{4}\right)\right|<4 \alpha r^{-n-1} \exp \left(-\frac{r^{2}}{4}\right) \\
& \qquad \begin{array}{l}
\left|u^{\prime}(r)+\alpha\left(\frac{1}{2}+\frac{n}{r^{2}}\right) r^{-n+1} \exp \left(-\frac{r^{2}}{4}\right)\right|<4 \alpha\left(\frac{1}{2}+\frac{n+1}{r^{2}}\right) r^{-n} \exp \left(-\frac{r^{2}}{4}\right)
\end{array} \tag{18}
\end{align*}
$$

$\forall r \geq a$.
Here we have

$$
\rho(r)=4 \alpha r^{-n-1} \exp \left(-\frac{r^{2}}{4}\right)
$$

Corollary 2. If $\lambda=0$,

$$
\begin{equation*}
p \geq 1+\frac{2}{n}, \quad a^{2} \geq 2 n+2(2 \alpha)^{p-1}, \quad \alpha>0 \tag{20}
\end{equation*}
$$

then the equation (2) ($\lambda=0$) has at least one positive solution $u(r)$ satisfying the

$$
\begin{align*}
& \text { conditions }\left|u(r)-\alpha r^{-n} \exp \left(-\frac{r^{2}}{4}\right)\right|<\alpha a^{2} r^{-n-2} \exp \left(-\frac{r^{2}}{4}\right), \\
& \left|u^{\prime}(r)+\alpha\left(\frac{1}{2}+\frac{n}{r^{2}}\right) r^{-n+1} \exp \left(-\frac{r^{2}}{4}\right)\right|<\alpha a^{2}\left(\frac{1}{2}+\frac{n+1}{r^{2}}\right) r^{-n-1} \exp \left(-\frac{r^{2}}{4}\right) \tag{21}
\end{align*}
$$

$\forall r \geq a$.
Here we have

$$
\begin{equation*}
\rho(r)=\alpha a^{2} r^{-n-2} \exp \left(-\frac{r^{2}}{4}\right) \tag{23}
\end{equation*}
$$

Corollary 3. Let (17) hold true and

$$
q \geq 1+\frac{1}{n}, \quad 0<\lambda<(2 \alpha)^{1-q}
$$

Then the equation (2) has at least one positive solution $u(r)$ satisfying the conditions (18) and (19) $\forall r \geq a$.

Corollary 4. Let (20) hold true and

$$
q \geq 1+\frac{2}{n}, \quad 0<\lambda<(2 n \alpha+\eta)(2 \alpha)^{-q}
$$

Then the equation (2) has at least one positive solution $u(r)$ satisfying the conditions (21) and (22) $\forall r \geq a$.

Remark 1. We can note that the obtained results also contain an answer to the question on approximation of solutions $u(r)$ whose existence is established. The
errors of the approximations for solutions $u(r)$ and the first derivative $u^{\prime}(r)$ are defined by the function $\rho(r)$ which can be sufficiently small $\forall r \geq a$. For example, in case of the Corollaries 2 and 4 the function $\rho(r)$ is defined by (23). This function tends to zero as $r \rightarrow \infty$ and can be sufficiently small $\forall r \geq a$, because parameter $\alpha>0$ can be arbitrarily small.

References

[1] F. V. Atkinson, L. A. Peletier, Sur les solutions radiales de l'equation $\Delta u+$ $(x \cdot \nabla u) / 2+|u|^{p-1} u=0$, C. R. Acad. Sci. Paris Ser. I 302(1986), 99-101.
[2] M. Hirose, Structure of positive radial solution to a semilinear elliptic PDE with a gradient-term, Funkcialaj Ekvacioj 39(1996), 323-345.
[3] Y. Li, Asymptotic behavior of positive solutions of equation $\Delta u+K(x) u^{p}=0$ in \mathbb{R}^{n}, J. Differential Equations 95(1992), 304-330.
[4] L. A. Peletier, D. Terman, F. B. Weissler, On the equation $\Delta u+$ $(x \cdot \nabla u) / 2+f(u)=0$, Arch. Rational Mech. Anal. 94(1986), 83-99.
[5] B. Vrdoljak, Existence and approximation of radial solutions of semilinear elliptic equations in an annulus, Glasnik Mat. 30(50), 243-259.
[6] E. Yanagida, S. Yotsutani, Classification of the structure of positive radial solutions to $\Delta u+K(|x|) u^{p}=0$ in \mathbb{R}^{n}, Arch. Rational Mech. Anal. 124(1993), 239-259.

[^0]: *This paper was presented at the Special Section: Appl. Math. Comput. at the $7^{\text {th }}$ International Conference on OR, Rovinj, 1998.
 ${ }^{\dagger}$ Faculty of Civil Engineering, Matice hrvatske 15, HR-21000 Split, Croatia, e-mail: bozo.vrdoljak@gradst.hr

