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SUMMARY
The steady laminar flow of an incompressible non-Newtonian second grade fluid impinging on a permeable flat

plate with heat generation is investigated. A uniform suction or blowing is applied normal to the plate which is
maintained at a constant temperature. Numerical solution for the governing nonlinear momentum and energy
equations is obtained. The effect of the uniform suction or blowing and the characteristics of the non-Newtonian
fluid on both the flow and heat transfer is presented and discussed.
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1. INTRODUCTION

The two-dimensional flow of a fluid near a
stagnation point is a classical problem in fluid
mechanics. It was first examined by Hiemenz [1] who
demonstrated that the Navier-Stokes equations
governing the flow can be reduced to an ordinary
differential equation of third order using similarity
transformation. Owing to the nonlinearities in the
reduced differential equation, no analytical solution is
available and the nonlinear equation is usually solved
numerically subject to two-point boundary conditions,
one of which is prescribed at infinity.

Later the problem of stagnation point flow was
extended in numerous ways to include various physical
effects. The axisymmetric three-dimensional
stagnation point flow was studied by Homann [2]. The
results of these studies are of great technical
importance, for example in the prediction of skin-
friction as well as heat/mass transfer near stagnation
regions of bodies in high speed flows and also in the
design of thrust bearings and radial diffusers, drag

reduction, transpiration cooling and thermal oil
recovery. Either in the two or three-dimensional case
Navier-Stokes equations governing the flow are
reduced to an ordinary differential equation of third
order using a similarity transformation. The effect of
suction on Hiemenz problem has been considered in
the literature. Schlichting and Bussman [3] gave the
numerical results first. More detailed solutions were
later presented by Preston [4]. An approximate solution
to the problem of uniform suction is given by Ariel [5].
The effect of uniform suction on Homann problem
where the flat plate is oscillating in its own plane is
considered by Weidman and Mahalingam [6]. In
hydromagnetics, the problem of Hiemenz flow was
chosen by Na [7] to illustrate the solution of a third-
order boundary value problem using the technique of
finite differences. An approximate solution of the same
problem has been provided by Ariel [8]. The effect of
an externally applied uniform magnetic field on the two
or three-dimensional stagnation point flow was given,
respectively, by Attia in Refs. [9] and [10] in the
presence of uniform suction or injection.
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The study of heat transfer in boundary layer flows
is of importance in many engineering applications such
as the design of thrust bearings and radial diffusers,
transpiration cooling, drag reduction, thermal recovery
of oil, etc. Massoudi and Ramezan [11] used a
perturbation technique to solve for the stagnation point
flow and heat transfer of a non-Newtonian fluid of
second grade. Their analysis is valid only for small
values of the parameter that determines the behaviour
of the non-Newtonian fluid. Later Massoudi and
Ramezan [12] extended the problem to nonisothermal
surface. Garg [13] improved the solution obtained by
Massoudi and Ramezan [12] by computing numerically
the flow characteristics for any value of the non-
Newtonian parameter using a pseudo-similarity
solution.

Non-Newtonian fluids were considered by many
researchers. Thus, among the non-Newtonian fluids,
the solution of the stagnation point flow, for viscoelastic
fluids, has been given by Rajeshwari and Rathna [14],
Beard and Walters [15], Teipel [16], Arial [17], and
others; for power-law fluid by Djuki} [18]; and for
micropolar fluids by Nath [19], Kelson et al. [20],
Desseaux [21] and Nazar et al. [22]. Stagnation point
flow of a non-Newtonian second grade fluid was
studied by Teipel [23] and Ariel [24] in the
hydrodynamic case. In hydromagnetics, Attia [25]
introduced the influence of a magnetic field on the flow
of a second grade fluid.

The purpose of the present paper is to study the
steady laminar flow of an incompressible non-
Newtonian second grade fluid at a two-dimensional
stagnation point with heat generation. A uniform suction
or blowing directed normal to the plane of the wall is
applied. The wall and stream temperatures are assumed
to be constants. A numerical solution is obtained for
the governing momentum and energy equations using
finite difference approximations which takes into
account the asymptotic boundary conditions. The
numerical solution is used to determine the flow and
heat characteristics for the whole range of the non-
Newtonian fluid characteristics, the suction or blowing
parameter and Prandtl number.

2. FORMULATION OF THE PROBLEM

Consider the two-dimensional stagnation point flow
of an incompressible non-Newtonian Rivlin-Ericksen
fluid impinging perpendicular on a permeable wall and
flows away along the x-axis. This is an example of a
plane potential flow that arrives from the y-axis and
impinges on a flat wall placed at y=0, divides into two
streams on the wall and leaves in both directions. The
viscous flow must adhere to the wall, whereas the
potential flow slides along it. The (u,v) are the
components of velocity at any point (x,y) for the viscous
flow whereas (U,V) are the velocity components for

the potential flow. A uniform suction or blowing is
applied at the plate with a transpiration velocity at the
boundary of the plate given by −v0, where v0>0 for
suction. The velocity distribution in the frictionless flow
in the neighborhood of the stagnation point is given by:

U(x) = ax,   V(y) = −ay
where the constant a (>0) is proportional to the free
stream velocity far away from the stretching surface.
A second grade fluid is defined such that the Cauchy
stress tensor is related to the fluid motion in the
following manner [23]:

2
1 1 2 2 1T pI A A Aµ α α= − + + + (1)

where p denotes the hydrostatic pressure, I is the
identity tensor, µ is the viscosity of the fluid, α1 and
α2 are scalar constants named as normal stress moduli,
and A1 and A2 are the first two Rivlin-Ericksen
tensors. For α1=α2=0, Eq. (1) describes a common
Newtonian fluid. Then, A1 represents the usual
deformation tensor. All the stress components have to
be introduced into the equations of motion. Here, we
consider the case α2=0, i.e. the case of a reduced
Rivlin-Ericksen fluid. Then, for the two-dimensional
steady-state flows, the continuity and momentum
equations, using the usual boundary layer
approximations [24] and by introducing the stress
components, reduce to:
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, (2)

2

2

2 3 2

1 2 3 2

u u dU uu v U
x y dx y

u u u uv u 0
y xy y y

ρ µ

α

⎛ ⎞⎛ ⎞∂ ∂ ∂
+ = + +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠
⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂

+ + + =⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂∂ ∂ ∂⎝ ⎠⎝ ⎠

(3)

where ρ is the density of the fluid, and U(x) is the
potential flow velocity over the body surface.

Using the boundary layer approximations and
neglecting the dissipation, the equation of energy for
temperature T with heat generation or absorption is
given [11,12]:

2

p 2
T T Tc u v k Q(T T )
x y y

ρ ∞
⎛ ⎞∂ ∂ ∂

+ = + −⎜ ⎟∂ ∂ ∂⎝ ⎠
(4)

where cp is the specific heat capacity at constant
pressure of the fluid, k is the thermal conductivity of
the fluid, and Q is the volumetric rate of heat
generation/absorption. A similarity solution exists if the
wall and stream temperatures, Tw and T∞ are constants
– a realistic approximation in typical stagnation point
heat transfer problems [11,12].

The boundary conditions are:

oy 0 : u 0,v v ,= = = − (5a)
y : u ax,→∞ → (5b)
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wy 0 : T T ,= = (6a)

y : T T∞→∞ → (6b)
A little inspection shows that boundary-layer Eqs.

(2) to (4) admit a similarity solution:

u( x, y ) axf ( z ), v( x, y ) a f ( z ), z a / yν ν′= = − =
(7)

where the prime denotes differentiation with respect
to z and v=µ/ρ. By introducing the non-dimensional
variable:

w

T T
T T

θ ∞

∞

−
=

−

and using Eq. (7), we find that Eq. (2) is identically
satisfied and Eqs. (3)-(6) reduce to:

iv 2 2K( f f 2 f f f ) f f f f 1 0′ ′′′ ′′ ′′′ ′′ ′− + − − + − = (8)

Pr f Pr B 0θ θ θ′′ ′+ + = (9)

f (0 ) A, f (0 ) 0, f ( ) 1′ ′= = ∞ = (10)

(0 ) 1, ( ) 0θ θ= ∞ = (11)
where A is the suction parameter, oA v / aν= ; Pr is
the Prandtl number, pPr c / kµ= ; K is the
dimensionless normal stress modulus, 1K a /α µ= ;

pB Q / a cρ= is the dimensionless heat generation/
absorption coefficient and the prime denotes
differentiation with respect to z. The heat transfer from
the surface to the fluid is computed by application of
Fourier’s law:

y 0

Tq k
y =

⎛ ⎞∂
= − ⎜ ⎟∂⎝ ⎠

Introducing the transformed variables, the
expression for q becomes:

wq k(T T ) a / (0 )νθ∞ ′= − − (12)
The heat transfer coefficient in terms of the Nusselt

number Nu can be expressed as:

w

qNu
k(T T ) a /ν∞

=
−

(13)

where a /ν  plays the role of a characteristic length.
Using Eq. (12), Eq. (13) becomes:

Nu (0 )θ ′= − (14)
The equations to be solved are Eqs. (8)-(11). The

flow Eqs. (8) and (10) are decoupled from the energy
Eqs. (9) and (11), and need to be solved before the
latter can be solved. The flow Eq. (8) constitutes a
non-linear, non-homogeneous boundary value problem
(BVP). In the absence of an analytical solution of a
problem, a numerical solution is required. The flow
Eqs. (8) and (10) are solved numerically using finite
difference approximations. A quasi-linearization
technique is first applied to replace the non-linear terms

at a linear stage, with the corrections incorporated in
subsequent iterative steps until convergence. The
quasi-linearized form of Eq. (8) is:

(
( ) )

iv iv iv
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2
n n 1 n n 1 n n n 1 nn
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′ ′′′ ′′′ ′ ′′′ ′ ′′ ′′ ′′− + − + − −

′′′ ′′ ′′ ′′ ′ ′ ′− − − + + − − =

where the subscript n or n+1 represents the nth or
(n+1)th approximation to the solution. Then, Crank-
Nicolson method is used to replace the different terms
by their second order central difference
approximations. An iterative scheme is used to solve
the quasi-linearized system of difference equations. The
solution for the Newtonian case is chosen as an initial
guess and the iterations are continued till convergence
within prescribed accuracy. Finally, the resulting block
tri-diagonal system was solved using generalized
Thomas’ algorithm.

The energy Eq. (9) is a linear second order ordinary
differential equation with variable coefficient, f(z),
which is known from the solution of the flow Eqs. (8)
and (10) and the Prandtl number Pr is assumed
constant. Equation (9) is solved numerically under the
boundary condition (11) using central differences for
the derivatives and Thomas’ algorithm for the solution
of the set of discritized equations. The resulting system
of equations has to be solved in the infinite domain
0<z<∞. A finite domain in the z-direction can be used
instead with z chosen large enough to ensure that the
solutions are not affected by imposing the asymptotic
conditions at a finite distance. Grid-independence
studies show that the computational domain 0<z<z∞
can be divided into intervals each is of uniform step
size which equals 0.02. This reduces the number of
points between 0<z<z∞ without sacrificing accuracy.
The value z∞=10 was found to be adequate for all the
ranges of parameters studied here. Convergence is
assumed when the ratio of every one of f, f', f'' or f'''
for the last two approximations differed from unity by
less than 10-5 at all values of z in 0<z<z∞.

3. RESULTS AND DISCUSSION

Figures 1 and 2 present the profiles of f and f ' ,
respectively, for various values of the non-Newtonian
parameter K and the suction parameter A. The figures
show that increasing the parameter K decreases both f
and f ' , but increasing A increases them. The figures
indicate also that the effect of K on f and f '  is more
pronounced for higher values of A (case of suction).
However, the effect of A on f and f '  becomes more
pronounced for higher values of K. Also, increasing K
increases the velocity boundary layer thickness while
increasing A decreases it.
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Fig. 1  Profiles of  f  for different values of the non-Newtonian
parameter K and the suction parameter A

Fig. 3  Profiles of  θ  for different values of the non-Newtonian
parameter K and the suction parameter A (Pr=0.5)

Figures 4 and 5 present the temperature profiles
for various values of the parameter K and Pr and for
A=-0.5 and 0.5, respectively and for B=0. The figures
bring out clearly the effect of the Prandtl number on
the thermal boundary layer thickness. For the suction
case (A=0.5), as shown in Figure 5, increasing Pr
decreases the thermal boundary layer thickness for
all K. However, for the blowing and Newtonian case
(A=-0.5, K=0), as clear in Figure 4, increasing Pr
decreases θ. But for the non-Newtonian case (K=1),
increasing Pr increases θ and increasing Pr more
decreases θ for some distance. The effect of K on θ
is more pronounced for smaller values of Pr for the
blowing case (see Figure 4).
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Fig. 2  Profiles of  f '  for different values of the non-Newtonian
parameter K and the suction parameter A

Figure 3 presents the profile of temperature θ for
various values of the non-Newtonian parameter K and
the suction parameter A and for Pr=0.5 and B=0. It is
clear that increasing K increases θ and its effect on θ
becomes more apparent for higher values of A (suction
case). The figure indicates that the thermal boundary
layer thickness increases when K increases. Increasing
A decreases θ for all K which emphasizes the influence
of the injected flow in the cooling process. The action
of fluid injection (A<0) is to fill the space immediately
adjacent to the disk with fluid having nearly the same
temperature as that of the wall. As the injection
becomes stronger, so that does the blanket extend to
greater distances from the surface. As shown in Figure
3, these effects are manifested by the progressive
flattening of the temperature profile adjacent to the wall.
Thus, the injected flow forms an effective insulating
layer, decreasing the heat transfer from the wall.
Suction, on the other hand, serves the function of
bringing large quantities of ambient fluid into the
immediate neighborhood of the surface of the wall. As
a consequence of the increased heat-consuming ability
of this augment flow, the temperature drops quickly as
we proceed away from the wall. The presence of fluid
at near-ambient temperature close to the surface
increases the heat transfer.
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Tables 1 and 2 present the variation of the wall shear
stress f ''(0) and the heat transfer rate at the wall −θ ' (0),
respectively, for various values of K and A and for
Pr=0.7 and B=0. For A≥0, increasing K decreases
f f''(0). However, for A<0, the effect of K on f ''(0)
depends on the value of K. Also, increasing suction
velocity (A>0) increases f ''(0) for all K. However, the
variation of f ''(0) with blowing velocity depends on K.
Table 2 shows that for suction, increasing K decreases
−θ ' (0) the effect of K on −θ ' (0) in the blowing case
depends on K. Increasing A increases −θ ' (0) for all K.

Table 3 presents the effect of the parameters A and
B on −θ ' (0) for various values of Pr and for K=1 and
Pr=0.7. Increasing A decreases −θ ' (0) for all B but
increasing B decreases −θ ' (0) for all A. This is
expected since increasing temperature as a result of
heat generation decreases the heat transfer rate. Table
4 shows the variation of −θ ' (0) for various values of
Pr and B and for K=1 and A=0. Increasing Pr
increases −θ ' (0) for all B.

Table 1 Variation of the wall shear stress f''(0) with K and A (Pr=0.7, B=0)

A K=0 K=0.5 K=1 K=1.5 K=2 

-2 0.4758 5.6708 3.3592 3.1893 2.9899 

-1 0.7566 10.7083 5.9994 5.9150 5.5018 

0 1.2326 0.9025 0.7528 0.6733 0.5967 

1 1.8892 1.0805 0.8469 0.7219 0.6405 

2 2.6699 1.1658 0.8857 0.7453 0.6566 

 

Table 2 Variation of the wall heat transfer −θ ' (0) with K and A (Pr=0.7, B=0)

A K=0 K=0.5 K=1 K=1.5 K=2 

-2 0.0167 0.1033 0.0749 0.0761 0.0743 

-1 0.1456 0.3418 0.2862 0.2931 0.2887 

0 0.4959 0.4584 0.4374 0.4270 0.4114 

1 1.0162 0.9587 0.9346 0.9193 0.9080 

2 1.6217 1.5550 1.5343 1.5219 1.5132 

 

Table 3 Variation of the wall heat transfer rate −θ ' (0) with A and B (K=1, Pr=0.7)

B A=-2 A=-1 A=0 A=1 A=2 

-0.1 0.1206 0.3352 0.4969 0.9823 1.5709 

0 0.0749 0.2862 0.4374 0.9346 1.5343 

0.1 0.0261 0.2341 0.3729 0.8844 1.4965 

 

Table 4 Variation of the wall heat transfer rate −θ '(0) with Pr and B (K=1, A=0)

B Pr=0.05 Pr=0.1 Pr=0.5 Pr=1 Pr=2 

-0.1 0.1688 0.2217 0.4333 0.5742 0.7593 

0 0.1567 0.2027 0.3846 0.5004 0.6465 

0.1 0.1440 0.1825 0.3321 0.4199 0.5217 
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4. CONCLUSIONS

The two-dimensional stagnation point flow of a
viscous incompressible non-Newtonian second grade
fluid with heat transfer is studied in the presence of
uniform suction or blowing. A numerical solution for
the governing equations is obtained which allows the
computation of the flow and heat transfer
characteristics for various values of the non-
Newtonian parameter K, the suction parameter A, the
heat generation/absorption parameter B, and the Prandtl
number Pr. The results indicate that increasing the
parameter K increases both the velocity and thermal
boundary layer thickness while increasing A decreases
the thickness of both layers. The effect of the
parameter K on the velocity and temperature is more
apparent for suction than blowing. The effect of the
blowing velocity on the shear stress at the wall depends
on the value of the non-Newtonian parameter K.
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TO^KA STAGNACIJE PROTOKA DRUGO-STUPANJSKE TEKU]INE S JEDNOLIKIM
USISAVANJEM ILI PUHANJEM I GENERIRANJEM TOPLINE

SA@ETAK

U ovome se radu istra`uje laminarno strujanje nestla~ive ne-Newtonove drugo-stupanjske teku}ine nanešene na
propusnu ravnu plo~u s toplinskim zagrijavanjem. Primijenjeno je jednoliko usisavanje ili puhanje okomito na plo~u
koja se dr`i na konstantnoj temperaturi. Dobiveno je numeri~ko rješenje za vode}i nelinearni impuls i jednad`be
energije. Predstavljen je i raspravljen u~inak jednolikog usisivanja ili puhanja i obilje`ja ne-Newtonove teku}ine,
kako na strujanje, tako i na prijenos topline.
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