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Analysis of solution of the least squares problem∗

Rudolf Scitovski† and Dragan Jukić‡

Abstract. For the given data (pi, ti, fi), i = 1, . . . , m, we consider
the existence problem of the best parameter approximation of the expo-
nential model function in the sense of ordinary least squares and total
least squares. Results related to that problem which have been obtained
and published by the authors so far are given in the paper, as well as
some new results on nonuniqueness of the best parameter approximation.
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1. Introduction

We consider the parameter estimation problem for the exponential model function

f(t; b, c) = b ect, (1)

on the basis of experimental or empirical data (pi, ti, fi), i = 1, . . . , m, where ti
denote the values of the independent variable, fi the respective function values and
pi > 0 are the data weights. Mathematical models described by an exponential
function or a linear combination of such functions are very often used in different
areas of applied research, e.g. biology, chemistry, electrical engineering, economy,
nuclear physics, medicine, etc. (see [4], [12], [13], [17]).

If the errors in the measurements of the independent variables are negligible,
and the errors in the measurements of the dependent variable are independent
random variables following the normal distribution with expectancy zero, then in
practical applications the unknown parameters b and c of the function (1) are usually
estimated in the sense of the ordinary least squares (OLS) (see [3], [2]):

min
(b,c)∈R2

S(b, c), S(b, c) = 1
2

m∑

i=1

pi(becti − fi)2. (2)
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If considerable errors occur in the measurements of independent variables as well
as dependent variables, it is reasonable to estimate the parameters b and c by
minimizing all errors. Geometrically, it means that we will minimize the weighted
sum of squares of the distance di from the data points (ti, fi) to the curve t 7→
f(t; b, c) (see Fig. 1):

min
(b,c,δ)∈R2×Rm

F (b, c, δ), F (b, c, δ) = 1
2

m∑
i=1

pi

[
(bec(ti+δi) − fi)2 + δ2

i

]
, (3)

where δ = (δ1, . . . , δm)T ∈ Rm. This approach is known in literature as the total
least squares (TLS) problem (see [1], [7], [16]).
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Figure 1. Ordinary and total least squares approach

Remark 1. A 3-parametric exponential regression model f(t; a, b, c) = a + b ect is
very popular in applied research. For example, in [12] it is used in analysis of
long–term selection experiments in biology. Also, this model is frequently used as a
test function for testing numerical algorithms for function minimization. In [8] we
consider the existence problem for the best least squares approximation of parameters
for this model function.

If among the data strongly deviating data can appear, so-called “outliers”, then
instead of the least squares approximation of parameters the so-called robust approx-
imation can be used. In general, Lp, p > 0 aproximation can be considered. In [5]
the total Lp-norm approximation problem for the exponential function is considered.

The following example shows that neither the OLS problem (2) nor the TLS
problem (3) has always a solution.

Example 1. Let the given data (1, i, fi), i = 1, . . . ,m, satisfy

f1 = f2 = . . . = fm−2 = 0, fm−1 = −1 and fm = 1.

If (bn, cn) is the sequence in R2, such that

bn = e−mcn and cn →∞,
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then S(bn, cn) → 1
2 . It is easy to show that S(b, c) > 1

2 for all (b, c) ∈ R2, which
means that in this example the OLS problem (2) does not have a solution.

In this example also the TLS problem (3) does not have a solution. Namely,
F (bn, cn,0) → 1

2 . On the other hand, F (b, c, δ) > 1
2 for all (b, c, δ) ∈ R2 × Rm.

It can be shown that both the OLS problem (2) and the TLS problem (3) have
the solution, provided the data satisfy only the natural conditions:

Theorem 1. Let the data (pi, ti, fi), i = 1, . . . , m, be given, such that

t1 < t2 < . . . < tm & fi > 0 (∀i = 1, . . . ,m),

and let B = {(b, c) ∈ R2 : b > 0}.

(i) Then there exists a point (b?, c?) ∈ B, at which the functional S defined by
(2) attains the global minimum on the set R2.

(ii) Then there exists a point (b?, c?, δ?) ∈ B × Rm, at which the functional F
defined by (3) attains the global minimum on the set R2 × Rm.

The proof of the statement (i) can be found in [7], and the proof of the statement
(ii) can be found in [4].

The results of Theorem1. will be specified further depending on the data char-
acteristic.

2. Data classification

Under natural conditions on the data Theorem1. ensures the existence of optimal
parameters b?, c? both in the sense of OLS and in the sense of TLS. However, it
does not say anything whether the model function (1) should be sought in the class
of increasing or decreasing exponential functions. It is natural to describe the in-
creasing data by an increasing, and the decreasing data by a decreasing exponential
function. For that purpose the data will be classified into three main groups and
for each of them the existence problem will be analysed separately. In that way the
choice of the initial approximation of the parameters will be used. Therefore, we
introduce the following definition (see also [6], [10], [15]).

Definition 1. The data (pi, ti, fi), i = 1, . . . , m, are said to have the preponderant
increase (resp. preponderant decrease) property if the slope of the associated linear
regression is positive (resp. negative). If this coefficient is equal to zero, then the
data are said to be preponderantly stationary.

Remark 2. The coefficients k and l of the corresponding linear regression ϕ(t) =
k t + l can be found by minimizing the functional

G(k, l) = 1
2

m∑
i=1

pi (k ti + l − fi)
2
.
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By equating the gradient of the functional G with zero, it is easy to show that
k = D1

D , where

D =

∣∣∣∣∣

∑
pit

2
i

∑
piti∑

piti
∑

pi

∣∣∣∣∣ , D1 =
m∑

i=1

pitifi

m∑

i=1

pi −
m∑

i=1

piti

m∑

i=1

pifi.

Because of the Cauchy-Schwarz inequality, D > 0. This means that the data
(pi, ti, fi), i = 1, . . . ,m, have the preponderant increase property if and only if
D1 > 0, and they have the preponderant decrease property if and only if D1 < 0.
The data are preponderantly stationary if and only if D1 = 0.

The condition of preponderant increase [resp. preponderant decrease] of data
is weaker than the condition of increase [resp. decrease] of data, as stated in the
following proposition (for the proof see [15]).

Proposition 1. Let the data (pi, ti, fi), i = 1, . . . , m, be given. If

(f1 ≤ . . . ≤ fm)& (f1 < fm),

then the data have the property of preponderant increase. If

(f1 ≥ . . . ≥ fm)& (f1 > fm),

then the data have the property of preponderant decrease.

Remark 3. Note that conditions D1 > 0, resp. D1 < 0, correspond to well-known
Chebyschev’s inequalities:

m∑

i=1

pitifi

m∑

i=1

pi −
m∑

i=1

piti

m∑

i=1

pifi > 0, (4)

resp.
m∑

i=1

pitifi

m∑

i=1

pi −
m∑

i=1

piti

m∑

i=1

pifi < 0. (5)

(see [11], [14], [16]).
Note also if the data are centered around the origin, then conditions (4), resp.

(5), become simpler:

m∑

i=1

pitifi > 0, resp.
m∑

i=1

pitifi < 0, (6)

The following theorem shows that preponderantly increasing [resp. preponder-
antly decreasing] data can be described by an increasing [resp. decreasing] expo-
nential model (for the proof see [4], [15], [16]). The existence problem for prepon-
derantly stationary data will be considered in the next section.

Theorem 2. Let the data (pi, ti, fi), i = 1, . . . , m, be given and suppose that fi > 0,
i = 1, . . . ,m. Then
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(i) If the data have the property of preponderant increase (4),

a) then there exists a pair (b?, c?) ∈ intU ,

U =
{

(b, c) ∈ R2 : b ≥ 0, c ≥ 0
}

,

which minimizes on U the functional S defined by (2).

b) then there exists an (m + 2)- tuple (b?, c?, δ?) ∈ intU ×Rm, which min-
imizes on U × Rm the functional F defined by (3).

(ii) If the data have the property of preponderant decrease (5),

a) then there exists a pair (b?, c?) ∈ intV,

V =
{

(b, c) ∈ R2 : b ≥ 0, c ≤ 0
}

,

which minimizes on V the functional S defined by (2).

b) then there exists an (m + 2)- tuple (b?, c?, δ?) ∈ intV ×Rm, which min-
imizes on V × Rm the functional F defined by (3).

2.1. Preponderantly stationary data. Nonuniqueness of the
best LS approximation

Theorem1. and Theorem2. assure the existence of the best least squares approxima-
tions, but do not tell us anything about either the uniqueness or about a method for
finding such a best approximation. By [2] the probability that the sum of squares
for any nonlinear regression has at least two local minima is positive. The following
example confirms this statement.

Example 2. Consider the data (pi, ti, fi), i = 1, . . . , 9, given by the table

ti -4 -3 -2 -1 0 1 2 3 4
fi 10 0.1 0.1 0.1 0.1 0.1 0.1 9 9

where p1 = . . . = p9 = 1 (see Fig. 2.a)
One can easily check that the corresponding functional S has two local minima

(See Fig. 2.b):

b? = 0.794763, c? = 0.632571, S(b?, c?) = 123.307

b̂ = 0.00045, ĉ = −2.50019, S(b̂, ĉ) = 162.556

The graphs of the corresponding regressions are shown in Fig. 2.a.
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Figure 2.a. Exponential regressions Figure 2.b. Two local minima
of the functional S

On the basis of Definition 1. and Remark 2. and Remark 3. it is easy to show that
the data are preponderantly stationary if and only if they satisfy the condition:

m∑

i=1

pi(ti − tp)(fi − fp) = 0, (7)

where

tp := 1
κ

m∑
i=1

piti, fp := 1
κ

m∑
i=1

pifi, κ :=
m∑

i=1

pi.

In that case the graph of the associated linear regression is parallel with the t-axis.
It directs us to the conclusion that in this case the exponential model function could
degenerate into a linear function t 7→ b, that is, that the local minimum of the OLS
problem (2) could be attained at the point PS(fp, 0), and the local minimum of the
TLS problem (3) could be attained at the point PF (fp, 0,0).

Using the condition (7) it can easily be shown that

grad S(fp, 0) = 0, and grad F (fp, 0,0) = 0,
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which means that PS(fp, 0) is the critical point of the functional S, and PF (fp, 0,0)
is the critical point of the functional F . It remains to examine the positive definite-
ness of the Hessian HS(fp, 0) of the functional S at the point PS(fp, 0),

[ ∑
pi fp

∑
piti

fp

∑
piti fp

(
2fp

∑
pit

2
i −

∑
pit

2
i fi

)
]

,

resp. Hessian HF (fp, 0,0) of the functional F at the point PF (fp, 0,0),



∑
pi fp

∑
piti 0 · · · 0

fp

∑
piti fp

(
2fp

∑
pit

2
i −

∑
pit

2
i fi

)
p1fp(fp − f1) · · · pmfp(fp − fm)

0 p1fp(fp − f1) p1 · · · 0
...

...
...

...
...

0 pmfp(fp − fm) 0 · · · pm




.

Let us note that HS(fp, 0) and HF (fp, 0,0) will be indefinite matrices if tp = 0
and

2fp <

∑m
i=1 pit

2
i fi∑m

i=1 pit2i
. (8)

In this case the functional S does not have the local minimum at the point PS(fp, 0),
and the functional F does not have the local minimum at the point PF (fp, 0,0).

Now we are going to construct the preponderantly stationary data, such that the
functional S does not have the local minimum at the point PS(fp, 0), and functional
F does not have the local minimum at the point PF (fp, 0,0). Moreover, we will show
that for such defined data functionals S and F attain their global minimum at at
least two points.

Example 3. Let T,A > 0 and m = 2k, where 3 ≤ k ∈ N. Choose ε > 0 such that

2
(k − 1)ε + A

k
<

ε3
[
1
2k(k − 1)

]2 + T 2A

ε2
[
1
2k(k − 1)

]2 + T 2
(9)

and define the data:

(1,−T, A), (1,−(k − 1)ε, ε), (1,−(k − 2)ε, ε), . . . , (1,−2ε, ε), (1,−ε, ε),
(1, ε, ε), (1, 2ε, ε), . . . , (1, (k − 2)ε, ε), (1, (k − 1)ε, ε), (1, T, A).

Note that these data are preponderantly stationary, tp = 0 and the inequality (9)
represents the inequality (8). According to the above mentioned, the functional S
does not have the local minimum at the point PS(fp, 0), and the functional F does
not have the local minimum at the point PF (fp, 0,0).

Let (b?, c?) ∈ B be a point such that inf
(b,c)∈R2

S(b, c) = S(b?, c?) (see Theorem1).

Since S(b, 0) ≥ S(fp, 0) for all b ∈ R and the functional S does not have the local
minimum at the point PS(fp, 0), then c? 6= 0. Furthermore, since S(b, c) = S(b,−c),
we have inf

(b,c)∈R2
S(b, c) = S(b?, c?) = S(b?,−c?), i.e. the functional S attains its

global minimum at at least two points.
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Similarly, because F (b, c, δ) = F (b,−c,−δ) for all (b, c, δ) ∈ R2+m, if (b?, c?, δ?) ∈
B×Rm such that inf

(b,c,δ)∈R2×Rm

F (b, c, δ) = F (b?, c?, δ?), then inf
(b,c,δ)∈R2×Rm

F (b, c, δ) =

F (b?, c?, δ?) = F (b?,−c?,−δ?), i.e. and the functional F attains its global mini-
mum at at least two points.

3. Parameter estimation

Optimal parameters of the functional S defined by (2) can be estimated by using
classical methods: Gauss–Newton’s method or Levenberg–Marquardt’s method (see
[2], [3], [20]), but that requires a good initial approximation. The problem of choice
of a good initial approximation is considered in [4], [6], [15]. Localization of the
region of a good initial approximation is obtained from the proof of the existence
theorem.

Very few papers deal with the problem of the optimal parameter estimation by
nonlinear TLS problems (see e.g. [1]). In [9] a special class of nonlinear TLS problem
is considered, where the model function is of the form f(x; a, b) = φ−1(ax + b),
where a 6= 0 and b are some real parameters, and the function φ : I → R, I ⊆ R is
continuous and one-to-one. Specially, the exponential model function (1) belongs
to this class.

Since the symmetry preserves the distances, instead of the TLS problem for the
model function f we can consider the TLS problem for the inverse model function
f−1. In this way for this class of model functions we obtain a linear TLS problem,
which can be solved much simpler (see [18], [19]).

For this class of model functions in the paper [9] we proved the existence theorem
and proposed an efficient algorithm for searching optimal parameters.
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[9] D. Jukić, R. Scitovski, H. Späth, Partial linearization of one class of the
nonlinear total least squares problem by using the inverse model function, Com-
puting, in press.
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Ed.), Belgrade, 1988. 189–194.

[15] R. Scitovski, Some special nonlinear least squares problems, Radovi matema-
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