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Solving 2nd order parabolic system by simulations
of Markov jump processes∗

Nedžad Limić
†

and Mladen Rogina
‡

Abstract. There are known methods of approximating the solution
of parabolic 2nd order systems by solving stochastic differential equations
instead. The main idea is based on the fact that a stochastic differential
equation defines a diffusion process, generated by an elliptic differen-
tial operator on Rd. We propose a difference scheme for the elliptic
operator, which possesses the structure of Markov (jump) process. The
existence of such a scheme is proved, the proof relying on the choice
of new coordinates in which the elliptic operator is “almost” Laplacian,
and has the properties necessary for discretization.

Time discretization, which involves difference schemes for parabolic
equations with known stability difficulties, can thus be replaced by space
discretization and simulation of the associated Markov (jump) process.
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1. Introduction

There is a well known statistical method for estimating solutions of the initial value
problem of parabolic system of PDE of the 2nd order [5, 4]. The method is based
on statistical estimation of sample paths of simulated solutions of the associated
stochastic differential equation.

Here, another statistical method for estimating solutions of the parabolic system
is proposed. It consists of two steps. In the first step the elliptic operator of the
system is discretized on a space grid so that the resulting stiffness matrix is the
generator of a Markov jump process on grid knots. In this way the parabolic
system is approximated by the initial value problem for a system of ODE. In the
second step solutions of ODE at the knots are statistically estimated by simulating
the Markov jump process.
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The proposed method is advantageous in comparison to other methods only
if the diffusion tensor and drift velocity are t-independent, while the extinction
coefficient may be t-dependent. Due to this fact the time discretization is avoided.
The proposed method simplifies the approach, which is extensively considered by
Kuchner [8] in which Markov chains are used.

Results described here are more or less expectable. The necessary steps are
gathered from various disciplines, and some lacking links are proved in order to
get a consistent presentation. In Section 2 a proof is given that there exists a
discretization of elliptic differential operator having the structure of a generator of
a Markov jump process. In Section 3 the result about approximation is extended
to the initial value problem for PDE. Statistical estimation of solutions by using
Monte Carlo methods is described in Section 4. The initial value problem with
homogeneous Dirichlet conditions is discussed in Section 5.

2. Numerical scheme for an elliptic operator having MJP–
structure

Let the functions aij , bi and c be uniformly bounded on Rd, i, j = 1, 2, ..., d, and
have the following properties:

aij , bi, c ∈ Cα(Rd), c ≤ 0,

d∑
i,j=1

aij(x)ziz̄j ≥ µ | z |2, µ > 0,x ∈ Rd, (1)

where Cα(Rd) is the Hölder class of uniformly bounded functions with the parame-
ter α ∈ (0, 1). Functions of Ck+α(Rd) naturally define a real or a complex Banach
space when endowed with the norm ‖ · ‖k+α (see [2]). For the elliptic differential
operator

A(x) =
d∑

i,j=1

aij(x)∂i∂j +
d∑

i=1

bi(x)∂i + c(x), (2)

the following result of classical or Shauder theory of PDE is used (see [2]). If (1) is
valid and Re λ > 0, then: a) the differential operator λI − A is a one-to-one map
between the Banach spaces C2+α(Rd) and Cα(Rd), and b) for each u ∈ C2+α(Rd)
the following inequality ‖ (λI − A)−1u ‖0≤‖ u ‖0 /Reλ holds.

For each natural n the set of points x = (k1h, k2h, . . . , kdh) ∈ Rd, h = 2−n

defines the numerical grid Gn on Rd. Let E2 = C2+α(Rd), E2(n) be the closed
subspace of all elements in E2 vanishing at Gn. If the space F2 = E2/E2(n) is
endowed with a quotient norm, it becomes isomorphic to a subspace of l∞. Analo-
gously, E0 = Cα(Rd), E0(n) and F0 are defined. Because of the mentioned isomor-
phism, we identify F2 with a subspace of F0. The natural embedding from Ek into
Fk, k = 2, 0, is denoted by φk(n).

We say that an element u ∈ Ek is approximated with the order β > 0 by
elements un ∈ Fk if there exists an n-independent positive number κ such that
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‖ φk(n)u − un ‖k< κhβ. In this case, we say that un factor converges to u with
the order β. Also we say that an operator A ∈ L(E2, E0) is approximated by the
operators An ∈ L(F2, F0) with the order β if there exists an n-independent positive
number κ such that

‖ φ0(n)A − Anφ2(n) ‖L(E2,F0)≤ κhβ. (3)

The number β is also called the order of approximation. The approximation is called
stable if there exists an n-independent ρ > 0 such that ‖ (An)−1 ‖L(F0,F2)≤ ρ.

For Re λ > 0, solutions u and un of respective equations,

(λI − A)u = f,
(λI − An)un = fn, n ∈ N ,

(4)

will be compared. For this purpose the following result [6] is used:
Theorem 1. Let A ∈ L(E2, E0), An ∈ L(F2, F0) be approximations of A with

the order β. Let f ∈ E0, and let fn be approximations of f with the order β. If
u and un are the unique solutions of (4), and λI − An are stable, then un factor
converges to u with the order equal to β.

For an elliptic operator A satisfying (1), an approximation An is said to pos-
sess an MJP-structure if An are generators of (regular or irregular) Markov jump
processes. Of course, the property is assumed to be valid for all natural n up to a
finite number of them. These exceptional natural numbers are disregarded in the
following.

The basic result of this section is the following theorem:
Theorem 2. Let A be defined by (1) and (2). Then there exist approximations

An ∈ L(F2, F0) such that:

(a) each An possesses an MJP-structure and approximates A with the order α,

(b) there exists mB ∈ N such that An have the band structure with the band-width
not larger than 1 + 2mB,

(c) equations (λI − An)un = fn, Re λ > 0, have unique solutions in F0 with the
property ‖ un ‖∞<‖ fn ‖∞ /Reλ,

(d) If fn factor converges to f with the order α, then the sequence of solutions un

of (4) also factor converges to u with the order α.

Proof. The statement (c) is a consequence of the MJP-structure of An. This
property ensures the stability of operators λI −An. The statement (d) follows from
(a), (c) and Theorem 1.
To prove (a), let the approximation An of A have the property Ap(x)−Anp(x) = 0
at x ∈ Gn whenever p is a polynomial of the second order. Then, by using standard
methods of numerical analysis for PDE, the expression (3) can be easily derived
with β = α. Hence, to finish the proof, we have to construct a sequence An having
the mentioned property and the MJP-structure.
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The partial differential operators of the first and second orders are approximated
in the usual way:

∂if(x) → �if(x) =
1
2h

[f(x + eih) − f(x− eih)] ,

∂2
i f(x) → �2

i f(x) =
1
h2

[f(x + eih) − 2f(x) + f(x − eih)] ,

where ei are unit vectors in the ith direction. The mixed partial differential operator
can be approximated by one of the following four possibilities:

∂i∂jf(x)→�i�jf(x) =
1
h2

{
f(x± eih ± ejh) − f(x ± eih) − f(x ± ejh) + f(x),
−f(x± eih ∓ xjh) + f(x ± eih) + f(x∓ ejh) − f(x).

In this way, the quadratic operator aii(∂i)2+ajj(∂j)2 is approximated by the matrix
aii(�i)2 + ajj(�j)2 with negative diagonal elements and non-negative off-diagonal
elements. If aij ≤ 0, then aij∂i∂j is approximated by the half sum of the first
two possibilities, otherwise by the half sum of the second two possibilities. Let us
assume that there exists 0 < ρ < 1, such that

| aij(x) |≤ ρ min{aii(x), ajj(x)}, i �= j, (5)

at the considered knot. Then the result,
∑

ij aij�i�j , is the matrix having the MJP-
structure. The approximation of

∑
bi∂i by

∑
bi�i can violate the MJP-structure

only for larger values of h. Hence, if (5) is valid for all x ∈ Rd, the approximations
An have the MJP-structure for large values of n.

If there is no x ∈ Rd with the property (5), a transformation of coordinates
can be performed, and a redefinition of grids Gn, so that the set D0 ⊂ Rd for
which (5) holds is nonempty. To each x ∈ Rd violating (5) there corresponds a
new coordinate system centred at x, and denoted by T (x), such that in the new
coordinates the operator A(x) has the expression A(x) = µ∆ +

∑
bi∂i + c. The

coordinate transformation T (x) is defined by d(d − 1) angles in the set Sd, where
S ⊂ Rd is the unit spherical surface. These angles are uniquely defined in case when
T (0) is specified in advance, and if we demand the continuity of the map x → T (x).
By using the compactness of Sd and the uniform continuity of aij , one proves that
the set Rd can be divided into a finite number of subsets Dm, m = 0, 1, 2, . . . , M ,
with the following properties: for each Dm there is a corresponding coordinate
transformation T̂m in which the transformed operator A has the property (5) for
all x ∈ Dm, and positive number ρ/2 instead of ρ. A coordinate axes of this
system may miss knots of all Gn, n ∈ N . Therefore, by a slight adjustment of axes,
there can be constructed another set of M coordinate systems Tm, such that the
transformed operators A(·) have the property (5) on Dm. The approximations An

in the transformed systems have the MJP structure. After turning to the original
system, i.e. to the system T0, the obtained approximations preserve the MJP-
structure. In this way A can be approximated by matrices An having the MJP-
structure.

In order to prove (b) we point out that only a finite number of coordinate trans-
formations are used for the discretization. Hence, for each grid-knot, irrespectively
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of grid-step, only a finite number of various numerical neighbourhoods can be cho-
sen. This proves the theorem. �

The matrix An may be reducible for each n. However, by omitting certain grid
knots the irreducibility can be achieved:

Lemma 1. There exist subgrids G̃n ⊂ Gn such that
⋃

G̃n is dense in Rd, and
the approximations Ãn associated with G̃n are irreducible matrices.

3. Initial value problem for parabolic systems on Rd

Let the functions aij , bi and c have the following properties (the damping coefficient
c is generally t-dependent):

aij , bi ∈ C1+α(Rd)
c ∈ Hα/2,α([0,∞) ×Rd), c ≤ 0,

(6)

where the Hölder space Hα/2,α is defined as in [3]. We consider the elliptic operator
B on [0,∞) ×Rd defined by the expression:

B(t,x) =
d∑

i,j=1

∂iaij(x)∂j −
d∑

i=1

bi(x)∂i + c(t,x). (7)

Both differential operators, B(t) and its formal adjoint A(t) = B+(t), have the
form (2) with properties (1) for each t ≥ 0. Therefore, the approximations An(t) ∈
L(F2, F0) of the previous section can be constructed.

The objects of interest in this section is the following initial value problem:
(

∂

∂t
− B(t)

)
u(t) = f(t), u(0) = u0, (8)

where u0 ∈ L1(Rd) and f ∈ L1([0,∞),Rd). Its approximations are:

(
∂

∂t
− Bn(t)

)
un(t) = f(t),un(0) = u0n, (9)

where Bn(t) = A+
n (t).

The existence of a solution of (8), with appropriate conditions on u0 and f ,
can be obtained from the classical result [3]. Let Ċk+α(Rd) be the completion in
‖ · ‖k+α-norm of compactly supported functions in Ck+α(Rd). Let u0 ∈ Ċ2+α(Rd)
and f ∈ Hα/2,α([0,∞) ×Rd). Then the problem (8) has a unique solution u with
the following properties. For each t ≥ 0, u(t) ∈ Ċ2+α(Rd), u′(t) ∈ Ċα(Rd), and for
each T > 0, there exists κ(T ) such that ‖ u(t) ‖2+α≤ κ(T )(‖ f ‖α/2,α + ‖ u0 ‖2+α),
t ∈ [0, T ].

The existence of the strong solutions of (8) in C([0,∞), L1(Rd)) can be proved
if we assume additional properties on the coefficients. Let u0 ∈ L1(Rd) and f ∈
L1([0,∞)×Rd)). It suffices to assume that the coefficients (6) differ from constant
values on a compact set. Then, there exists an evolution family U(t, s), 0 ≤ s ≤ t,
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of positive and contraction operators, such that u(t) = U(t, 0)u0 +
∫ t

0 U(t, s)f(s)ds
(basic steps of a proof can be found in [10]).

For the initial value problems for the column-valued functions un(·) in (9), the
following result is valid. The problems (9) are solvable in l1. The bounded operator
Bn on l1 generates an evolution family of operators Un(t, s), s, t ∈ [0,∞). Solutions
of the considered problems can be written as in the previous case.

In the remaining part of exposition it is assumed that (8) has a unique solution
in C([0,∞), L1(Rd)), and for each T > 0, there exists an n-independent positive
number κ(T ) such that the following error estimate is valid:

‖ φ2(n)u(t) − un(t) ‖l1≤ κ(T )hα, t ≤ T. (10)

It is understood that the estimate (10) is valid for a subspace of initial states and
nonhomogeneous terms f(·).

4. Estimation of solutions by Monte Carlo simulation

The space discretization of an initial value problem for PDE results in a sequence of
initial value problems for ODE associated with Markov jump processes. Therefore,
only the basic facts of construction of relevant Markov jump processes on finite
or denumerable state space will be described. All constructions must have the
following structure. Let S ⊂ Gn be a subset with the index set � and P(S) be the
set of all probability densities on S. Let G be a matrix with indices in �, having the
structure of a generator of a regular Markov process. The Markov process on S with
initial distribution ν ∈ P(S) and generator G is defined by {S, ν, G} and denoted
by t → ξ(t). Its representation by means of an infinite sequence of independent
standard exponential random variables and the corresponding Markov chain can
directly be used for simulations.

A discretization of the initial value problem for parabolic system in terms of the
resulting initial value problem for ODE has the form

d
dtu(t) = B(t)u(t) + f(t),

u(0) = u0,
(11)

The matrix A(t) = B(t)+ has an MJP-structure for each t ≥ 0. We say that A(·) is
conservative if the sum of each of its rows is zero. In order to describe M.C. (Monte
Carlo) method for estimating the jth component of the solution uj(t), it is useful
to distinguish the following three cases:

• t-independent generator and f = 0. A problem with a non-conservative generator
can be transformed to the problem with a conservative one by adding an abstract
absorbing state a to the state space S and defining a new generator, A, for Sa =
S ∪ {a}. Therefore, it suffices to consider only the conservative generators. If the
initial state ν = u0 of (11) is non-negative and ‖ u0 ‖1= 1, the object {Sa, ν, A}
defines the Markov jump process to be used for simulations. The estimator of uj(t)
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is defined by the statistics:

sN (uj(t)) =
1
N

N∑
m=1

χj(ξm(t)), (12)

where χj is the function on S defined by χj(xi) = δij ,xj ∈ Gn, and ξm(·) are inde-
pendent Markov processes defined by {S, ν, A}. The first two statistical moments
of (12) are E[sN (uj(t))] = uj(t) and Var[sN (uj(t))] = N−1uj(t)(1− uj(t)), so that
the following upper bound is valid:

Var[sN (uj(t))] ≤ 1
4N

. (13)

If the initial state ν = u0 is non-negative and ‖ u0 ‖1 �= 1, an appropriate scaling
of the initial state must be performed first. If the components of u0 have both
signs, a decomposition u0 = u+ − u− can be made, where u± have non-negative
components. The previous procedure can now be applied to the two processes
defined by {S,u+, A} and {S,u−, A}, and the results must be subtracted.

In the case of u0 ∈ P(S), the error of the estimate consists of two parts. The
first is caused by a space discretization and given by (10), and the second is the
statistical error defined by (13). In other cases the scaling must be included in (13).
• t-independent generator and u0 = 0. Let the column-valued function f(·) have
non-trivial elements only for indices i ∈  ⊂ �. The problem (11) has the solution:

uj(t) =
∑
i∈�

∫ t

0

wij(t − s))fi(s)ds, j ∈ �,

where W (t) = exp (B+t).
Let the following objects be given: 1) Markov jump processes ξi, i ∈ , on S,

starting at xi ∈ S; 2) continuous random variables τi, i ∈ , with values in [0, T ],
and defined by means of densities t → pi(t); 3) functions gi : [0, T ] → R, gi = fi/pi,
and the function χj defined as in (12). Then, the random variable

ηj(T ) =
∑
i∈�

χj(ξi(T − τi))g(τi),

has the moments uj(T ) = E[ηj(T )] and:

Var[ηj(T )] =
∑
i∈�

∫ T

0

uij(T − s)gi(s)2pi(s)ds − E[ηj(T )]2.

The following steps give rise to a simulation of ηj : for each i ∈  a simulation of
τi results in ti; for each i ∈  a simulation of ξi on [0, T − ti) results in xi; then, a
simulation of ηj(T ) equals

ηj(T ) =
∑
i∈�

χj(xi)fi(τi).
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• t-dependent generator. It suffices to consider the case with u0 ∈ P(S) and f = 0.
In accordance with the basic problem of Section 3, the generator is non-conservative
and can be represented in the following form:

A(t) =
[

011 O1�
O�1 G

]
+

[
O11 O1�
R(t) H(t)

]
,

where O11 = 0, O1� is the zero row of card() - length, O�1 the zero column
of the same length, G a conservative generator, H(·) a diagonal matrix-valued
function with elements hij(t) = c(t,xi), and R(·) a column-valued function, ri1(t) =
−hii(t), i ∈ . The abstract state associated with the first index of the matrix A(·)
is denoted by a. We assume that c(t,x) < −c0, where c0 is a positive number.

Let ν ∈ P(S) and {S, ν, A(·)} define a non-homogeneous Markov jump process
ξ(·), and {S, ν, G} a homogeneous Markov jump process θ(·). In addition, we need
to define the stopping time τ . Let ω → θ(ω, t) be a sample path of the process θ(·).
The function

Fω(t) = 1 − exp
(∫ t

0

c(s, θ(ω, s))ds

)

is a distribution of a random variable, denoted by τω . It gives rise to the following
stopping time τ , of the process ξ(·):

ξ(t) =
{

θ(t) for t < τ,
a for t ≥ τ.

A simulation of a sample path of ξ(·) consists of two steps. Let a simulated sample
path of θ(·) be θ(ω, ·), and T be a simulated value of τω. Then ξ(ω, t) = θ(ω, t) for
t < T , and ξ(ω, t) = a for t ≥ T .

5. Parabolic system with Dirichlet boundary condition

Let D ⊂ Rd be an open, bounded and connected set with the boundary ∂D con-
sisting of regular points with respect to the Laplacian. The so-called cone criterion
is one amongst familiar criteria ensuring the regularity of a boundary. Then, the
regularity with respect to elliptic operators is considered in [7]. We consider the
parabolic system on D with the homogeneous Dirichlet boundary conditions on D:

(
∂
∂t − B(t,x)

)
u(t,x) = f(t,x), x ∈ D,

u(t,x) = 0, x ∈ ∂D,
u(0,x) = u0(x),

(14)

where u0 ∈ L1(D) and f ∈ L1([0,∞), D). The problem can be solved if the
conditions (6) are valid. In the case of t-independent coefficients, a contraction
semigroup t → UD(t) on L1(D) can be constructed, and solutions can be represented
by it in the same way as in Section 3. An extension to a t-depending coefficient c is
straightforward [10].

Solutions of (8) and (14) can be related by means of the diffusion process gen-
erated by the generator Adif =

∑
ij aij∂i∂j +

∑
j bj∂j [1] in terms of the first exit

time from D.
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Let ξ(·) be a diffusion process generated by Adif and ξn(·) the family of Markov
jump processes from the previous section. The following result is valid.

Theorem 3. Let (6) be valid and coefficients of Adif be different from constant
values on a compact set. Then, the sequence of processes ξn converges weakly to the
process ξ.

This result enables us to estimate solutions of (14) by simulating the first exit
time of Markov jump processes ξn from the transient set D ∩ Gn.

6. Conclusion

The initial value problem for the parabolic system on Rd and on a bounded domain
with Dirichlet condition is considered. To estimate the solution by using an M.C.
simulation of associated Markov jump processes seams to be very attractive. Its
efficiency is demonstrated in [9]. The error of the estimate consists of two parts, one
being the standard error of numerical analysis of PDE, and the other a statistical
one.
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