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On construction of fourth order Chebyshev splines∗

Mladen Rogina
†

Abstract. It is an important fact that general families of Cheby-
shev and L-splines can be locally represented, i.e. there exists a basis of
B-splines which spans the entire space. We develop a special technique
to calculate with 4th order Chebyshev splines of minimum deficiency on
nonuniform meshes, which leads to a numerically stable algorithm, at
least in case one special Hermite interpolant can be constructed by sta-
ble explicit formulæ. The algebraic derivation of the algorithm involved
makes it possible to apply the construction to L-splines. The underly-
ing idea is an Oslo type algorithm, combined with the known derivative
formula for Chebyshev splines.

We then show that weighted polynomial and tension spline spaces
satisfy the conditions imposed, and show how to apply the above general
techniques to obtain local representations.

Key words: Chebyshev spline, B-spline, knot insertion, recurrence

AMS subject classifications: 65D07, 41A50

1. Introduction

One of the great things in the univariate spline theory is the fact that the most
general spline functions can be represented as linear combinations of splines having
a compact support, the so-called B-splines. This leads to sparse matrix systems in
diverse fields of numerical analysis, where entries are usually calculated as linear
combinations of B-splines and their derivatives. Therefore, one has to evaluate
such splines as accurately as possible; the complexity in calculation can also play
a significant role. Such algorithms have been found only in cases which are very
important, but do not cover all interesting situations. Fully investigated cases
include polynomial [16], hyperbolic [17], trigonometric [9], and also some rarely used
modified splines, obtained by substitutions in the recurrence relations for known B-
splines. Most algorithms are based on three term recurrence relation due to de Boor
and Cox. For the sake of reference, and also to introduce the notation to be used
further, let us choose the knot sequence ∆ = {x0, . . . , xk+1}, and, for a given integer
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n and multiplicity vector m = (n1, . . . , nk)T let us define an extended partition of
the interval [a, b] {t1 . . . t2n+k} in the usual way:

t1 = . . . = tn = a

tn+k+1 = . . . = t2n+k = b

tn+1 ≤ . . . ≤ tn+k = x1, . . . , x1︸ ︷︷ ︸
n1

, . . . , xk, . . . , xk︸ ︷︷ ︸
nk

(1)

where ni are integers satisfying 1 ≤ ni < n.
In the polynomial case, the three-term recurrence

Bn
i (x) =

x − ti
ti+n−1 − ti

Bn−1
i (x) +

ti+n − x

ti+n − ti+1
Bn−1

i+1 (x) (2)

enables stable calculating with B-splines Bn
i ; they are locally supported (supp(Bn

i ) =
[ti, ti+n]), and smoothness is governed by the multiplicities, meaning that n−ni−1
derivatives match at the knot of the multiplicity ni. No generalization of (2) exists,
at least with analytic functions in convex combinations of lower order splines; for
precise descriptions see [19]. It is interesting that matching other linear functionals
at the knots (like jumps of derivatives) can lead to recurrence relations like (2) [13].
The most general case of four term recurrence is treated in [5]; there also exists a
three term recurrence [8] in which the “lower order” B-splines are substituted by
some other quantities which do not appear to be B-splines in any other space. Both
constructs can not be readily used in algorithms, and involve a considerable amount
of work to be done analytically.

It is not necessary, however, to have a recurrence relation belonging to the above
classes in order to calculate stably with B-splines. Continuous and Hermite splines,
for instance, can be locally determined by interpolation, since we know enough
information on each interval, and thus seek for a nontrivial function that has some
function and derivative values equal to zero. A spline can be determined locally in
the case of the multiplicity vector m = (ni)T, ni ≥ n − 2. This can be done for all
Chebyshev systems, since the very definition of a Chebyshev system [17]) implies
the possibility of Hermite interpolation. Since B-splines of higher smoothness, that
is, associated with the knots possessing smaller multiplicities, can be written as
linear combinations of not so smooth B-splines of the same order, this can in turn
yield an efficient algorithm – provided that:

1. the coefficients in the linear combination can be found exactly, and

2. the coefficients are positive.

These sufficient conditions will enable us to calculate with B-splines by making
scalar products of positive quantities – numerically almost as sound a thing to
do as performing convex combinations of lower order splines like in (2). The main
result shows that it is possible, in the case of Chebyshev splines of order 4, to obtain
analytic formulæ for the coefficients under reasonable assumptions. The technique
used is that of some special (simultaneous) knot insertion, known in CAGD as
Oslo algorithm (see [10] and references therein). Though it can not be extended to
arbitrary order in a straightforward way, one can note that in practice, higher order
splines are seldom used.
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2. Notation and preliminaries

To make the complex notation involved in Chebyshev spline theory simpler, we
begin by introducing the linear operators of duality and reduction:

duality: Di =

⎛
⎝ 0 · · · 1

...
. . .

...
1 · · · 0

⎞
⎠, Di : Ri → Ri , i = 1, · · ·n − 1,

reduction: Ri =

⎛
⎝ 0 1 · · · 0

...
...

. . .
...

0 0 · · · 1

⎞
⎠, Ri : Ri → Ri−1, i = 2, · · ·n − 1.

Now, let us consider an interval δ ⊆ [a, b], measurable with respect to the Stieltjes
measures dσ2, . . . dσn. If we define dσ : = (dσ2(δ), . . . dσn(δ))T ∈ Rn−1 to be the
density vector, then a canonical Chebyshev system (or CCT-system) S(n, dσ) of
order n is a family of functions {u1, . . . un} that can be represented in the form:

u2(x) = u1(x)
∫ x

a

dσ2(t2)

...

un(x) = u1(x)
∫ x

a

dσ2(t2) . . .

∫ tn−1

a

dσn(tn).

If all of the measures dσi are dominated by the Lebesgue measure, then they possess

densities 1
pi

, i = 2, . . . n; if pi are smooth, i.e.
1
pi

: =
dσi

dt
∈ Cn−i+1, the functions

form an Extended Complete Chebyshev System (ECT-system) [18].
The operators of duality and reduction can now be used to define reduced, dual,

and reduced dual Chebyshev systems, as Chebyshev systems defined, respectively,
by appropriate measure vectors:

j-reduced system: S(n − j, Rn−j · · ·Rn−1dσ)
dual system: S(n, Dn−1dσ)
j-reduced dual system: S(n − j, Rn−j · · ·Rn−1Dn−1d̄σ)

(j = 1, . . . n − 1).

If we define operators Dj as certain measure derivatives via formulæ

Djf(x) : = lim
δ→0+

f(x + δ) − f(x)
σj+1(x + δ) − σj+1(x)

j = 1, . . . , n − 1,

then the generalized derivatives are defined to be the linear operators
Lj,dσ : S(n, dσ) → S(n − j, Rn−j · · ·Rn−1dσ), Lj,dσ : = Dj · · ·D1D0, where
D0f :=f/u1. The generalized derivatives exhibit the same behaviour as the or-
dinary ones applied to powers of x:

Lj,dσui =
{

0 i = 1, 2, . . . j
uj,i−j i = j + 1, . . . , n.
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The version of the fundamental theorem of integral calculus also holds:
Lemma 1. Let {ui}n

i=1 be the CCT-system on [a, b], f ∈ L{u1, . . . , un} and
a ≤ c ≤ d ≤ b. Then

f(d)
u1(d)

− f(c)
u1(c)

=
∫ d

c

L1,dσf(t)dσ2(t). (3)

Proof. Because of linearity, we can prove (3) for f = uj ; let also j = 3 for the
sake of brevity. Then

∫ d

c D1D0u3(t)dσ2(t) =
∫ d

c D1
u3
u1

(t)dσ2(t) =
∫ d

c D1

∫ t

a

∫ t2
a dσ3(t3)dσ2(t2)dσ2(t)

=
∫ d

c
limδ→0+

t+δ
a

t2
a

dσ3dσ2(t2)− t
a

t2
a

dσ3(t3)dσ2(t2)

σ2(t+δ)−σ2(t) dσ2(t)

=
∫ d

c
limδ→0+

t+δ
t

dσ2(t2)
t2
a

dσ3(t3)

σ2(t+δ)−σ2(t) dσ2(t)

=
∫ d

c
limδ→0+(−σ3(a) + 1

σ2(t+δ)−σ2(t)

∫ t+δ

t
σ3(t2)dσ2(t2)dσ2(t)

=
∫ d

c
{−σ3(a) + limδ→0+

1
σ2(t+δ)−σ2(t)ξ(δ)

∫ t+δ

t
dσ2(t2)}dσ2(t)

where σ3(t) ≤ ξ(δ) ≤ σ3(t + δ).1 The above expression then simplifies to

∫ d

c (−σ3(a) + σ3(t)dσ2(t) =
∫ d

c

∫ t2
a dσ3(t3)dσ2(t2)

=
∫ d

a

∫ t2
a dσ3(t3)dσ2(t2) −

∫ c

a

∫ t

a dσ3(t3)dσ2(t2)

= u3(d)
u1(d) − u3(c)

u1(c)
. �

We conclude next that the CCT-system S(n, dσ) = {u1, . . . yn} consists of functions
with positive Wronskian, that is, if li = max {j : ti = · · · = ti−j}, i = 1, . . . , n,
then

det[Lliuj(ti)] > 0, i = 1, . . . , n; j = 1, . . . , n.

This follows from the fact that the proof given in [18] relies only on Lemma3.
We define Chebyshev spline spaces in the usual way: for a partition (1) ∆ =

{xi}k+1
i=0 of an interval [a, b] and a given multiplicity vector m = (n1, . . . , nk)T , we

define Chebyshev spline space S(n, m, dσ, ∆) as a space of functions satisfying

(i) for all s ∈ S(n, m, dσ, ∆), i = 0, . . . , k, there exists si ∈ S(n, dσ) such that
s|∆i = si|∆i , (∆i : = (xi, xi+1) and

(ii) Lj,dσsi−1(xi) = Lj,dσsi(xi) for j = 0, . . . n − 1 − ni, i = 1, . . . , k.
1Should σ3 be continuous, by the classical mean value theorem one obtains:

t+δ

t
σ3(t2)dσ2(t2) = σ3(ξ)

t+δ

t
dσ2(t2)

for some ξ, t ≤ ξ ≤ t + δ
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Since the construction of locally supported splines in S(n, m, dσ, ∆) is purely
algebraic, by using only Lemma1 and determinant identities, we infer that such
splines exist, even for noncontinuous σi [16, 19]. In what follows we shall assume
that T n

i,dσ ∈ S(n, m, dσ, ∆) are unique such splines, called Chebyshev B-splines,
possessing compact support [ti, ti+n], over which they are positive, and satisfy the
partition of unity:

n+K∑
i=1

T n
i,dσ(x) = 1, K : =

∑
i

ni. (4)

By a more recent result T n
i,dσ can also be defined recursively by B-splines in re-

duced systems. The well known derivative formula for polynomial B-splines can be
generalized to Chebyshev splines:

Theorem 1. Let L1,dσ be the first generalized derivative with respect to the
CCT-system S(n, dσ), and let the multiplicity vector m satisfy ni < n − 1 for

i = 1, . . . k. Then for x ∈ [a, b] and i = 1, . . . , n +
k∑

i=1

ni the following derivative

formula holds:

L1,dσT n
i,dσ(x) =

T n−1
i,Rn−1dσ(x)

Cn−1(i)
− T n−1

i+1,Rn−1dσ(x)

Cn−1(i + 1)
(5)

where

Cn−1(i) : =
∫ ti+n−1

ti

T n−1
i,Rn−1dσdσ2. (6)

Proof. The “smooth” version of (5) was used in [2] to define Chebyshev B-
splines, and is also used in [14]. The purely algebraic proof is somewhat longer and
can be found in [15]. �

The recursive definition of Chebyshev splines implied by integration of the deriv-
ative formula (5) cannot be used efficiently for numerical calculation of local basis,
even for polynomial splines. We will show that for n = 4, under some mild ad-
ditional hypotheses, one can bypass the inherent instability involved in (5), and
obtain a stable numerical algorithm.

3. Local basis

Let n = 4, and dλ denote the Lebesgue measure. Consider the special CCT-system
{1, u2, u3, u4}:

u2(x) =
∫ x

0

dσ2(t2)

u3(x) =
∫ x

0

dσ2(t2)
∫ t2

0

dσ3(t3)

u4(x) =
∫ x

0

dσ2(t2)
∫ t2

0

dσ3(t3)
∫ t3

0

dλ(t4).
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We wish to construct a local basis for the space spanned by these functions, that is
B-splines in S(4, m, dσ, ∆), dσ = (dσ2, dσ3, dλ)T ; the Chebyshev analog of cubic
splines. To this end, we shall make the following hypothesis:

Hypothesis Let S(4, m, dσ, ∆) be such that third order Chebyshev B-splines
T 3

i,R3dσ in the reduced system S(4, m, R3dσ, ∆) can be evaluated at the knots.
By hypothesis, we can evaluate B-splines regardless of the multiplicity of the

knots; therefore, we can reinsert each knot, that is define the multiplicity vector m̃ =
(2, . . . 2)T on the same knot sequence. Since S(3, m, R3dσ, ∆) ⊂ S(3, m̃, R3dσ, ∆),
we conclude that δ3

j ∈ R exist such that T 3
j (x) =

∑
i δ3

j (i)T̃ 3
j (x). It is not difficult

to prove that δ3
j (i) = 0 for i �∈ {r, r + 1, r + 2}, where r is an index such that

tj = t̃r < t̃r+1. It also follows that othherwise δ3
j (i) > 0. In fact, it is not difficult

to calculate the δ3
j (i) coefficients:

Lemma 2. Let T 3
j,R3dσ ∈ S(3, m, R3dσ, ∆) be a Chebyshev 3rd order spline

associated with the multiplicity vector m = (1, . . . 1)T , and let us assume that
T̃ 3

j,R3dσ ∈ S(3, m̃, R3dσ), ∆) are B-splines associated with the multiplicity vector
m̃ = (2, . . . 2)T on the same knot sequence. If {t1, . . . tk+6} and {t̃1, . . . t̃2k+6} are
the associated extended partitions, and r an index such that tj = t̃r < t̃r+1, then
for j = 1, . . . k + 3:

T 3
j,R3dσ = T 3

j,R3dσ(tj+1)T̃ 3
r,R3dσ + T̃ 3

r+1,R3dσ + T 3
j,R3dσ(tj+2)T̃ 3

r+2,R3dσ .

Proof. Let us temporarily drop the second index in T 3
j,R3dσ , since dσ3 does not

play any role in the proof. By utilizing the fact that T 3
j (tj) = T 3

j (tj+3) = 0, the same
being true for the first generalized derivatives, we conclude that two out of three
coefficients representing T 3

j on each interval of its support are zero. For x ∈ (tj , tj+1)
we have T 3

j (tj+1) = δ3
j (r)T̃ 3

r (tj+1). Since (4) applied to S(3, m̃, R3dσ, ∆) implies
that T̃ 3

r (tj+1 = 1, it remains to show that the middle coefficient is equal to 1. For
x ∈ (tj , tj+1) partition of unity (4) gives

T 3
j−1(x) + T 3

j (x) + T 3
j+1(x) = 1.

We expand T 3
i , i ∈ {j − 1, j, j + 1} in S(3, m̃, R3dσ, ∆), and rearrange the terms

to obtain

1 = T̃ 3
r (x)[T 3

j−1(tj+1) + T 3
j (tj+1)] + δ3

j (r + 1)T̃ 3
r+1(x) +

T̃ 3
r+2(x)[T 3

j (tj+2) + T 3
j+2(tj+2)].

Expressions in [ ] are equal to 1 by (4) applied at the knots tj+1, tj+2. But (4) must
also hold for B-splines in S(3, m̃, R3dσ, ∆), and, since the expansion of unity in
this space is unique, we must have δ3

j (r + 1) = 1. �

Let us proceed towards a more interesting “cubic” case. First we note that, at
least in theory, one can construct two-interval supported T 4

j,dσ ∈ S(4, m̃, dσ, ∆) by
Hermite interpolation ([3]), since the function and its L1,dσ derivatives are known
at the knots; this construction is purely local, and uniqueness is guaranteed by (4).
Assume that such an interpolant can be constructed and evaluated numerically. We
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can then try to expand the general B-spline in terms of the less smooth ones which
we know, and thus obtain the evaluation formulæ by this special simultaneous knot
insertion algorithm, belonging to the class of Oslo algorithms [4].

Theorem 2. Let T 4
j,dσ ∈ S(4, m, dσ, ∆), T̃ 4

j,dσ ∈ S(4, m̃, dσ, ∆), multiplicity
vectors m, m̃ being as in Lemma 2 Then positive δ4

j (i), dependent on dσ3 exist,
such that

T 4
j,dσ =

r+3∑
i=r

δ4
j (i)T̃ 4

i,dσ ,

where r = rj satisfies

tj = t̃rj < t̃rj+1.

Let the extended partitions be {t1, . . . tk+8} and {t̃1, . . . t̃2k+8}. Then δ4
j (i), i =

r, . . . r + 3 are determined by the formulæ:

δ4
j (r) =

T 3
j,R3dσ(tj+1)C̃(r)

T 3
j,R3dσ(tj+1)C̃(r)+C̃(r+1)+T 3

j,R3dσ(tj+2)C̃(r+2)

δ4
j (r + 1) =

T 3
j,R3dσ(tj+1)C̃(r)+C̃(r+1)

T 3
j,R3dσ(tj+1)C̃(r)+C̃(r+1)+T 3

j,R3dσ(tj+2)C̃(r+2)

δ4
j (r + 2) =

T 3
j+1,R3dσ(tj+3)C̃(r+4)+C̃(r+3)

T 3
j+1,R3dσ (tj+2)C̃(r+2)+C̃(r+3)+T 3

j+1,R3dσ(tj+3)C̃(r+4)

δ4
j (r + 3) =

T 3
j+1,R3dσ(tj+3)C̃(r+4)

T 3
j+1,R3dσ (tj+2)C̃(r+2)+C̃(r+3)+T 3

j+1,R3dσ(tj+3)C̃(r+4)

where, as in (6)

C̃(i) =
∫

support

T̃ 3
i,R3dσdσ2.

Proof. By an argument similar to that in Lemma2, we obtain T 4
j,dσ(x) =∑r+6

i=r−2 δ4
j (i)T̃ 4

i,dσ(x). After applying the first generalized derivative L1,dσ to both
sides, according to (5), and rearranging, we have

T 3
j,R3dσ(x)
C3(j)

− T 3
j+1,R3dσ(x)
C3(j + 1)

=
∑

i

δ4
j (i) − δ4

j (i − 1)

C̃3(i)
T̃ 3

i,R3d sig(x), (7)

where C3(i) =
∫ ti+3

ti
T 3

i,R3dσdσ2 and C̃3(i) =
∫ t̃i+3

t̃i
T̃ 3

i,R3d sigdσ2. We may integrate
the expression for Tj,R3dσ in Lemma2 with respect to the measure dσ2 to obtain

C3(i) =
∑

l

δ3
i (l)C̃3(l),
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C̃3(l) being defined in Lemma 2 Then (7) leads to the linear system for δ4
j (i), i =

r, . . . r+4; other coefficients are zero by compact the support argument. The matrix
of the system and its inverse are:

⎛
⎜⎜⎜⎝

1 0 0 0 0
−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1

⎞
⎟⎟⎟⎠ ,

respectively, and the proof follows when we apply the inverse to the right-hand side
of the system. �

4. Applications

There is a number of interesting special cases. Let us assume that a partition and
a refined partition are as shown in Figure 1:

t1 t2 t3 t4 t5 t6 t7

t̃1 t̃3 t̃5 t̃7 t̃9 t̃11 t̃13

t̃2 t̃4 t̃6 t̃8 t̃10 t̃12 t̃14

Figure 1. Partition and a refined partition

If dσ = (dλ, dλ, dλ)T , we have the well known formula for polynomial B-
splines [4]:

B4
2 =

t3 − t2
t5 − t2

B̃4
4 +

t4 − t2
t5 − t2

B̃4
5 +

t6 − t4
t6 − t3

B̃4
6 +

t6 − t4
t6 − t3

B̃4
7 . (8)

If dσ is a measure with positive piecewise constant density, and dσ = (dλ, dσ, dλ)T ,
we obtain polynomial B-splines with prescribed jumps in second derivatives, appear-
ing in some convexity preserving approximations. This explicitly solves the problem
of finding the local basis for Foley’s weighted splines [14, 6]. The formula becomes
more involved:

T 4
2 =

γ3
2(4)
‖γ3

2‖
B̃4

4 +
γ3
2(4) + γ3

2(5)
‖γ3

2‖
B̃4

5 +
γ3
3(7) + γ3

3(8)
‖γ3

3‖
B̃4

6 +
γ3
3(8)
‖γ3

3‖
B̃4

7

where

γ3
2(4) =

dσ(t2, t3)
dσ(t2, t4)

(t4 − t2)

γ3
2(5) = t4 − t3

γ3
2(7) = t5 − t4

γ3
2(8) =

dσ(t5, t6)
dσ(t4, t6)

(t6 − t4) .
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In the weighted spline case the B̃4 stands for polynomial splines as in the first
example. This is due to the fact that splines on the refined knot sequence do not
have their second derivatives constrained in any way, and must therefore be equal
to the polynomial B-splines by uniqueness argument: T̃ 4

dσ ≡ B̃4.
Finally, let us consider splines piecewisely in L{1, x, exp (px), exp (−px)}, where

p > 0 [1]. This is a space of tension splines [11, 12], with uniform tension para-
meter p. The functions span an ECT-space, but it is less obvious that we may
take dσ = (dt cosh (pt), dt/ cosh (pt), dt cosh (pt))T . The first generalized derivative
L1f(t) = f ′(t)/ cosh (pt) takes the tension spline space to the very simple space of
hyperbolic splines [17]. The hypothesis is verified directly, since a de Boor-Cox type
formula exists for B-splines in S(4, m, R3dσ, ∆), namely:

T 3
j,R3dσ = const.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

sinh2 (p/2)(x−tj )

sinh (p/2)(tj+2−tj) sinh (p/2)(tj+1−tj)
, x ∈ (tj, tj+1)

sinh2 (p/2)(x−tj ) sinh2 (p/2)(tj+2−x)

sinh (p/2)(tj+2−tj) sinh (p/2)(tj+2−tj+1)
+

sinh2 (p/2)(tj+3−x) sinh2 (p/2)(x−tj+1x)

sinh (p/2)(tj+3−tj+1) sinh (p/2)(tj+2−tj+1)
, x ∈ (tj+1, tj+2)

sinh2 (p/2)(tj+3−x)

sinh (p/2)(tj+3−tj+1) sinh (p/2)(tj+3−tj+2)
, x ∈ (tj+2, tj+3)

,

where const. = cosh p
2 (tj+2 − tj+1). To apply Theorem 2, we need to calculate

the integrals in (7), what can be done by positive weights integration formula, or
analytically.
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