PROFESIONALNA OBOLJENJA SVARIVAČA

Prikazan je problem profesionalnih oštećenja kod svarivanja na osnovu podataka iz strane literature i vlastitih iskustava. Opisan je tehnološki proces, opasnosti u radu, profesionalne bolesti i zaštita pri svarivanju.

U vezi s neglim razvojem poslijeratne industrije kod nas je znatno porastao broj svarivača. Svarivanje je tehnološki proces, koji se mnogo primjenjuje u metalnoj industriji, a naročito kod gradnje brodova, mostova i drugih velikih metalnih objekata. U posljednje vrijeme mnogi upozoravaju na neke pojave, koje su javljaju kod svarivača zaposlenih u našoj industriji. Vrlo često se čuje pitanje, da li je svarivanje štetno po zdravlje i da li se radnici zaposleni kod svarivanja mogu otrovati; postoje li kod svarivača neke specifične bolesti, tipične za tu profesiju; da li svarivanje predstavlja neku naročitu opasnost po zdravlje žena, i mogu li se žene zaposlitи kao svarivači? Potaknuti takvim i sličnim pitanjima, odlučili smo da prikažemo naša opažanja i podatke o zdravlju svarivača objavljene u stranoj literaturi.

Sigurno je, da radnici zaposleni u pojedinim zvanjima obiljevaju od takvih oboljenja, koja su za to svranja tipična. Isto tako ima zvania, u kojima se profesionalna i ostala oboljenja pojavljaju u mnogo većem broju, nego na pokazuju prosječne statističke vrijednosti radničkog poboljša. Ima međutim i takvih zvania, koja su neopravdano obilježena većim poboljom od neke bolesti. Kao primjer možemo spomenuti otrovanja olivom u grafičkoj struci. Nekoč se smatralo, da grafičari često obilježavaju od otrovanja olivom. Objektivna istraživanja, koja su vršena u raznim zemljama posljednjih 20 godina, pokazala su, da je to mišljenje neopravdano. Takva istraživanja isvršili su korin i mi (od 1938. do 1940. g.) na razmjerno velikom broju grafičkih radnika (1938). Tom prilikom je utvrđeno, da grafičari vrlo rijetko obilježavaju od otrovanja olivom. Samo u 0,4% slučajeva nađeni su rani znakovi oštećenja olivom, a tipična otrovanja olivom uopće nisu opažena. Naši rezultati podudarali su se s rezultatima, koji su objavljeni u isto vrijeme u ostalim evropskim zemljama.

Slično mišljenje postojalo je i o zdravlju svarivača. Mnogi su smatrali (a neki i danas tako misle), da je svarivanje neobično opasno po zdravlje. U medicinskoj literaturi objavljeni su brojni
slučajevi najraznovrsnijih oboljenja (uopće pluća, seksualna slabosti, pogoršanje tuberkuloznih procesa i t. d.), koja su dovedena u vezu sa svarivanjem. Istraživanja, izvršena posljednjih godina, potpuno su rasvjetlila objektivne opasnosti, koje prijete zdravlju radnika zaposlenih kod svarivanja. Nastojat ćemo, da prikažemo patologiju i zaštitu rada kod svarivanja i da na taj način koristimo svakom liječniku i tehničkom stručnjaku, koji ima zadatka, da se brine o zdravlju svarivača.

TEHNOLOŠKI PODACI

U modernoj je metalnoj industriji svarivanje jedna od metoda, koja se najčešće upotrebljava za spajanje metalnih predmeta. Pod svarivanjem razumijeva se takvo spajanje metalnih dijelova, koje se osniva na principu taljenja kontaktnih rubova. Kod toga se rastalčena masa stopi u homogenu cjelinu, i a, kad se ukutri, predstavlja čvrstu spojnica između svarovanih predmetima.

Ima raznovrsnih metoda svarivanja. Ponašnje treba razlikovati autogeno i heterogeno svarivanje. Autogeno svarivanje je direktno spajanje istovršnih metalnih predmeta u homogenu cjelinu. To se provodi na taj način, da se dodirne plohe, koje se spajaju, rastale spomoću topline, koja se najčešće dobiva izgaranjem plinske smjese ili iz električne energije. Spajanje se može potpomoći dodavanjem istovrsnog metal. Od metoda autogenog svarivanja najviše je rasprostranjeno plinsko i električno učno svarivanje.

Pod heterogenim svarivanjem razumijeva se spajanje metalnih predmeta, koje se vrši spomoću dodavanja nekog dopunskog metal, koji nije istog sastava kao metalni predmeti, što se spajaju. Kod toga svarivanja dodirne se plohe ne rastale. Vrsta heterogenog svarivanja je lemljenje (slatanje), koje se narčito mnogo primjenjuje u obrtu (limari, električari i t. d.).

Plinsko svarivanje. Današ se u industriji zbog tehničkih i ekonomskih razloga plinsko svarivanje sve manje primjenjuje. Sve se više upotrebljava električno svarivanje, koje je mnogo jeftinije, a i s tehničkog stajališta često mnogo bolje. Plinsko svarivanje se rastalčima i danas upotrebljava za neke specijalne poslove (na pr. za svarivanje bakra, bronce, aluminija i t. d.), a posećne toga ono je još uvijek veoma rasprijeđeno u našoj zaostaloj površini i industriji.

Plinsko svarivanje se vrši spomoću smjesa plinova. Najvažniji dio plinske smjese čini kisik (izuzetno se umjesto čistog kisika upotrebljava komprimirani zrak) Pored kisika, koji podržava gorjenje, uvodi se u plinsku smjesu jedan od plinova, koji gore: acetilen, metan, vodič, rasvjetni plin, pare benzena i t. d. Plin, koji gori, mijesta se s kisikom u specijalnom plameniku. Kod izgaranja nastaje vrlo visoka temperatura od 2000 do 3500°C. Kisik se pod pritiskom od 150 atmosfera sprema u čelične boce enablanjene reduktijskim.
ventilom, koji ima zadatak, da smanji tlak pilna od 150 atm. (koji je u boc) na radni tlak od 0,1 do 6 atm. Za dobivanje acetilena upotrebjava se kalcijev karbid, koji se u formi finih zrnaca ili većih komada (1 do 5 cm) čuva u specijalnim limenim baćvama. S kalcijevim karb idom treba postupati vrlo oprezno, jer se u dodiru s vlagom iz kalcijeva karbida stvara acetilen (CaC₂ + H₂O = CaO + C₂H₂ acetilen, CaO + H₂O = Ca(OH)₂, gašeno vapan), koji je u smjesi sa zrakom već u omjeru od 2,5 vol. % vrlo eksplozivan (tablica 1). Zbog toga se kalcijev karbid mora čuvati u suhim prostorijama, u čistim zatvorenim metalnim baćvama, s kojima treba vrlo oprezno rukovati. Acetilen, koji se upotrebljava kod svarivanja, dobiva se uglavnom na dva načina; ili iz specijalnih aparata, koji se osnivaju na principu kvašenja kalcijeva karbida vodom, ili u obliku t. zv. Dissou-gasa. Dissou-gas je acetilen otopljen u acetonom, a smješten u specijalnim čeličnim bocama, koje su ispunjene poroznim materijalom (na pr. plovučcem), koji imbibira otopinu acetilena u acetonom. Treba naime istaknuti, da se acetilen ne može, zbog svoje izvanredne eksplozivnosti, čuvati komprimiran u čeličnim bocama, kao što se to radi s ostalim plinovima (kisik, vodik, metan i t. d.). Za dobivanje acetilena postoje najraznovrsniji aparat, od malih aparat, koji se prenose i upotrebljavaju u obrtničkim radionicama, do velikih centralnih stanica za proizvodnju acetilena, iz kojih se onda sponsoču sistema željeznih ili olovnih cijevi transportira acetilen po cijelom poduzeću na pojedina radna mjesta. Kalcijev karbid gotovo uvijek sadržava neke otrove primješke, na pr. kalcijev fosfid ili sulfid, razne dušikove spojeve i t. d. Zbog djelovanja vode na kalcijev fosfid razvija se fosforovodik, a djelovanjem vode na kalcijev sulfid, sumporovodik. To su otrovni plinovi, kojih mogu biti vrlo opasni po zdravlje svarivača, a i iz tehničkih razloga treba ih ukloniti iz plinske smjese. Zato se acetilen, koji se dobiva iz aparata, prije upotrebe čisti. Čišćenje se vrši tako, da se acetilen provodi kroz specijalnu napravu, u kojoj se nalazi porozna materijala, koja ima katalitičko djelovanje (Katalysol, Acagin i t. d.). U našoj industriji, a naročito u obrtničkim radionicama, vrlo se rijetko mogu naići dobre naprave za čišćenje acetilena. Neki misle, da je dovoljno, da se acetilen provede kroz vodu, i smatraju, da se acetilen na taj način može čistiti od otrovnih primjesa. No to nije tako. Vodu će se zadržati amonijak i čestice gašenog vapna, ali najopasniji otrovni plinovi, kao na pr. fosforovodik, sumporovodik i arsenovodik, proći će neprumijenjeni kroz vodu, a upravo su ti plinovi neobično opasni po zdravlje svarivača (naročito, ako djeluju u smjesi).

Zbog opasnosti od eksplozije snadbjevem su acetilenski aparati specijalnim napravama, koje sprečavaju povratak plamena iz plamenika u acetilenski aparat i pristup kisika iz zraka do acetilenskog rezervoara. Pored acetilena, kako je spomenuto, mogu se za svarivanje primijeniti i razni drugi plinovi: vodik, metan, rasvjetni plin, parce
ELEKTRICNO LUČNO SVARIVANJE

PLINSKO SVARIVANJE

Brzina plinske struje 90-120 m/s
benzena i t. d. Većina se spomenutih plinova upotrebljava stlačena pod pritiskom od oko 180 A u čeličnim bocama na isti način kao i kisik. Svi ti plinovi su isto tako kao i acetilen više ili manje eksplozivni (tablica 1). U tome je leži glavna opasnost kod plinskog svarivanja. Treba reći nešto o otrovnosti tih plinova. Ako izuzmemo eventualna onečišćenja, onda acetilen, a i većina drugih spomenutih plinova, djeluju kao obični fiziološki inaktivni zagusišljivci, i prema tome treba ocijeniti i njihovu otrovnost. Za razliku od ostalih plinova, rasvjetni plin neobično otvoren zbog primjese ugljičnog monoksida (4—30%), a veoma su otrovne i pare benzena, no ti se plinovi, koliko nam je poznato, kod nas za svarivanje gotovo i ne upotrebljavaju.

TABLICA 1.

Eksplozivne koncentracije plinova i para, što se upotrebljavaju kod plinskog svarivanja (prema L. Silvermanu 1947)

<table>
<thead>
<tr>
<th>Naziv plina ili pare</th>
<th>Donja granica volumni %</th>
</tr>
</thead>
<tbody>
<tr>
<td>acetilen</td>
<td>2,3</td>
</tr>
<tr>
<td>benzen</td>
<td>1,5</td>
</tr>
<tr>
<td>metan</td>
<td>5,3</td>
</tr>
<tr>
<td>rasvjetni plin</td>
<td>4,8</td>
</tr>
<tr>
<td>vodik</td>
<td>4,1</td>
</tr>
</tbody>
</table>

Od aparata za protuzvodnju acetilena, ili, ako se acetilen proizvodi u centralnoj stanici, od razvodnih cijevi, prolazi acetilen kroz gumene cijevi (obično oko 5 m dugu) u plamenik, gdje se miješa s leškom u gotovu smjesu (sl. 1).

Električno svarivanje. U industriji i obrtu primjenjuju se raznovrsni sistemi električnog svarivanja. Jedni se služe otvorom, što ga predmeti, koji se svaruju, pružaju prolazu električne struje (otporno svarivanje), a drugi rade na principu električnog luka. Kod otpornog svarivanja za dobivanje toplinske energije upotrebljava se električna struja izvanredne jakosti (00.000 A), a niskog napona (do 10 V). Ta vrsta svarivanja vrši se spomoću specijalnih strojeva. Na mjestima, gdje električna energija prelazi na predmete, koji se svaruju, nastaje velik otvor. Zbog toga se razvijaju goleme količine toplinske energije, koja pretvara metal, što se svaruje, u plastičnu masu i tako omogućuje, da se metalni predmeti spomoću mehaničkog pritiska evanu. Ta vrsta svarivanja ne predstavlja naročitu opasnost po zdravlje.

Svarivanje spomoću električnog luka osniva se na principu stvaranja lučnog plamena između elektroda. Toplinska energija, koja se kod toga razvija, rastali metal, koji se svaruje, i na taj način se predmeti na mjestu, gdje su rastaljeni, sliju u homogeni
cjelinu. Za električno lučno svarivanje upotrebjava se istosmjerna ili izmjenična struja (to ovisi o metodi svarivanja) s jakoču od 25 do 1000 A i s naponom od 15 do 65 V. U času stvaranja i gašenja električnog luka napon poraste i do 90 V (41). U našoj industriji najčešće čemo susresti sistem električnog svarivanja spomoću metalne elektrode. Kod te metode svarivanja jedan se dovod električne struje priključi na predmet, koji se svaruje, a drugi na metalnu elektrodu (postoje i sistemi svarivanja s ugljenom elektродом). Svarivač dotakne elektrodom metal, što ga svaruje, i onda elektrodu odmakne od predmeta (za nekoliko milimetara). Između elektrode i metala stvori se u tom času električni luk — tok struje se nastavlja kroz posredni plinovit medij. Temperatura u električnom luku poraste i do 4000°C. Pod utjecajem velikih količina toplinske energije, koja se stvara u električnom luku, rastala se istovremeno kontaktne točke predmeta, koji se svaruje, i metalna elektroda. Rastaljeni metal iz elektrode cijedi se i popunjava mjesto, kuje se stapa u solidnu homogenu masu. Kod svarivanja spomoću električnog luka upotrebljavaju se ovi električni mediji: generator i pretvarač električne struje, dva vodiča električne struje, držak za elektrodu i elektroda. Zbog velikih količina radiacijske energije, koja se stvara u luku električnog lučnog svarivanja, postoje opasnosti, koje prijete zdravlju svarivača.

UTJECAJ SVARIVANJA NA ZDRAVLJE SVARIWAČA

Oдakle je Do McVitte 1871 године upotrebio prvi puta svarivanje u industriji akumulatora, te metoda rada naglo se razvijala i usavršava. Već 1889, godine upotrebjava se kod svarivanja metalna elektroda. Narodito nagli razvoj svarivanja možemo opaziti u ratnoj industriji u toku Prvog svjetskog rata. Do još veće upotrebe svarivanja dolazi u ratnoj industriji svih zemalja u toku Drugog svjetskog rata. Svarivanje je naročito istorišeno u brodogradnji. To možemo razabrati iz podataka objavljenih u USA (34). Godine 1940. bilo je u USA ukupno 124.700 svarivača, a 1943. godine 364.000. Pred američku industriju postavljeno je zadatak, da u kratkom roku od svega nekoliko godina izgradi oko 30.000 brodova raznog tipa, a od toga više od 3.000 velikih brodova klase Liberty, Victory i t. d. Do tog vremena upotrebljavalo se u brodogradnji, kao jedna od osnovnih metoda rada, zakivanje. Pokazalo se međutim, da se na izgradnji broda uštedi 25% vremena, ako se u izgradnji primijeni svarivanje umjesto zakivanja. Za izgradnju jednog broda klase Liberty treba izvršiti oko 48 km ručnog i oko 10 km mašinskog svarivanja. Razumljivo je, da je zbog toga u američkoj brodogradnji znatno porastao i broj svarivača. Dok je u martu 1940. g. bilo zaposleno svega 9.000 svarivača na gradnji brodova, iznosio je broj svarivača zaposlenih u brodogradnji u decembru 1943. g. 180.000.
U vezi s povećanim brojem radnika došlo je i u Americi do jedne vrlo interesantne pojave. Već 1943. g. javljeni su s raznih strana među svarivačima brojni slučajevi oboljenja respiratornih organa. Prema tim vijestima svarivači su oboljevali iza rada od nekoliko mjeseci u naročite bolesti izražene akutnim simptomima narašćanjem respiratornim putovima (aggravirajući jutarnji kašalj, koji se često svišavaju povraćanjem, tragovi krvi u sputumu). U vezi s tim, a budući da se sumnjalo u profesionalno porijeklo simptoma, izvršena je u toku 1944. g. opsežna ispitivanja svarivača (4650 pregleda) zaposlenih u američkoj brodogradnji. Ta ispitivanja imala su zadatak, da utvrde zdravstveno stanje i opasnosti, kojima su izvrnuti svarivači u svom zvanju. Rezultatima tih ispitivanja (34) služili su se vrlo često u toku daljih izlaganja.

Kako je u uvodu spomenuto, postoji i kod nas mišljenje, i to nježno, već i kod stručnjaka tehničara, da je svarivanje neobično štetno po zdravlje, "da se svarivači stalno truju", da u velikom broju obolijevaju od raznih profesionalnih oboljenja, koja se ne mogu izbjegati i t. d. Prijeko je potrebno, da se pitanje svarivanja razmotri sa zdravstvenog stajališta i da se objektivno ocijene sve one opasnosti, koje u toku rada prijeti zdravlju svarivača. To je u prvom redu potrebno zbog toga, da se pravovremeno provedu sve higijensko-tehničke zaštitne mjere, koje će zaštititi život i zdravlje radnika zaposlenih kod svarivanja. To je potrebno i zbog toga, što je svarivanje stigmatizirano kao jedno po zdravlje neobično opasno zvanje. Iz daljih izlaganja vidjet će se, da to stajalište nije opravdano. Kod svarivanja traje, istina, utvrditi neke specifične opasnosti, međutim je nisu od tolikog značenja, da bi zdravstvena kondicija svarivača bila gora od one, koju opažamo kod radnika drugih slučajnih zvanja (kovači, ljevači, staklari i t. d.). Naprotiv, brojna ispitivanja vršena u raznim zemljama svijeta (a i naša opažanja) pokazala su, da je zdravstveno stanje svarivača često mnogo bolje od zdravstvenog stanja radnika zaposlenih u sluičajnim zvanjima.

Kad promatramo, kako pojedine vrste rada utječu na čovječje zdravlje, onda moramo:
1. razmotriti sve one pojave, koje mogu u toku radnog procesa štetno utjecati na čovječje zdravlje i,
2. pronaciti sva ulazna vrata na čovječjem tijelu, kroz koja te pojave djeluju.

Oпасности по здравље у вези са сваривањем. Pojave, koje u toku svarivanja mogu oštetiti zdravlje svarivača i ostalih radnika zaposlenih u okolini, gdje se svaruje, vezane su uz energije i materije, koje se kod svarivanja upotrebljavaju i razvijaju. Na ovom mjestu bit će prikazane sve one štetnosti, koje stoje u vezi s autogenim plinskih i električnim lučnim svarivanjem.

1. Radiačijska energija: Pod radiačijskom energijom razumi jevamo energiju, koju prenose elektromagnetski valovi brzinom od
Vrste elektromagnetcke radijacije razlikuju se po valnim dužinama. Elektromagnetski valovi čine radijacijski spektar, kojem se na jednom kraju nalaze električni valovi izvanredno velike valne dužine (10^11 cm), a na drugom kraju neočito tvođe gama zrake, koje imaju valnu dužinu i do 10^-12 cm. Duljina vala može se izraziti i u angstromima (1 Å = 0,1 milimikrona). Biološke fenomene, koje treba raspraviti u vezi s radijacijskom energijom, što se razvija kod plinskog i električnog lučnog svarivanja, uzrokuju ultraljubičaste, vidljive i infračrvene zrake, i to one, koje leže u elektromagnetskom spektaru u granicama od 2000 do 15000 Å. Pojedina područja radijacijskog spektra ne razlikuju se među sobom samo po svojim fizikalnim osobinama, već i po svojoj fiziološkoj aktivnosti.

Svako tijelo, koje ima temperaturu iznad apsolutne nule, emitira elektromagnetske valove. Ta emisija upravlja se u idealnom slučaju apsolutnog crnog tijela po Planckovu zakonu, koji daje raspodjelu ukupne energije isijavanja po valnim dužinama u ovisnosti o temperaturi. Komad metala ugrijan na temperaturi od 400°C ne će promijeniti boju, ali će početi da emitira nevidljive infračrvene zrake, od kojih će najveći dio imati valnu dužinu od 40 do 50 hiljada Å. Ako temperatura metala poraste na 600 do 800°C, metal će se užariti i postati crven. Kod te će temperature maksimalna emisija energije biti u obliku valova, koji imaju dužinu od 20 do 30 hiljada Å. Kako temperatura užarenog metala raste, tako se ukupna količina emitirane energije povećava, a područje se valnih dužina, kod kojeg isijava najveći dio energije, pomiče prema kratkim valnim dužinama. To znači: što je viša temperatura, to veći dio energije zračenja otpada na ultraljubičaste područje. U isto vrijeme crvena boja užarenog metala prelazi u narančastu, pa svjetložutu, dok se konačno metal ne užari do »bijelog žara« — emisiju svjetlosnih zraka. Specifičnost da emitira ultraljubičaste zrake u zamjetljivoj količini postiže metal onda, kad se ugrije na temperaturu od 3000°C i više. Tako visoke temperature, koje susrećemo izuzetno samo kod specijalnih metaluških procesa, postižu se vrlo često u električnom luku kod autogenog električnog svarivanja (40).

Ultraljubičasta radijacijska energija valne dužine od 2000 do 3900 Å, vidljivi valovi od 3900 do 7700 Å i infračrvena radijacijska energija, koja ima valnu dužinu iznosi 7700 Å, čine onu radijacijsku energiju, koja se razvija u toku električnog lučnog svarivanja i koja predstavlja veću ili manju opasnost po zdravlje svarivača. Kod plinskog svarivanja su količine radijacijske energije, a naročito ultraljubičaste, mnogo manje. Dokazano je na primjer, da je ultraljubičasta radijacijska energija kod električnog lučnog svarivanja 100 puta veća od ultraljubičaste radijacije, koja se javlja u toku plinskog svarivanja (14).

Na ovom mjestu daemo podatke i o sposobnosti pridiranja spomenutih radijacijskih energija. Treba istaknuti, da je moć pene-
tracije svih spomenutih radijacijskih energija, koje se razvijaju u toku svarivanja, vrlo malena. Ultravioletske zrake prodiru kroz kožu i služnice u dubinu od 2 mm. Prodornost vidljivih i infracrvenih zraka nije mnogo veća. Kratke infracrvene zrake prodiru kroz čovečja tkiva u dubinu od 1,5 do 3 cm, a pritom uzrokuju najviše povećanje temperature u dubini od nekih 0,7 cm ispod površine kože. Dugi infracrveni valovi prodiru u dubinu od oko 1 cm. Najnovija istraživanja su pokazala da se 95% onih infracrvenih zraka, koje imaju najveću moć penetracije (valna dužina od 7700 do 14000 Å), absorbiše kod prolaza kroz kožu već u dubini od 2 mm, a 90% u dubini od 3 mm (40).

TABELICA 2.
Elektromagnetski spektar

<table>
<thead>
<tr>
<th>Zrake</th>
<th>Dubina vala u Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>gamma</td>
<td>0,0003 — 0,001</td>
</tr>
<tr>
<td>x-rijeg</td>
<td>0,001 — 0,1</td>
</tr>
<tr>
<td>ultravioletske</td>
<td>0,1 — 3000</td>
</tr>
<tr>
<td>vidljive</td>
<td></td>
</tr>
<tr>
<td>violetske</td>
<td>3000 — 4500</td>
</tr>
<tr>
<td>plavice</td>
<td>4000 — 4900</td>
</tr>
<tr>
<td>zelene</td>
<td>4000 — 5500</td>
</tr>
<tr>
<td>žute</td>
<td>5500 — 7500</td>
</tr>
<tr>
<td>naravnažete</td>
<td>3900 — 5000</td>
</tr>
<tr>
<td>crvene</td>
<td>6300 — 7700</td>
</tr>
<tr>
<td>infracrvene</td>
<td></td>
</tr>
<tr>
<td>kratka</td>
<td>7700 — 14000</td>
</tr>
<tr>
<td>duge</td>
<td>14000 — 2200000</td>
</tr>
<tr>
<td>radiovalovi i električni valovi</td>
<td>2200000 — nekoliko kilometara</td>
</tr>
</tbody>
</table>

Efekt radiacijskog djelovanja ovisi o količini apsorbirane radijacije energije i o fiziološkoj efektivnosti radiacijskih valova.

2. Otvorni plinovi, pare i dimovi.

A) Otvorni plinovi i pare. Kod svarivanja pojavit će se u radnoj atmosferi radni visinu otvorni plinovi. Prema porijeklo treba najprije spomenuti grupu otrovnih plinova, koji nastaju oksidacijom, odnosno redukcijom plinova normalne značaj sve sušene. Oksidacija i redukcija sastavnih plinova zraka (dušika, kisika i ugljenog dioksida) nastaje pod utjecajem topline iz električnog luka ili plinskog plamenja (temperature do 4000°C).

U zraku ima 78,3% dušika, 20,7% kisika i 0,03% ugljenog dioksida. Pored toga se u sastavu zraka nalaze u vrlo malim kol-
činama i razni drugi plinovi (argon, neon i t. d.). U toku svarivanja pod utjecajem topline dolazi do oksidacije dušika i kisika i do redukcije ugljičnog dioksida.

Dušik iz zraka oksidira se u dušikove okside, poznate pod nazivom nitrozni plinovi (18) (24). Poznati su ovi dušikovi oksidi:

- \(\text{N}_2\text{O} \) — anestetično djelovanje
- \(\text{N}_2\text{O}_3 \) — nisu opasni po zdravlje
- \(\text{N}_2\text{O}_5 \) — nadražljivo djelovanje
- NO
- \(\text{NO}_2 \)
- \(\text{N}_2\text{O}_4 \)

U vezi sa svarivanjem ima osobit značaj dušikov monoksid — NO — i dva dioksida \(\text{NO}_2 \) i \(\text{N}_2\text{O}_5 \). Pod utjecajem velikih količina toplinske energije zbuva se u dušikom iz zraka u toku svarivanja ovaj kemijski proces (17):

\[
\begin{align*}
\text{N}_2 + \text{O}_2 & \rightarrow 2 \text{NO} + 43200 \text{ gmkal} \\
2 \text{NO} + \text{O}_2 & \rightarrow 2 \text{NO}_2 + 13900 \text{ gmkal} \\
2 \text{NO}_2 & \rightarrow \text{N}_2\text{O}_4
\end{align*}
\]

Dušikov dioksid — \(\text{NO}_2 \) — je crveno smedi plin karakteristična mirisa. Lako se pretvara u tekućinu (vrelište \(22.4^\circ\text{C} \)), boje je crveno smeđe, koja blijeđi prilikom hlađenja. Kod \(\text{N}_2\text{O}_4 \) kristalizira u bezbojne kristale, a obratno, ako se plin grijie, boja se pojačava i postaje sve tamnija. Te pojave u promjeni boje osnivaju se na činjenici, da se \(\text{NO}_2 \) hlađenjem polimerizira u \(\text{N}_2\text{O}_4 \), koji je bezbojan. Postoji ova ravnoteža, koja mnogo zavisi od temperature:

\[
2 \text{NO}_2 \rightarrow \text{N}_2\text{O}_4 + 14.7 \text{ Kcal (kod } 25^\circ\text{C)}
\]

Kod pritiska od 1 atm. ima u smjesi \(\text{NO}_2 \) i \(\text{N}_2\text{O}_4 \) ovaj procenat raspadnutog \(\text{N}_2\text{O}_4 \) (17):

\[
\begin{array}{cccc}
\text{Temperatura} & 27^\circ\text{C} & 50^\circ\text{C} & 100^\circ\text{C} & 135^\circ\text{C} \\
\text{NO}_2 & 20\% & 40\% & 89\% & 98.7\% \\
\text{N}_2\text{O}_4 & 80\% & 60\% & 11\% & 1.3\%
\end{array}
\]

Dušikov dioksid udahnut u bilu kojoj molekularnoj formi odmah se mijenja, dok se ne postigne ravnoteža, koja odgovara temperaturi tijela. Kod \(40^\circ\text{C} \) (temperatura u respiratornom traktu) je oko 30% dioksida u molekularnoj formi — \(\text{NO}_2 \), a 70% u formi \(\text{N}_2\text{O}_4 \). To je omjer, u kojem nitrozni plinovi djeluju na čovječji respiratori sistem.

196
Kratko vrijeme iza toga, kako je Davy otkrio električni luk (1812), našao je Cavenath, da se u električnom luku stvaraju dušikovi oksidi. Danas je pitanje otvorenja dušikovim oksidima u toku svarivanja potpuno razjašnjeno. U vrijeme spomenutih istraživanja izvršeno je u američkim brodogradilištima (34) više od 2.000 analiza atmosfere na dušikove okside. Nađene su ove koncentracije:

- manje od 5 p. p. m. više od polovine analiza
- manje od 10 p. p. m. više od četiri petine analiza
- 95 p. p. m. i više 1,8% analiza
- više od 40 p. p. m. 0,2% analiza

Najveća koncentracija, koja je nađena, iznosi je 62 p. p. m.

Drinker i njegovi suradnici su utvrdili, da su koncentracije dušikovih oksida u atmosferi veće, ako se kod svarivanja upotrebljavaju elektrode bez ovoja, a manje, ako se upotrebljavaju obložene elektrode (21).

Prema sovjetskim podacima (33) iznosi maksimalna dopuštena koncentracija dušikovih oksida (preračunana na N₂O₅) 0,005 mg/l (1,1 p.p.m.). U najnovijim američkim podacima navodi se za dušikove okside kao maksimalno dopuštena koncentracija 25 p. p. m. (39).

Općenito se smatra (24), da su dušikovi oksidi opasni po zdravlje u koncentraciji od oko 100 p. p. m. (0,3 mg/l) i više. Kod svarivanja u prostorima prostorijama, a i u malim prostorijama, ako je provedena pravilna ventilacija, ne će se tako visoke koncentracije nikada stvoriti. Upotreba od otvaranja dušikovim oksidima postoji samo onda, kad se svarivanje vrši u zatvorenim, tijesnim i nedovoljno ventiliranim prostorijama (kotlovi, rezervoari i t. d.).

Kod svarivanja pod utjecajem ultravioletnih radijacija (dužina vala 1850 A) (40) prelazi atmosferski kisik jednim dijelom u ozon — O₃. Ozon dijeleće u koncentracijama od 1—2 p. p. m. (a to su koncentracije, kod kojih se osjeća miris ozona) kao irritans. Naske (1) je našao kod svarivanja u zoni disanja vrlo male koncentracije ozona od 0,7 mg/m³ (0,4 p. p. m.). Poznato je, da čovjek podnosi bez štete po zdravlje atmosferske koncentracije ozona od 1 p. p. m. (14).

Suprotno podacima, koje je našao Naske, utvrdili su Druskin i Krænskajja [Gigiena truda i tehnika bezopasnosti No 5 (1934) 55, citirano prema 14] u vrijeme svarivanja ozon u toku električnih koncentracijama. Današ se smatra (14) (34), da ozon nastaje pri svarivanju u električnom luku, ali se ponajviše u času, kad ostavlja električni luk, naglo raspada i prema tome ne predstavlja po zdravlje svari-vača neku naročitu opasnost.

Male količine atmosferskog ugljicnog dioksida mogu se pod utjecajem toplinske energije u električnom luku reducirať na
ugljični monoksid (14). Tako nastali ugljični monoksid nema u vrijeme svarivanja s obzirom na malu količinu praktično toksično značenje. Pitanje ugljičnog monoksida bit će raspravljeno u vezi s djelovanjem plinova, koji se stvaraju kod izgaranja acetilena, elektroda i ostalih materija u toku svarivanja.

Prema svemu, što je naprjed rečeno, može se zaključiti, da iz grupa otrovnih plinova, koji nastaju oksidacijom, odnosno redukcijom plinova iz zraka (dušikovi oksidi, ozon, ugljični monoksid), imaju ozbiljno praktično značenje po zdravlje radnika vjerovatno samo dušikovi oksidi.

Dalju grupu otrovnih plinova predstavljaju oni plinovi, koji se stvaraju iz raznih elemenata i spojeva, kojima su onečišćene plinovite smjese, što se upotrebljavaju kod plinovog svarivanja. Već je somento, da se zbog onečišćenja karbida može u acetilenu pojaviti fosforovodik i sumporovodik. Prema nekim podacima može u acetilenu biti do 0,04% fosforovodika (2). Pored toga može u karbidu biti i raznih drugih primjesa: arsena, dušikovih i fluorovih spojeva i t. d. U takvom slučaju može se u acetilenu utvrditi arsenovodik, amoniak i razni drugi manje ili više otrovné plinovi (SO₂, HCN, P₂O₅, H₂F₂ i t. d.). Svi ti plinovi pojavljuju se u radnoj atmosferi u minimalnim koncentracijama, tako da vjerojatno ne predstavljaju veliku opasnost po zdravlje svarivača. U literaturi je opisana prolazna žutica svarivača, koja je prispjena djelovanju fosforovodika (14). Stvar međutim nije potpuno jasna. Držimo, da svi ti otrovné plinovi vodika nisu narušito opasni po zdravlje svarivača, jer izgaraju i zbog toga vjerojatno pod normalnim prilikama i ne dopiru u radnu atmosferu, a kolikо dopiru, onda su to subiščene koncentracije. Međutim ne treba moći da otrovne plinove potpuno izbjegnemo. U izvanrednim prilikama (zbroj onečišćenja, nepotpuno izgaranja) moguće je, da se spomenuti otrovné plinovi pojave u radnoj atmosferi i u toksičnim koncentracijama. Pritom se treba zaboraviti, da su to neobično jak otrovi (tablica 9), a pored toga, se mnogi od njih, kad djeluju u smjesi, među sobom pojačavaju (kumulativno djelovanje).

Gotovo isti otrovné plinovi mogu se utvrditi u malim subtoksičnim koncentracijama i kod elektrošnog lučnog svarivanja. U sastavu elektroda i njihovih ovojnic mogu se naći tragovi najraznovrsnijih elemenata i spojeva (tablica 3), koji u toku svarivanja izgaraju u otrovné plinove. Tako se u radnoj atmosferi i kod elektrošnog svarivanja mogu pojaviti ovi otrovné plinovi: klor, sumporni dioksid, sumporovodik, fosforovodik, cijanovodik, fluorovodik, arsenovodik, silicijev fluorid i t. d.
Naročitu opasnost među otrovnim plinovima, koje treba uzeti u razmatranje, kad se ocjenjuje svarivački rad, predstavlja ugljični monoksid i ugljični dioksid. Kako je poznato, oba se ta plina stvaraju kod potpunog, odnosno nepotpunog izgaranja organske materije i ugljika. Postoje ove mogućnosti, da se kod svarivanja razvije ugljični dioksid i monoksid:

a) kod izgaranja organskog materijala, koji se nalazi u ovojnicama elektroda (celuloza, škrob, doksatin),

b) kod izgaranja ugljenih elektroda,

c) spumenuti plinovi mogu se razviti kod izgaranja acctilena, benzena i ostalih plinovitih omjesa, koje se upotrebljavaju kod plinog svarivanja,

d) kod izgaranja ugljika, koji se nalazi u metalima, što se svaruju (u suvom željezu ima 3—5% ugljika),

e) kod izgaranja organskih unećenja, koja se gotovo uvijek nalaze na površini meta na (masnoće, organske boje i lakovi i t.d.).

Istraživanja su pokazala, da se ugljični dioksid kod električnog svarivanja pojavljuje u radnoj atmosferi u koncentracijama od 0,1—0,88% (6600 p.p.m.), a u blizini električnog luka u koncentracijama od 2,4—3,4% (11). Čini se, da ugljični dioksid, koji se kod svarivanja pojavljuje u atmosferi, ne doseže takve koncentracije, koje bi bile od naročitog značaja po zdravije svarivača.

Pitanje ugljičnog monoksida nije potpuno razjašnjeno. Neki autori su opisali otrovanje ugljičnim monoksidom, koja su nastala u vezi sa svarivanjem (10). U literaturi (2) se spominju i mjerenja, koja su pokazala, da se ugljični monoksid kod svarivanja spomoću acctilena može pojaviti u radnoj atmosferi u koncentracijama od 0,4—0,6 mg/l zraka, a kod električnog lučnog svarivanja u koncentracijama od 0,18 mg/l zraka. Prema američkim podacima (24) iznosi maksimalna dopuštena koncentracija za ugljični monoksid 0,1 mg/l, prema tome su spomenute koncentracije, nađene kod svarivanja, razmjerom dosta visoke. Drugi opet tvrde, da se ugljični monoksid u vrijeme svarivanja ne može dokazati u radnoj atmosferi (7) (12). Vrlo je zanimljivo mišljenje, da se ugljični monoksid uopće ne može razviti u prisustvu uzna i da ga prema tome u plinovima, koji se razvijaju kod svarivanja, ni nema. Sigurno je međutim, da se ugljični monoksid može pojaviti u toksičnim koncentracijama od 1 p.p./10000 u toku svarivanja spomoću acctilena, ako nema dovoljnih količina kisika. U takvom slučaju acetilen, zbog pomanjkanja kisika, izgara u ugljični monoksid. Vjerojatno može doći do stvaranja ugljičnog monoksida i kod nepotpunog izgaranja elektrodnih prevlaka. Već je spomenuto, da ugljični dioksid kod temperatura, koje
nastaju pri svarivanju, disocira u ugljični monoksid i kisik, ali ta disocijacija ide u vanjskim hladnjim slojevima plamena u obratnom smjeru. Zbog toga je vjerojatno, da su koncentracije ugljičnog monoksida, koje bi tim putem došle u radnu atmosferu, vrlo malene.

Prema svemu se može zaključiti, da se ugljični monoksid može u vrijeme svarivanja razviti i postići tokom koncentracije u radnoj atmosferi, ali se isto tako može usvrđiti, da ugljični monoksid ne predstavlja pod normalnim uvjetima rada ozbiljnu opasnost po zdravlje svarivača. Opasnost intoksikacije postoji samo u rijetkim izuzetnim okolnostima, a i to samo onda, kad nisu provedene oštrovne zaštitne mjere.

Kad se govori o problemu otrovnih plinova, ne treba zaboraviti na deficit kisika, koji se može pojaviti onda, kad se svarivanje vrši u tijesnim, neventiliranim prostorima (cisterna, slijepi kanali i t. d.). Deficit kisika ne mora značiti neposrednu opasnost po život radnika, ali može biti jedan od faktora, koji imaju značajnu ulogu u razvoju intoksikacije plinovima.

Po zdravlje svarivača opasne su i pare raznih tvari, koje se mogu naći kao ostaci sadržine u posudama, koje se omaraju (bašva, kotlovi, cisterna i t. d.). To su najčešće pare benzina, benzena, alkohola, raznih kiselina, a u obzir dolazi i oljni tetraetil. Događa se često, da se oštetrone posude, u kojima se spomene tvari transportiraju (a da prije nisu propisno očišćene), popravljaju svarivanjem. Pod utjecajem visoke temperature počinju se ostaci sadržine isparavati. Koncentracije toksičnih para mogu biti vrlo visoke i dovesti do akutnih otrovanja. Pored toga pri tim radovima postoji i opasnost eksplozije (benzin, benzen, alkohol i t. d.).

B) Dimovi. U toku svarivanja razvijaju se velike količine dima, koji se stvara zbog isparavanja rastaljenog metala. Oksidirane pare metala, kad pripadaju iz užarene zone, u kojoj je visoka temperatura, u hladnijoj okolnoj atmosferi, odmah se kondenziraju u metalne dimove. Prema porijeklu možemo razlikovati:

a) dimove iz elektroda,

b) dimove iz žica za svarivanje, kojel se upotrebljavaju za dobivanje dopunskog materijala kod plinskog svarivanja,

c) dimove onih metala (i njihovih primjesa), koji se svaruju,

d) dimove onih metala i raznih drugih elemenata, što se nalaze u onečišćenjima na površini metala, koji se svaruje (galvanotske prevlake, nali neuglovi i cincane boje i t. d.).

U elektrodam i žicama za svarivanje, pošto okoška, željeza ili hakra (koji su najčešće osnovna sastavna elektrode ili žicu), nalaze se još niz drugih primjesa. Prema podacima iz literature (15, 34), mogu se u elektrodam naći najraznovrsniji elementi. Kao primjer navedene su u tablici 3 glavne sastavnine nekih američkih i naših elektroda.
TABLICA 3.
Sastav svarivačkih elektroda

<table>
<thead>
<tr>
<th>Sastavni dio</th>
<th>Američke elektrode</th>
<th>Naše elektrode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E 6013</td>
<td>E 6020</td>
</tr>
<tr>
<td>željezo</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>silicij</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>mangan</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>magnčij</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>kalcijs</td>
<td>3–5</td>
<td>3</td>
</tr>
<tr>
<td>titačij</td>
<td>2</td>
<td>0–2</td>
</tr>
<tr>
<td>aluminij</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>bakar</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>cink</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>olovo</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>kositar</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>natrij</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>kalijs</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

0 = u tragovima, 1 = mašte količine, 2 = umjerene, količine, 3 = velike;
koščine, + = ima, — = nema.

Sastav nekih žica za svarivanje prikazan je prema podacima iz literature (15) u tablici 4.

TABLICA 4.
Sastav žica za svarivanje

<table>
<thead>
<tr>
<th>Vrsta žice</th>
<th>Osnovni materijal</th>
<th>Čelićna</th>
<th>Bakrena</th>
<th>Brončana</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Čelić</td>
<td>Bakar</td>
<td>Bakar</td>
<td></td>
</tr>
<tr>
<td>Primjena:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ugljik</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>mangan</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>silicij</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>sumpor</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>fosfor</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>željezo</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>krom</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>nikalij</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>bakar</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>molibden</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>vanadij</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>kositar</td>
<td>—</td>
<td>+</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>srebro</td>
<td>—</td>
<td>+</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>cink</td>
<td>—</td>
<td>—</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>olovo</td>
<td>—</td>
<td>—</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

+ = ima, — = nema.
Većina spomenutih metala i ostalih elemenata, kako se to vidi iz tablice 5, počinje se isparavati kod relativno nižih temperatura, nego što su one, koje se razvijaju u električnom luku ili plinskom plamenu. Temperatura rastaljenog metalu u toku svarivanja iznosi 2300—2700°C, a mangan na primjer vrije kod 1900°C, cink kod 907°C, olovko kod 1013°C i t. d. Vremenom se stvaraju pare metala, koje se kod prijelaza u hladniju okolinu odmah oštade, kondenziraju i u obliku finog dima onečiste atmosferu.

TABLICA 5.

Temperatura (u °C), kod koje počinju vrteti metali, koji se svaruju ili se upotrebljavaju kod svarivanja (elektrode, žice) (35)

<table>
<thead>
<tr>
<th>Naziv metala</th>
<th>Vrelište °C</th>
<th>Maksimalno dopuštena koncentracija za oksid u mg/m³</th>
<th>Djelovanje</th>
</tr>
</thead>
<tbody>
<tr>
<td>željezo</td>
<td>3000</td>
<td>10</td>
<td>sideruza</td>
</tr>
<tr>
<td>bakar</td>
<td>2310</td>
<td>—</td>
<td>groznica ljevača</td>
</tr>
<tr>
<td>mangan</td>
<td>1900</td>
<td>6</td>
<td>manganizam</td>
</tr>
<tr>
<td>cink</td>
<td>907</td>
<td>15</td>
<td>groznica ljevača</td>
</tr>
<tr>
<td>krom</td>
<td>2200</td>
<td>0.1</td>
<td>korozija kože i sluznice</td>
</tr>
<tr>
<td>nikalj</td>
<td>2900</td>
<td>—</td>
<td>iritacija kože i sluznice</td>
</tr>
<tr>
<td>olivo</td>
<td>1613</td>
<td>0.15</td>
<td>saturizam</td>
</tr>
<tr>
<td>molibden</td>
<td>3700</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>vanadij</td>
<td>3000</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>titanij</td>
<td>3000</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>svrboj</td>
<td>1050</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Dimenzije pojeđnih čestica dima su manje od 5 mikrona (18). Prema sovjetskim podacima (33) su čestice u dimu vrlo sitne, 99% svih čestica imaju veličinu do 2 mikrona, a 70—80% od tih do 1 mikrona. Količine dima u radnoj atmosferi kreću se (prema istim podacima) od 4—163 mg/m³. S udaljenosti od električnog luka koncentracija dima u radnoj atmosferi znatno opada. Američki podaci (34) o nađenim koncentracijama dima u atmosferi američkih brodogradilišta prikazani su u tablici 6, iz koje se vidi, da su koncentracije dima u radnoj atmosferi često vrlo visoke. Pita se sada, kakav je sastav tog dima i ima li u dimu tokučnih tvari u takvim koncentracijama, koje bi bile štetne po zdravlje. Drinker i njegov suradnici (21) (27) su našli u dimu elektroda 60—70% željezne oksida (Fe₂O₃), 10—30% silicija, 2—12% magnesiuma oksida (MgO), i niz ostalih metala u vrlo malim količinama (mangan, kalem, aluminij, krom, bakar i t. d.). Opšira istraživanja vršena u američkim brodogradilišta (34) dala su slične rezultate. U dimu je obično bilo više od 50% željezne oksida, 15% titanijeva dioksida i 8% silicija, a ostatak od 24% dima sastojao
<table>
<thead>
<tr>
<th>Koncentracija dina mg/m³</th>
<th>Uzorek prema mjestu svarivanja</th>
<th></th>
<th>Radionice</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Broj</td>
<td>Procent</td>
<td>Broj</td>
</tr>
<tr>
<td>ukupno</td>
<td>1,066</td>
<td>100,0</td>
<td>373</td>
</tr>
<tr>
<td>1—10</td>
<td>94</td>
<td>9,0</td>
<td>55</td>
</tr>
<tr>
<td>10—25</td>
<td>290</td>
<td>27,1</td>
<td>102</td>
</tr>
<tr>
<td>25—60</td>
<td>370</td>
<td>34,7</td>
<td>131</td>
</tr>
<tr>
<td>60—100</td>
<td>131</td>
<td>12,5</td>
<td>40</td>
</tr>
<tr>
<td>100—200</td>
<td>112</td>
<td>10,6</td>
<td>30</td>
</tr>
<tr>
<td>200 i više</td>
<td>40</td>
<td>3,7</td>
<td>5</td>
</tr>
</tbody>
</table>

Se od smjese oksida najraznovrsnijih metala. Kvantitativno utvrđene vrijednosti željeznog oksida bile su kod svarivanja na unutarnjem dnu broda i kamo više od koncentracije, koju su Tebbens i Drinker (21) predložili kao podnošljivu (30 mg/m³). Srednja koncentracija željeznog oksida iznosila je kod svarivanja na unutarnjem dnu broda 45,77 mg/m³. Dim željeznog oksida ne djeluje toksički. Slično je i s ostalim sastavnicama dima, a toksični metali (mangan, olovko, cink) dolaze u dimu kod svarivanja pod normalnim uvjetima rada u tako malim koncentracijama (ili ih uopće nema), da praktički s obzirom na intoksikaciju ne predstavljaju opasnost po zdravlje radnika.

Naročito treba u vezi sa svarivanjem razmotriti problem otrovanja olovom. Primjese olova u metalu, koji se svaruje, a isto tako u elektrodama i žicama za svarivanje, obično su tako malene, da se otrovanje olovom praktički ne može ni razviti. Ipak svarivač u izuzetnim prilikama mogu oboljeti od teških otrovanja olovom, i to onda, kad svaruju metalne konstrukcije bojadirane olovinjom (olovni oksid Pb₃O₄). Mjerenja izvršena u američkim brodogradilištem pokazuju vrlo visoke koncentracije olova u atmosferi na svim onim radnim mjestima, gdje se svarivao metal obojadiran olovnom bojom. U tim slučajevima nadene su u atmosferi koncentracije olova od preko 1—3 pa i više miligrama u m³ zraka. Smatra se (39), da su koncentracije olova u radnoj atmosferi od više nego 0,15 mg/m³ opasne po zdravlje. Prema navedenim podacima bile su koncentracije olova u atmosferi 20 i više puta veće od maksimalno dopuštenih koncentracija. Prema nekim drugim podacima (14) nađene su u zvaničnoj prilikom svarivanja metala ličenog minute do veće koncentracije olova (4—112 mg/m³). Naznaimljevo je onda, da se mogu pojaviti teška akutna otrovanja olovom, iako rad. pod takvim uvjetima traje tek nekoliko dana.
Iz svega toga se vidi, da kod svarivača postoji opasnost od otrovanja olovom samo onda, ako se svaruje metal bojaskan minijsom.

Drugo je pitanje cinka. Drinker i njegovi suradnici (21) (27) su našli u dimu, koji se razvija kod svarivanja galvaniziranog čelika, 85% cinkova oksida Čini se, da kod svarivanja postoji opasnost od cilkova oksida samo onda, ako se svaruje galvanizirani metal prevučen cinkom. Kod svarivanja galvaniziranih predmeta treba mišiti i na to, da cinkeni sloj, koji prekriva metal, može sadržavati do 1,5% arsena i olova.

Porušnog metala, koji se svaruje, su vrlo često onečišćene slojem ulja, katana, laka i raznih drugih tvari. Ta onečišćenja stvaraju kod izgaranja velike količine dima, u kojem se može naći ugljudni monoksida i akroleina.

Na kraju možemo zaključiti, da dimovi, koji se stvaraju u toku svarivanja, donose do ugroze opasnosti zdravlja radnika, i to ne toliko zbog svoje toksičnosti, koliko zbog velikih količina, u kojima se razvijaju.

3. Rastaljeni metal. Ozbiljnu opasnost pri svarivanju predstavlja užaren i rastaljen metal elektroda, žica za svarivanje i predmeta, koji se svaruju. Rastaljeni metal može u obliku užarenih iskara, rasprunutih kapljica, a i većih izljeva uzrokovati teške ozljede kod radnika, koji nisu snabdijevani propisnom zaštitnom opremom.

4. Električna energija. Kako je već spomenuto, kod električnog svarivanja se upotrebljava u pravilu struje velike jakosti, a niskog napona. Te struje nisu naročito opasne po život i zdravlje svarivača. Ako se kod svarivanja ocijeni opasnost od električne struje, onda se može reći, da je ta opasnost uglavnom jednaka opasnosti, koja postoji kod svakog drugog posla, gdje se za rad upotrebljava električna energija.

Iz prednjeg pregleda vidimo, da su energije i materije, koje se upotrebljavaju i razvijaju u toku svarivanja, mnogo brojne i raznovrsne, i prema tome je jasno, da one mogu uzrokovati raznovrsna lakše i teže poremećenja na raznim organima čovječjeg tijela.

PROFESSIONALNA OBOLJENJA SVARIVAČA

Uzroak rušenja na čovječjem tijelu, kroz koja djeluju naprijed nabrojene energije i materije na radnički organizem pri svarivanju, su ove:

1. oko,
2. uho,
3. respiratorni trakt i
4. koža.
U vezi s time treba promotriti patološke pojave, koje se mogu pojaviti kod svarivača. Prikazani podaci o profesionalnim oštećenjima svarivača prikupljeni su koje iz strane, vrlo bogate medicinske literature o svarivanju, a koje iz materijala, što je sabran u Institutu za higijenu rada Jugoslavenske akademije znanosti i umjetnosti, i iz vlastitih iskustava. U toku 1950. godine izvršena su u Institutu za higijenu rada istraživanja o utjecaju svarivanja na zdravlje svarivača (tablica 7 i 11—13). Tom prilikom su pregledana 333 svarivača i 324 radnika u kontrolnoj grupi. Kod tih pregleda su sudjelovali i liječnici, što su u to vrijeme borevši na I. tčaju za higijenu rada, koji je održan u Školi narodnog zdravlja u Zagrebu (Čanić, Georgijevski, Hrustić, Košić, Marochni, Ramadanović, Rajhore, Stipić). Pored toga je 1949. g. sistematski pregledana u Institutu za higijenu rada 50 svarivača (Fleischhacker). Relativno velik broj izvršenih pregleda svarivača zapošlenih u našoj industriji dopušta da se stvore zaključci, koji su zanimljivi za našu radnu patologiju.

I. Oštećenja oku

Patološke promjene, koje se opažaju na očima svarivača, mogu se svrstati prema etiologiji u dvije grupe. U prvoj grupi treba spomenuti patološke promjene na oku, što nastaju pod utjecajem radiacijske energije, koja se razvija u električnom luku ili plamenu. To su ultravioletsne, svjetlosne i infracrvene zrake. Spomenuti treba ova aktinčna oboljenja oka:

Pod utjecajem ultravioletskih zraka razvija se u nezasticom oku svarivača upala očnih spojnica. Ta se upala obično razvija 1—12 sati iza eksponicije. Trajanje te latentne periođe između eksponicije i kliničke manifestacije zavisi od intenzivnosti eksponicije. Dokazano je (41), da radiacijska energija na svom putu do oka ošlubi u upravnom kvadratnom omjeru s udaljenosti od izvora energije. To znači, da radnik, koji je udaljen 5 m od svarivanja, prima samo 1/25 od one radiacijske energije, koju bi primio, da je od mesta svari-
venja udaljeno 1 m. Intenzivnost radijacije energije zavisi i od kuta, pod kojim zrake dopiru u oko. Simptomi upale javljaju se nenadano. U konjunktivama se pojavlja hiperemija i edem, očni kapci oteku; zbog jakih bolova, koje prati strah pred svijetom, suzenje i grč očnih kapaka, bolesnik praktički oslijepi. Bolesnik ima osjećaj, kao da mu je netko ubacio pijesak u oči. Na ročnici se može objektivno utvrditi i kretatit (kretatita superfcialia punctata) izražen u nizu malih detektata epiteila, koji se mogu prepoznati kao sitne, sive, na fluoresecin pozitivne točke. Akutni stadij te upale traje 24—40 sati, a potpuno ozdravljenje nastaje iza 2—4 dana. Za to je vrijeme radnik nesposoban za rad. Oboljenje obično ne ostavlja trajnih posljedica. Iako je pri svarivanju uposlen relativno velik broj radnika, ipak se akutna upala oka pojavljuje dosti rijetko, i to zbog toga, jer je uobičajeno, da svarivači nose kod rada zaštitne naočale ili štitnik. Zapravo svarivači zbog jakog blještavog svjetla ne mogu ni vršiti svoj posao bez zaštitnih naočala. Značajno je, da do upale ne dolazi samo pod utjecajem energije zračenja, koja se razvija na samom radnom mjestu, već je svarivač ugrožen i radijsljutom energijom, koja se razvija na suvjetnim radnim mjестима. Zatražen je slučaj (9) keratokonjunktivitsa kod radnika, koji je bio udaljen skoro 10 m od mjesta svarivanja. Prema našim opažanjima dobivaju akutne upale očnih spojica najčešće pomoćni radnici ili učenici i radnici zaposleni u blizini mjesta svarivanja (nosači, čiestači i t. d.), i to zbog toga, što se zaštitit njihovih očiju ne obrača gotovo nikakva pažnja (sl. 4). Prema sovjetskim podacima (33) oboljehuju elektro-svarivači od električne oštećenja pet puta češće od ostalih radnika.

susjeđenju, pogleda u blještav svijetlo i trenutno ostane zasluženjen. Ako takav radnik radi neki posao na stroju, može stradati, jer mu trenutno zasluženjenje onemogućuje da kontrolira svoj rad.

Pored trenutne zasluženjenosti, koja je prolazna i ne ostavlja trajnih posljedic, mogu blještave svjetlosne zrake uzrokovati trajno suženje vidnog polja i smanjenje osjetljivosti na boje. Pod utjecajem dugotrajnog i suviše intenzivnog svijetla mogu u makuli nastati teška neizlijevliva poremećenja (retinale neurofototrofne). Prema podacima u literaturi (11) nisu takva trajna poremećenja vida opažena kod svarivača.

U drugu grupu patoloških promjena na oku treba ubrojiti:

1. Irritacioni konjunktivitis, što ga uzrokuju nadsjajni plinovi, pare i dimovi (tablica 5.19). Pored tih treba spomenuti i neke druge etološke faktore, koji su važni u razvoju irritacionog konjunktivitisa. Ponajprije ne treba zaboraviti, da se pri svarivanju naročito ako se ono vrši u stijeništenim i slabo ventiliranim prostorijama, znatno podiže temperatura vraka u okolini radnog mjesta. Ta površina temperatura u radnoj okolini, pored radnog odijela svarivača, koje je vrlo često kožna, uzrokuje intenzivno i trajno znojenje. Znoj se cijedi u oči, unosi nečistoću, a i sam djeluje nadražljivo na očne spojnice. To je jedan od faktora, koji vrši značajnu ulogu u razvoju upalnih promjena na očima svarivača. Do upale očju može doći i prijenosom infekcije preko zaštitnih naočara. Vrlo često se vidi, da se znoj svarivača služi istim zaštitnim naočarima. Na taj se način preko zaštitnih naočara mogu prenijeti infektnivne upale oke od jednog svarivača na drugog.

Jasno je, da se svi ti mehanički i kemijski štetni faktori (dim, pare, plinovi i znoj) zajedno s energetom zračenja uzajamno pojačavaju u svom štetnom djelovanju.

Promotrimo li statističke podatke o promjenama na očima svarivača, naći ćemo vrlo interesantne rezultate. Naši podaci o upali očnih spojncima kod svarivača prikazani su u tablici 7.
<table>
<thead>
<tr>
<th></th>
<th>Svarivači, N = 324</th>
<th>Kontrolna grupa, N = 324</th>
</tr>
</thead>
<tbody>
<tr>
<td>konjunktivitis</td>
<td>117 33.1%</td>
<td>20 6.2%</td>
</tr>
<tr>
<td>kašalj</td>
<td>113 32.7%</td>
<td>104 31.1%</td>
</tr>
<tr>
<td>cough</td>
<td>93 26.3%</td>
<td>50 15.4%</td>
</tr>
<tr>
<td>glavobolje</td>
<td>129 38.5%</td>
<td>3 0.9%</td>
</tr>
<tr>
<td>haljade</td>
<td></td>
<td>233 73.7%</td>
</tr>
<tr>
<td>tragovi opekлина</td>
<td></td>
<td></td>
</tr>
<tr>
<td>traces of burns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>palaci</td>
<td></td>
<td></td>
</tr>
<tr>
<td>smokers</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Iz podataka u tablici 7 se vidi, da više od 33% svarivača boluje od konjunktivitisa (većinom klinički blage forme). Broj upala očnih spojnica u kontrolnoj grupi je razmerno vrlo malen, ali ne treba zaboraviti, da se u toj grupi nalaze radnici zaposleni u takvim industrijskim poduzećima (pretežno prehrambena industrija), gdje nema štetnih profesionalnih utjecaja na oči. Od 50 svarivača pregledanih u 1940. g. kod osmoroce je utvrđen konjunktivitis, a kod desetoroce konjunktivalne iritacije.

Svarivači zaposleni u američkim brodogradilištima (34) boluju od konjunktivitisa u mnogo manjem procentu od naših svarivača, što je vjerovatno u vezi s boljim radnim uvjetima u američkim brodogradilištima (naročito higijena, ventilacija i rad na otvorenu). Utvrđeno je, da od svarivača, koji rade na grudnji brodova, imaju konjunktivalne iritacije 15.9%, a od ostalih radnika 13.9%. Procenat slučajeva konjunktivalne iritacije među svarivačima je točnije nego među neosvarivačima, no općenito on nije visok. Ima niz zvanično, koja pokazuju kud i kamo veću učestalost konjunktivalnih iritacija. Proma istim američkim podacima utvrđena je kod 20,1% rudara u radnicima ugljena, odn. kod 20,8% rudara u rudnicima metala konjunktivalna iritacija. Kod voćara na plantažama jabuke utvrđena je konjunktivalna iritacija u 50% slučajeva. Silne rezultate možemo vidjeti i kod nas. Kad smo 1939. i 1940. godine istraživali zdravstveno stanje šumskih radnika (područje Oštročlj i Drvar), ustanovili smo u 63% slučajeva izrazite konjunktivitne iritacije, koje treba pripisati utjecaju dima, što se razvijalo iz otvorenih ognjišta u radničkim nastambama, i klimatskim faktorima u sumi (zimski sjeća). Među radnicima tvornice akumulatora nađeno je,
da 29% radnika boluje od konjunktivitisa, a kod pregleda radnika tvornice duhan iznosilo je procenat bolesnih od konjunktivitisa 40%.

2. S t r a n a t j e l a u o k u s v a r i v a č a. Kod svarivanja stalno prskaju užarene čestice metala (sl. 4), koje mogu upasti u nezaštićeno oko svarivača i uzrokovati teške ozljede. Snaga i brzina, kojom metalne iskrate udaraju, prilično je velika (sl. 5). Zbog toga može iskra prodrijeti kroz šarenicu i izazvati teške povrede i unutrašnjih dijelova oka. Vidjeli smo slučaj loše građenih naočara, gdje se iskra odbila od cijela svarivača, udario o unutrašnjost plohu naočara, odbila se i upala u oko. Važno je stoga, da zaštitna oka bude provedena tako, da iskra ni u kojem slučaju ne može upasti u oko.

11. Oštećenja uha

Kod oštećenja uha treba u prvom redu spomenuti opekline uške i vanjskog sluhovodu. Te opekline nastaju naročito onda, kad svarivač svaruje nad glavom, i rastaljeni su metal sijedi na svarivača. Često se mogu u vanjskom sluhovodu svarivača naći strana metalna tijela (zrnce metala ili drozge) i konglomerati metalne prašine. U literaturi (34) se spominju slučajevi perforacije bubnjića kod svarivača, kojima je u uho upao rastaljeni metal. Kod citiranog ispitanja američkih brodogradilaca radnika (ukupno pregledano 1753) utvrđeno je 40 slučajeva perforacije bubnjića, međutim je samo jedna od njih nastala zbog upadanja rastaljenog metala u uho, a sve ostale su bile posljedica preboljice upale srednjeg uha. Među suvarivačima zaposlenim u našoj industriji nismo mogli utvrditi ni jednog oboljenja uha, koje bi bilo u vezi sa svarivanjem.

III. Oštećenje respiratornog trakta

Promatrajući utjecaj svarivanja na respiratorni trakt treba paziti na ove pojavne:

1. S i m p t o m n i k o m p l e k s g o r n j i h r e s p i r a t o r n i h p u t o v a, pod kojim se razumijeva upala nosa, žudnje, trake i bronha (rhinitis, pharyngitis i tracheobronchitis). Prvenstveno podaci iz literature (26) (29) (30) svi se slažu u tome, da kod svarivanja u vezi sa stalnim radom u atmosferi, koja je onečišćena dimom i nadražjivim plinovima, može doći do akutnih oštećenja gornjih respiratornih putova. Prikazat ćemo nalaze utvrđene među američkim radnicima na brodogradilištima (34). Pregledom žudnje u nekim su ove promjene:

<table>
<thead>
<tr>
<th></th>
<th>Ukupno pregledano</th>
<th>Normalni naiz</th>
<th>Faringitis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lakti</td>
<td>Umjereni</td>
</tr>
<tr>
<td>Svarivači</td>
<td>3223</td>
<td>1682—53%</td>
<td>754—23%</td>
</tr>
<tr>
<td>Nesvarivači</td>
<td>1002</td>
<td>562—56%</td>
<td>274—27%</td>
</tr>
</tbody>
</table>

Arhiv 14

209
Slučajevi umjerenog i teškog faringitisa pokazuju određenu statističku značajnu razliku, iz koje možemo zaključiti, da svarivači nešto ćešće oboljevaju od težih forma faringitisa nego ostali radnici. Vrlo je interesantno, da je učestalost umjerenih i teških faringitisa kod žena-svarivača bila znatno niža nego kod muškaraca (žene 15,3%, muški 32,1%). Dokazano je, da se te razlike mogu pripisati znatno većem broju pušača među muškarcima.

Slični rezultati su utvrđeni i kod upala nosne služnice, koje su bile nešto češće među svarivačima nego među nesvarivačima; razlike međutim nisu statistički značajne. Od 3213 svarivača kod 506 (18,6%) utvrđena je upala nosne služnice, a od 993 nesvarivača kod 141 (14,2%). Američki autori zaključuju: mala diferencija u poboljšanju faringitisa i rinitisa, koja se opušta, kad se uspoređuju nalazi ždrjelja i nosa svarivača i nesvarivača, pokazuje, da je utjecaj dina, koji se razvija kod svarivanja, na služnicu ždrjelja i nosa od malog značenja.

Kod svarivača, koje smo promatrali 1949. g., utvrđene su dosta često promjene na gornjim respiratornim putovima. Od 50 pregledanih svarivača bolova je od faringitisa 11, a od bronhitisa i faringitisa 12 svarivača. Prema tome je skoro polovica pregledanih bolevala od upala gornjih respiratornih putova. Naši podaci nemaju zbog malog broja pregledanih potpune statističke vrijednosti. Istraživanja izvršena 1950. g. (tablica 7) su pokazala, da 37,7% svarivača redovno kašli. U kontrolnoj grupi taj procenat iznosi 32,1%. Procenat pušača je u obje grupe približno jednako (73,7% kod svarivača, odnosno 72,0% kod nesvarivača) i zbog toga možemo s određenom vjerojatnošću zaključiti, da je broj onih, koji kašlj, u grupi svarivača zaista veći.

Nema sumnje, da oštećenja gornjih respiratornih putova ovise o higijenskim uvjetima i o intenzivnosti rada. U vezi s time želimo upozoriti na jednu pojave, koju smo opazili među našim svarivačima, a o kojoj ima podataka i u literaturi (14) (34). Dosta često dolaze svarivači i traže liječničku pomoć zbog jakog irritirajućeg kašlja, koji počinje neposredno iza rada ili nekoliko sati po završetku radu, a katkad je ujutro poslije buđenja. U pojedinim slučajevima dolazi pri kraju kašljanja do povraćanja. Oboljeli izbacuju sluzavi ljepšiši ispljuvki obojen česticama dima, a katkad se u ispljuvku mogu naći i tragovi krvi. Ispitamo li u takvim slučajevima uvjete rada, onda ćemo obično dozvati, da je svarivač radio u loš ventiliranom prostoru ili tijesnom objektu (kotao, cisterna) i da je rad bio intenzivan. Kraj normalnih uvjeta rada i dobre ventilacije do takvih pujava uvijek doživjet će doći. Kod dođe do takvih simptoma, treba radnika 3—4 dana ukloniti s rada, i svih će teškoča nestati. Kod takvih bolesnika nismo opazili trajnih posljedicu. U američkim su brodogradilištima takvo poremećenje vrlo rijetko opaženo (34), ali su tamo postojali propisi, prema kojima je svarivač svarivao u tijesnom, slabo ventiliranom prostoru samo 15 minuta, a 3dućih
30—45 minuta radio je izvan takvog prostora. Na taj način bilo je
omenjujemo, da se koncentracija dimova i plinova podigne na
opasni stepen, a 1 ekspozicija je bila skraćena, i prema tome nije
došlo ni do oštećenja gornjih respiratornih putova.
Kao uzrok oboljenja gornjih respiratornih putova u vezi sa
svarivanjem (rinitis, faringitis, traheobronhitis i kašalj) možemo
spomenuti dim i nadražljive plinove. Mislimo, da kod tih irritacionih
pojava u gornjim respiratornim putovima vrše značajnu ulogu
nitroznih plinova. Iako je dušikov dioksid (NO₂ i N₂O₃) iritant,
koji djeluje ponajviše na pluća, a mnogo manje na gornje respiratorne
putove, ipak se on u kontaktu s vlažnom sluznicom pretvara u
dušičenu i dušičnu kiselinu, koje iritiraju sluznicu gornjih respira-
tornih putova. U račun prostorijama, koje su pravilno ventilirovane,
ne će se nitrozn plinovi nikada pojaviti u opasnim taksionim
koncentracijama, ali će na gornje respiratorne pute telefone i
u niskim, subtaksionim koncentracijama. Jedno treba istaknuti: sve
se pojave simptomnog kompleksa gornjih respiratornih putova kod
svarivača mogu spriječiti, pa i onda, kad rade intenzivno i preko-
vremeno, ako se provedu pravilno preventivne mjere (ventilacija,
respiratori, cijevne maske).
2. Sideroza svarivača. Poznato je, da se kod svarivača,
pored naprtijed opisanih akutnih oštećenja respiratornog trakta,
mogu utvrditi i kronične promjene na plućima; te se razvijaju
kod onih radnika, koji su dulje vrijeme svarivali željezo i bili
izvinjeni visokim koncentracijama dima željeznog oksida. Kronične
promjene na plućima svarivača prv put opisane 1935. g. (Enzer
i Sander — 7). Tada su rentgenogramske utvrđene diskretna nodi-
larne sjene jednolikeh prostirane preko oba pluća. Te
sjene su slične sjenama klasične silicoze, ali su oštirije od silikotičnih
sjena. Danas se te kronične promjene na plućima svarivača nazivaju
sideroza, jer nastaju udansnjem dima željeznog oksida. Za razliku
od silicoze, kod sideroze su sjene hilusa slabije izražene (4). Sideroza
je depozicija inertnog željeznog pigmenta u perivaskularnom i
peribronhijalnom limfom sistemu pluća, bez proliferacije fibrozog
tkiva. Opširna rentgenogramska ispitivanja (više od 4000 pregleda),
koja su vršena u Americi, pokazala su, da svarivači boluju od
sideroze pluća u 1,9—3,4% [prema podacima iz literature 1,9%
(34), 5% (30), 8,4% (14)]. Pritom je utvrđeno, da se sideroza razvije
iza rada od 6—10 godina, ako se rad vrši u loše ventiliranim pro-
storijama. Koelsch (18) je istraživao siderozu kod 49 svarivača, koji
su kod rada upotrebljavali četvrtine elektrode. Kod jednog, koji je
proveo u radu 7 godina, utvrdio je siderozu jakog stepena, kod
trojine izrazite depozicije u plućima, a kod osamnaestore depozicije
lakog stepena, Kod svarivača, koji rade u prostranim, dobro ventili-
iranim prostorijama, nije sideroza opažena ni iza mnogogodišnjeg
rada. Utvrđeno je (30), da sideroza ne stvara predispoziciju za
tuberkulozu i ostale plućne infekcije, niti reaktivira stare kalcifi-
cirane specifične lezije pluća (28). Isto tako sideroza ne uzrokuje funkcionalnu poremećenja u plućima, niti bilo kakve fizikalne plućne simptome. Sideroza ne umanjuje radnu sposobnost.

Vrlo zanimljiva opažanja objavili su 1948. g. Doig i Laughlin (36). Oni su kontrolirali svarivače, kod kojih su prije 12 godina utvrdili siderozu, a koji su u međuvremenu napustili svarivački posao. Kod tih su svarivača ustanovili, da je promjena na plućima djelomično ili potpuno nestalo, a to je ovisilo o vremenu prestanka rada.

U morbilitetu od upale pluća kod svarivača i ostalih hrodogradilišnih radnika nema nikakvih statistički značajnih razlika. S tim podacima slažu se i sovjetski podaci (33). Prema tome možemo smatrati, da je morbilitet od upale pluća među svarivačima isti kao i među ostalim pučanstvom.

IV. Intoksikacije i ostale promjene u organizmu izazvane uđimanjem otrovnih dimova i plinova.

U tablici 9. prikazani su otrovni plinovi i pare, a u tablici 5. otrovni dimovi (olovo, mangani, cink i t. d.), koji se pojavljuju u vrijeme svarivanja u radnoj atmosferi.
TABELICA 8.
Upala pluća i zuvance (25)

<table>
<thead>
<tr>
<th>Zvanje</th>
<th>Broj slučajeva</th>
<th>Broj smrti</th>
<th>Broj zaposlenih</th>
<th>Morbiditet na 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>svarivači</td>
<td>159</td>
<td>14</td>
<td>15533</td>
<td>10,3</td>
</tr>
<tr>
<td>monteri</td>
<td>74</td>
<td>14</td>
<td>7008</td>
<td>9,3</td>
</tr>
<tr>
<td>zakrivac</td>
<td>60</td>
<td>6</td>
<td>4612</td>
<td>12,3</td>
</tr>
<tr>
<td>pomocni radnici</td>
<td>53</td>
<td>8</td>
<td>4033</td>
<td>10,6</td>
</tr>
<tr>
<td>rezaci metala plamenom</td>
<td>42</td>
<td>2</td>
<td>4099</td>
<td>9,6</td>
</tr>
<tr>
<td>električari</td>
<td>41</td>
<td>2</td>
<td>3575</td>
<td>11,5</td>
</tr>
<tr>
<td>umiri</td>
<td>39</td>
<td>4</td>
<td>3117</td>
<td>12,5</td>
</tr>
<tr>
<td>strojar</td>
<td>36</td>
<td>4</td>
<td>3153</td>
<td>11,4</td>
</tr>
<tr>
<td>građevinar</td>
<td>20</td>
<td>1</td>
<td>2768</td>
<td>10,9</td>
</tr>
<tr>
<td>rezaci metala</td>
<td>24</td>
<td>1</td>
<td>3076</td>
<td>7,8</td>
</tr>
</tbody>
</table>

TABELICA 9.
Otrovi plinovi i pare, koji se mogu pojaviti pri svarivanju u radnoj atmosferi

<table>
<thead>
<tr>
<th>Plih ili para</th>
<th>Maksimalno dopuštena koncentracija mg/m³ (39) (49)</th>
<th>Djelovanje</th>
</tr>
</thead>
<tbody>
<tr>
<td>akrolein</td>
<td>1,0</td>
<td>nadražljivac i narkotik</td>
</tr>
<tr>
<td>amoniak</td>
<td>70,0</td>
<td>nadražljivac gornjih respiratornih putova</td>
</tr>
<tr>
<td>arsenovodik</td>
<td>2,0</td>
<td>hemolitički otrov</td>
</tr>
<tr>
<td>benzin</td>
<td>1000,0</td>
<td>narkotik</td>
</tr>
<tr>
<td>benzol</td>
<td>100,0</td>
<td>narkotik; oštčuje krvuljorne organe</td>
</tr>
<tr>
<td>cijanovodik</td>
<td>50,0</td>
<td>zagušljivac (fiziološki aktivan)</td>
</tr>
<tr>
<td>etanol</td>
<td>100,0</td>
<td>nadražljivac; nitrilno djelovanje</td>
</tr>
<tr>
<td>etanol</td>
<td>2000,0</td>
<td>narkotik; oštčuje živčani sistem i velike žlijeze</td>
</tr>
<tr>
<td>fluoro-vodik</td>
<td>2,5</td>
<td>nadražljivac</td>
</tr>
<tr>
<td>fosforovodik</td>
<td>1,0</td>
<td>nadražljivac; oštčuje centralni živčani sistem</td>
</tr>
<tr>
<td>klor</td>
<td>3,0</td>
<td>nadražljivac</td>
</tr>
<tr>
<td>metanol</td>
<td>200,0</td>
<td>narkotik i nadražljivac</td>
</tr>
<tr>
<td>uzen</td>
<td>2,0</td>
<td>nadražljivac</td>
</tr>
<tr>
<td>sulfurosni dioksid</td>
<td>25,0</td>
<td>nadražljivac</td>
</tr>
<tr>
<td>sulfurovodik</td>
<td>80,0</td>
<td>nadražljivac i zagušljivac</td>
</tr>
<tr>
<td>ugljicni dioksid</td>
<td>9000,0</td>
<td>zagušljivac (fiziološki inaktiv)</td>
</tr>
<tr>
<td>ugljicni monoksid</td>
<td>100,0</td>
<td>zagušljivac (fiziološki aktivan)</td>
</tr>
</tbody>
</table>

Smatramo, da u ovom prikazu ne treba obračati pažnje na patološke i kliničke pojave u vezi s djelovanjem pojedinih otrova, i zbog toga ćemo se osvrtati samo na neke specifične probleme, koji stoje u vezi s pojavom otrova u radnoj atmosferi. Jedan od
takvih problema je pitanje djelovanja nitroznih plinova na zdravlje svarivača. U poglavlju o upućnosti po zdravlje spomenuto je, da se nitrozi plinovi pri svarivanju pojavljuju u radnoj atmosferi u subtoksičnim koncentracijama. Ako se svarivanje vrši u tijesnim i slabo ventiliranim prostorima, mogu se nitrozi plinovi izuzetno sakupiti u radnoj atmosferi i u toksičnim koncentracijama (300 i više mg/m³). U takvim slučajevima može svarivač zbog trijaracnog djelovanja nitroznih plinova oboljeti od oblika pluća. Godine 1923. (Alder i Herznourc), 1935. (Wilkemann — cit. prema 14) i 1930. (13) objavili su pojedinči slučajevi smrtnih otrovanja od nitroznih plinova među svarivačima. Svi ti slučajevi dogodili su se kod rada u uskim, slabo ventiliranim prostorima. Godine 1940. sudjelovao sam kao vještački Središnjeg ureda za osiguranje radnika u istraživanju uzroka smrti svarivača N., koji je obolio u iza intenzivnog rada od 10 sati od edena pluća (stadij latentnje 7 sati) i drugog dana umro. Tada sam se složio s mišljenjem liječnika (Gutek), koji je bolovnika liječio, da je svarivač N. umro od otrovanja nitroznim plinovima. Prvotnija, u kojoj je svarivač radio, bila je prostrena, ali neventilirana. U mjestu vladao je tog dana jak depresija. U zagušljivoj i vlaznoj atmosferi nije bilo ni traga vatrenja. Intenzivni rad, neventilirana prostorija i tipični tok oboljenja, koje se završilo smrću, dopuštao su, da se u tom slučaju odučimo, da je smrt uzrokovana nitroznim plinovima. U ono vrijeme nismo imali mogućnosti da istražimo sve otroke u atmosferi; dokazani su bili samo nitroznih plinova. Nije isključeno, da su se u tom slučaju u radnoj atmosferi pored nitroznih plinova nalazili i neki drugi zadraživači. Tada smo sumnjali na akrolein, jer su predmeti, koje je svarivač svarivao, bili uprjavi uljem.

U vezi s pojavom nitroznih plinova treba spomenuti i t. zv. »nitrinoto djelovanje«. Dušikovi oksidi stvaraju u dodiru s vodou (vlazna sluznica respiratornog trakta) dušične i dušičnu kiselinu, koje nadvražuju alkalično tkivo respiratornog trakta. Kod toga se stvaraju natrijeve soli dušične i dušične kiseline — nitrati i nitrati. Nitrati nemaju osobitog fiziološkog djelovanja, dok je najpotrivnijom djelovanje nitrata od najvećeg značaja po cirkulacioni sistemi. Natrijev nitrat, koji se stvara iz nitroznih plinova, i koji absorbiše preko respiratornog trakta djeluje na cirkulacijsku sistem jednako kao i natrijev nitrat, što je ugrađeno u organizam preko prosivnog trakta, proširuje arterije i smanjuje krvni tlak. Osobe izvrnutne djelovanju natrijeva nitrita osjećaju vrtnjace i glavobolje. Interesantno je spomenuti (tablica 7), da su svarivači pregledani u toku 1950. godine trpjele od glavobolje u 26,3% (kontrolna grupa 15,4%). Treba napomenuti, da se hemoglobini pod utjecajem nitrata pretvara u methemoglobin.
U vezi s „nitritnim djelovanjem“ treba se osvrnuti na pitanje krvnog tlaka. Kod svarivača zaposlenih u američkim hrodogradilištima (34) nađen je prosječno nešto niži sistolički i dijastolički krvni tlak.

TABLICA 10.

Srednje vrijednosti sistoličkog i dijastoličkog krvnog tlaka hrodogradilišnih radnika (34)

<table>
<thead>
<tr>
<th>Dob života</th>
<th>Svarivači</th>
<th>Nesvarivači</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sist. krv. tlak</td>
<td>Dijastol. krv. tlak</td>
</tr>
<tr>
<td>manje</td>
<td></td>
<td></td>
</tr>
<tr>
<td>od 25 god.</td>
<td>115,0</td>
<td>71,7</td>
</tr>
<tr>
<td>25 - 30 god.</td>
<td>119,2</td>
<td>75,9</td>
</tr>
<tr>
<td>30 - 34 god.</td>
<td>120,9</td>
<td>78,8</td>
</tr>
<tr>
<td>35 - 39 god.</td>
<td>123,4</td>
<td>84,1</td>
</tr>
<tr>
<td>40 - 44 god.</td>
<td>126,5</td>
<td>89,7</td>
</tr>
<tr>
<td>45 - 49 god.</td>
<td>129,7</td>
<td>81,8</td>
</tr>
<tr>
<td>50 i više god.</td>
<td>135,5</td>
<td>83,3</td>
</tr>
</tbody>
</table>

Pita se, koji faktori mogu u vrijeme svarivanja djelovati na sniženje krvnog tlaka. Opaženo je, da do sniženja krvnog tlaka kod svarivača dolazi u toku prve godine rada. Slični fenomen, koji se pripisuje „nitritnom djelovanju“, opažen je i kod radnika, koji rade trinitrotoluolom (32). Lako sniženi krvni tlak svarivača može se smatrati blagog tokscičnom reakcijom, koja proizlazi iz ekspozicije u toku svarivanja. Ona stoji vrlo vjerojatno u vezi s dušikovim oksidima, koji u organizmu stvaraju natrijev nitrit. Da li tu dolaze u obzir još neki aspekti, koji djeluju u smislu depresije ili antidepresije u organizmu i tako utječu na krvni tlak, to još nije razjasnjeno.

Slična istraživanja izvršili smo i među našim svarivačima. U 1950. g. izmjerena je krvni tlak grupe svarivača zaposlenih u zagrebačkoj industriji (146 svarivača) i krvni tlak kod isto tolikog broja jednako starih radnika u kontrolnoj grupi (prehrambena i drva industrija). Iz rezultata, koji su prikazani u tablici 11, 12 i 13, se vidi, da između svarivača i radnika u kontrolnoj grupi, s obzirom na sistolički i dijastolički krvni tlak, nema statistički značajnih razlika, koje bi ukazivali na to, da svarivači imaju niži krvni tlak od radnika kontrolne grupe. Broj pregledanih u pojedinim dobnim grupama nije velik, i zbog toga ne treba stvarati konačne zaključke. S druge strane, razlike u krvnom tlaku, koje se spominju u američkim istraživanjima vrlo male (tablica 10), ali kako je u tom istraživanju pregledano oko 3000 radnika, to ti rezultati dokazuju, da je krvni tlak svarivača niži (lako ne mnogo) od tlaka ostalih radnika. To sniženje krvnog tlaka može se s velikom vjerojatnošću pripisati utjecaju nitroznih plinova.
TABLICA 11.

Svarivači (Zagreb) — Welders (Zagreb)
Krvni tlak (S ± o) — Blood pressure (S ± o)

<table>
<thead>
<tr>
<th>Starost u god. Age (years)</th>
<th>N</th>
<th>Sistolički Systolic</th>
<th>Dijastolički Diastolic</th>
</tr>
</thead>
<tbody>
<tr>
<td>do 24</td>
<td>71</td>
<td>117,17 ± 9,73</td>
<td>70,07 ± 6,84</td>
</tr>
<tr>
<td>25—29</td>
<td>20</td>
<td>117,31 ± 12,44</td>
<td>70,50 ± 10,03</td>
</tr>
<tr>
<td>30—34</td>
<td>14</td>
<td>122,66 ± 5,29</td>
<td>75,71 ± 10,72</td>
</tr>
<tr>
<td>35—39</td>
<td>21</td>
<td>114,28 ± 9,26</td>
<td>70,96 ± 7,18</td>
</tr>
<tr>
<td>40—44</td>
<td>16</td>
<td>119,44 ± 14,56</td>
<td>73,73 ± 9,07</td>
</tr>
<tr>
<td></td>
<td>148</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLICA 12.

Kontrolna grupe (Zagreb) — Control group (Zagreb)
Krvni tlak (S ± o) — Blood pressure (S ± o)

<table>
<thead>
<tr>
<th>Starost u god. Age (years)</th>
<th>N</th>
<th>Sistolički Systolic</th>
<th>Dijastolički Diastolic</th>
</tr>
</thead>
<tbody>
<tr>
<td>do 24</td>
<td>71</td>
<td>115,96 ± 11,61</td>
<td>71,24 ± 8,57</td>
</tr>
<tr>
<td>25—29</td>
<td>26</td>
<td>117,23 ± 8,72</td>
<td>72,31 ± 7,99</td>
</tr>
<tr>
<td>30—34</td>
<td>14</td>
<td>127,86 ± 26,99</td>
<td>75,36 ± 12,00</td>
</tr>
<tr>
<td>35—39</td>
<td>21</td>
<td>125,71 ± 12,56</td>
<td>77,38 ± 4,40</td>
</tr>
<tr>
<td>40—44</td>
<td>16</td>
<td>133,75 ± 7,19</td>
<td>81,56 ± 4,00</td>
</tr>
<tr>
<td></td>
<td>148</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLICA 13

Značajnost razlika — The importance of differences
Blood pressure. Welders. Control group.

<table>
<thead>
<tr>
<th>Starost u god. Age (years)</th>
<th>Sistolički Systolic</th>
<th>Dijastolički Diastolic</th>
<th>Δ</th>
<th>σΔ</th>
<th>Δ</th>
<th>σΔ</th>
</tr>
</thead>
<tbody>
<tr>
<td>do 24</td>
<td>1,18</td>
<td>1,80</td>
<td>0,06</td>
<td>0,74</td>
<td>1,29</td>
<td>0,99</td>
</tr>
<tr>
<td>25—29</td>
<td>-0,08</td>
<td>2,80</td>
<td>0,03</td>
<td>0,51</td>
<td>1,79</td>
<td>0,60</td>
</tr>
<tr>
<td>30—34</td>
<td>3,00</td>
<td>7,51</td>
<td>0,09</td>
<td>0,75</td>
<td>0,24</td>
<td>0,07</td>
</tr>
<tr>
<td>35—39</td>
<td>11,43</td>
<td>3,44</td>
<td>1,00</td>
<td>25,00</td>
<td>0,94</td>
<td>3,49</td>
</tr>
<tr>
<td>40—44</td>
<td>15,51</td>
<td>3,43</td>
<td>1,00</td>
<td>4,25</td>
<td>2,53</td>
<td>3,47</td>
</tr>
</tbody>
</table>

\[
\sigma_s = \frac{\sigma}{\sqrt{N}}; S_t (\sigma_s) = S (\sigma) \text{ (control group)}
\]

\[
\Delta = S - S_t \sigma_\Delta = \sqrt{\sigma_s^2 + \sigma_w^2}
\]

216.
Kad se govori o otvoranima plinovima i parama, onda treba istaknuti, da se u literaturi mogu naći raznovrsni (ali vrlo rijetki) podaci o otvoranima svarivača izraženim u svim oblicima od neznatnih tansitornih iritacija respiratornog trakta do smrtnih otvoranja. Teža, a naročito smrtonosna otvaranja su vrlo rijetka i događaju se samo onda, ako se svarivanje vrši pod izuzetnim okolnostima. Određeni faktori u razvoju otvaranja su higijenski uvjeti rada. Vidjeli smo, da su se svarivači, koji su dulje vremena radili u neugodnim uvjetima, žalili na umor, pospanost, ducinu, nervozne smetnje, glavobolju i vrtloglavicu. Nema sumnje, da se te pojave mogu dovesti u vezu s djelovanjem otrovnih plinova i para. U takvim slučajevima nastojeći smo, da se uvjeti rada popravite pomoću higijensko-tehničkih zaštitnih mjera (gusarene radionice, ventilacije, lična zaštita). Kad god su se uvjeti rada poplavili, nestalo je i zdravstvene smetnje, na koje su se svarivači žalili, a to je i jasno, jer se kod svarivanja kraj normalnih higijenskih uvjeta rada ne mogu otrovni plinovi i pare pojaviti u radnoj atmosferi u toku činjenim koncentracijama.

U vezi s pojavnom otrovnih plinova pri svarivanju imaju praktičko značenje samo oksidi cinka i olova (tablica 5), i to — kako je već spomenuto — u specijalnim uvjetima rada. Odnosno je poznato, da radnici, koji rade u poduzećima, gdje se pri radu razvija dim cinkova oksida, obolijevaju od „groznice ljevača“. Groznica ljevača može uzrokovati i dim bakra (5) i nekih drugih metala (magnezij, olovo, manganj) (37). Prema našim opažanjima pojavljuje se groznica ljevača i kod svarivača, i to samo onda, ako se svaruju pocinčane (galvanizirane) predmete. Smatra se, da radnici obolijevaju od groznice ljevača onda, kad sadržaj cinka u radnoj atmosferi prijed računale količinu od 12 mg/m³ (15 mg/m³ cinkova oksida) (37). Dim cinkova oksida razvija se i kod palanja (lotanja), ako se za palanje uvođenje i smjesa cinka ili mjechi, i u takvim slučajevima, ako se rđe vriš u tijesnim i slabo vzraštenim prostorijama, mogu zapošljeni radnici oboljeti od cinčane groznice. Groznica ljevača slična je po svom toku i simptomima napadu malarinske groznice. Obično se javlja nekoliko sati iza završenog rada. Oboljeli osjeti laku zimicu i grebenje u šrijedu. U isto vrijeme napada bolesnika jak kašalj. Stanje se sve više pogoršava i temperatura poraste do 39°C. U većini slučajeva počinje tresačica. Bolesnik ima jaku glavobolju, osjeća umor, bolesna mišiće i zglobovi. Takvo stanje traje po nekoliko sati, a onda uz jako znojenje pada temperatura na normalnu. Obično bolesnik drugog dana nastavlja bez teškoga redovni rad. U pojedinim slučajevima pojavljuje se u moćiru bijelčevina, lehkoci i cilindri. Pozitivni nalaz bijelčevine mogli smo u pojedinim slučajevima pratiti i 3—4 dana iza prestanka groznice. Zanimljivo je spomenuto, da su neki (3) (34) opazili kod radnika, koji su nekoliko puta preboljeli groznicu ljevača, ubrzano sedimentaciju krvii. Naša iskustva i opažanja iz naše literature (16) se s time ne slažu. Groznica ljevača ne predstavlja
neko naročito opasno oboljenje, i zbog nije radnici ne izostaju mnogo iz projekta (ponajviše 1 2 dana). Promatralj smo radnike, koji su u svom životu vrlu često preboljeli groznici ljevača (po 50 i više puta). Često napadi groznice ljevača slabe organizm (gubitak na težini, opću fizičku slabost), ali nikad nismo opazili, da groznica ljevača uzrokuje bilo kakva kronična oboljenja. Istaknuti treba i to, da se svača pojava groznice ljevača može sprječiti jednostavnim zaštitim mjerenja (opća i lokalna ventilacija).

Spomenuto je već, da se kod svarivača može razviti otrovanje olovlom samo onda, ako svaruje metal bojadisan mintljem (olovnim oksid). Kod toga treba istaknuti, da opasnost od otrovanja olovlom poštoj i onda, kad se rad (svarivanje, ispaljivanje načina) vrši na otvorenom. Naročito teška otrovanja olovlom vidi jeslo kod mladih radnika zapoštenih na gradnji mostova, koji su radili kao svarivači ili su ispaljivali način s možnih konstrukcija.

S nekoliko riječi treba spomenuti i pitanje otrovanja manganom (u elektrodama može biti 0,3—6% mangana). Teza otrovanja manganom s izraženim neurološkim nalazom nisu kod svarivača opisana. Kadak se čuje, da se svarivači žale na neke manje, psihičke teškoće, anëških libida i impotentiju. Neki su pokušali, da se pojave pripisuju toksičnom djelovanju mangana (14). Na iste teškoće žali su se kadak i naši svarivači. Opazili smo, da se uvijek radilo o novim radnicima, koji su tek ušli u svarivačko zvanje, i da su ta poremećenja iz nekog vremena prošla. Spomenute teškoće, koje se obično pojavljaju u prvim mjesecima i rada, nikako se ne mogu zbog kratkotrajne ekspozicije dovesti u vezu s toksičnim djelovanjem mangana. Držimo, da se radi u tom slučaju o neurotočnim pojavama, kakve obično se srećemo na početku uposlenja i u drugim zvaničima.

V. Oštećenja na koji
1. Opekline. Od 353 svarivača, koji su pregledani u 1950. godini, njih 129 (36,5%) imaju tragove opekline, a u kontrolnoj grupi radnika zapoštenih u zagrebačkoj industriji nacija su samo trojica (0,9%), koji imaju tragove opekline. U tabeli 14 prikazane su brazgotine prema mjestu lokalizacije opea u jednom osim svarivača. Od ukupnog broja brazgotina zahvaća 49,3% podlaktice, a 27,6% šake. Prema tome 67,9% brazgotina opea na ruke do lakta. Druga je velika grupa brazgotina lokalizirana u predjelu gležnjeva (17,7%). Na ta tri mjesta podlaktica, šake i gležnjevih — lokalizirano je više od 85% brazgotina, a na svim ostalim mjestima nalazi se oko 15% brazgotina. Istaknuti treba, da je najjače provesti zaštitu šaka, podlaktica i gležnjeva, a zaštititi dijelov tijela, koji su najviše izvrgnuti djelovanju rastaljenog meta, među našim svarivačima ne obraća gotovo nikakva pažnja. U američkim brodogradilištima sistematski je pregledano 718 svarivača, i kod 182 (25%) nacija su tragovi opekline (34). Brazgotine iz opekline možemo kod svarivača smatrati za profesionalna stigmasa, koja se najčešće mogu naći u anterolateralnoj strani lakta (kod dešnjaka na
lijevoj ruci, a kod ljevaka na desnoj). U episternalnoj regiji, oko pasa i oko gležanja, Opekline kod svarivanja su vrlo česte. Procenat naših svarivača, koji su pretrpjeli opekline, mnogo je veći nego u

TABLICA 14.
Lokalizacija brazgotina uzrokovanih opeklinama pri svarivanju
Location of scars caused by welding burns
(Od 333 svarivača 129 (38.8%) imaju tragove opekina)
(129 out of 333 welders (38.5%) had traces of burns)

<table>
<thead>
<tr>
<th>Lokalizacija brazgotina</th>
<th>Dijelovi</th>
<th>% od ukupnog broja svarivača</th>
<th>% od ukupnog broja brazgotina</th>
</tr>
</thead>
<tbody>
<tr>
<td>face</td>
<td>4</td>
<td>1,1</td>
<td>2,3</td>
</tr>
<tr>
<td>vrat, prsa, tribun</td>
<td>3</td>
<td>0,9</td>
<td>1,7</td>
</tr>
<tr>
<td>nek, rukav, abdomen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nadlaktice</td>
<td>2</td>
<td>0,6</td>
<td>1,1</td>
</tr>
<tr>
<td>ruke</td>
<td>70</td>
<td>19,9</td>
<td>40,3</td>
</tr>
<tr>
<td>ruke</td>
<td>47</td>
<td>13,3</td>
<td>27,6</td>
</tr>
<tr>
<td>potkaljenice</td>
<td>6</td>
<td>1,4</td>
<td>2,8</td>
</tr>
<tr>
<td>lege</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gležnjevi i stopalo</td>
<td>31</td>
<td>9,9</td>
<td>17,7</td>
</tr>
<tr>
<td>ankle and foot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>opekline bez uzragotinskih</td>
<td>12</td>
<td>3,4</td>
<td>6,5</td>
</tr>
<tr>
<td>opekline bez brazgotina</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>opekline bez brazgotina</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>burni without scars</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

U slučajevima, kad rastaljeni metal djeluje na tijelo preko zaštitne odjeće, mogu se razviti opekline prvog i drugog stepena.
Takve se opekline javljaju u predjelu lakta, kad se rastaljeni metal sakupi u naborima zaštite odjeće.

Pored rastaljenog metala može kod plinskog svarivanja uzrokovati opekline plamen, koji izlazi iz plamenika.

3. Irritacioni dermatitis. Koža svarivača izvrgnuta je djelovanju nadražljivih plinova i dima (cink, kroml.). Pored toga se svarivači, koji nose pružanu radnu odjeću iz kože ili azbesta, vrlo mnogo znoje (naročito ljeti). Zbog toga oni često boluju od irritacionih upala kože. Kod svarivača zaposlenih u američkim brodogradilištima opažen je dosta velik procenat milijarije (svarivači 2,7%, nesvarivači 1,7%) (34). Jednostavnim ligujevskim mjerama (redovno pranje i kupanje iza rada) mogu se upalne promjene na koži svesti na najmanju mjeru.

VI. Opća opažanja o zdravstvenom stanju svarivača.

Sigurno je, da zdravlju svarivača prijete neke specifične profesionalne opasnosti. Međutim te opasnosti nisu ni veće ni manje od onih, kojima su izvrgnuti radnici u drugim sličnim zvaničama. U tablici 15 prikazane su dijagnoze, nalazi i simptomi utvrđeni među svarivačima i nesvarivačima u američkim brodogradilištima.

<table>
<thead>
<tr>
<th>Diagnoze, nalazi i simptomi</th>
<th>Svarivači %</th>
<th>Nesvarivači %</th>
</tr>
</thead>
<tbody>
<tr>
<td>anemični sindrom</td>
<td>26,3</td>
<td>26,1</td>
</tr>
<tr>
<td>bolesti srca</td>
<td>4,4</td>
<td>13,2</td>
</tr>
<tr>
<td>tuberkuloza</td>
<td>0,5</td>
<td>3,1</td>
</tr>
<tr>
<td>afekcije gornjih respiratornih putova</td>
<td>40,5</td>
<td>30,9</td>
</tr>
<tr>
<td>akne</td>
<td>2,9</td>
<td>2,9</td>
</tr>
<tr>
<td>toplinski osp</td>
<td>2,0</td>
<td>1,0</td>
</tr>
<tr>
<td>siderozna</td>
<td>1,0</td>
<td>—</td>
</tr>
<tr>
<td>nalazi:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>konjunktivalne iritacije</td>
<td>15,0</td>
<td>13,9</td>
</tr>
<tr>
<td>konzepticne nosne služnice</td>
<td>18,6</td>
<td>14,2</td>
</tr>
<tr>
<td>ostali nalazi</td>
<td>18,0</td>
<td>21,2</td>
</tr>
<tr>
<td>simptomi:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>glavobolja</td>
<td>7,6</td>
<td>6,8</td>
</tr>
<tr>
<td>gastrointestinal smetnje</td>
<td>5,1</td>
<td>4,5</td>
</tr>
<tr>
<td>smetnje gornjih respiratornih putova</td>
<td>31,8</td>
<td>21,3</td>
</tr>
</tbody>
</table>

220
Iz tih se podataka moževidjeti, da svarivači obolijevaju u nesto većem broju od bolesti gornjih respiratornih putova. U krvnim nalazima svarivača i nesvarivača nije bilo značajnih razlika. U vezi sa svarivanjem nisu opažene pojače anemije niti povećan broj bazofilno punktiranih eritrocita. Što se tiče krvne slike i sedimentacije krv je nenakon toga krv krvnića i sedimentacije svarivača i nesvarivača. Poznato je, da oni koji boluju od tuberkuloze pluća i srčanih oboljenja, izbjegavaju svarivačko zvanje, i vjerojatno je zbog toga broj tuberkuloznih i srčanih oboljenja u kontrolnoj grupi medu nesvarivačima znatno veći. Pored tih podataka ima u novljej medicinskoj literaturi radova (14) (23), iz kojih se vidi, da u pojavi oboljenja i gubitka radne sposobnosti nema nikakvih statistički značajnih razlika između svarivača i radnika zaposlenih u drugim sličnim zvaničama. Naša opažanja se također podudaraju s tim tvrđnjama.

HIGIJENSKO TEHNIČKE ZAŠTITNE MJERE

Spriječiti pristup štetnosti u radnu okolinu i na taj način potpuno ukloniti opasnosti, koje prije te zdražuju radnika, to je najbolji princip u zaštiti rada. Iako se taj princip ne može potpuno primijeniti pri uklanjanju opasnosti, koje se pojavljuju u radnoj okolini svarivača, ipak treba istaknuti, da se sve štetnosti, koje nastaju u toku svarivanja, mogu spomoću higijensko-tehničkih zaštitnih mjera potpuno ukloniti ili toliko ublažiti, da ne dovode u opasnost zdravlje radnika zaposlenih pri svarivanju. Kad se govori o higijensko-tehničkim zaštitnim mjere pti svarivanju, onda se treba sjetiti ulazućih vrata na čovjekom tijelu (oko, uho, respiratorni trakt i koža), kroz koja štetne energije i materije djeluju na organizam. Zaštitnu mjeru, koja će odbijati zdravlje radnika, treba postaviti na najprikladnijem mjestu, negdje na putu od izvora štetnosti do ulaznih vrata u organizam.

1. Zaštita očiju svarivača i radnika zaposlenih u njihovoj okolini od radijacijske energije i mehaničkih ozljeda.

Kod nas nema specijalnih propisa o zaštiti očiju svarivača. U Općem pravilniku o higijenskim i tehničkim zaštitnim mjerama pri radu postuje opće odredbe o zaštiti očiju i lica (čl. 89). Prema tim odredbama, kod svih radova, kod kojih su u opasnosti oči i lice (zbog jako svjetlosti, ugrijavanja, isparavanja i prskanja jetkih tekućina, prašine, iskare i t. d.), moraju se zaposlenim osobama dati na raspolaganje zaštitne naočale, štitnici za oči i lice i sl. Sredstva za zaštitu očiju i lica moraju biti lako i udobno za nošenje i od prikladnog materijala, a ne smiju znatno smanjivati vidno polje i prouzrokovati znojenje. Kod zaštitnih naočala stalno mora biti osigurano protiv prskanja. Ako se radovi, kod kojih postoji opasnost za oči, vrše u neposrednoj blizini drugih stalnih radnih mjesta, onda se takva radna mjesta moraju ogradi s posebnim ogradama.
Na osnovu tih općih odredaba provodi se kod nas zaštita očiju i lica radnika zaposlenih kod svarivanja.

U mnogim zemljama s razvijenom industrijom postoje specijalni propisi o zaštiti svarivača. Tako čemo u sovjetskoj (11) (33) (38) i američkoj literaturi (6) (41) naći vrlo dobre propise i korisne preporuke o zaštitnim mjerama pri svarivanju. Na temelju takvih podataka iz literature prikazat ćemo osnovne principe o zaštiti očiju i lica radnika zaposlenih kod svarivanja.

Zaštita očiju i lica od radijacije energije i iskara provodi se pomoću stakla, koje se primjenjuju u formi zaštitnih naočara za svarivanje ili u formi specijalnih svarivačkih štitnika i šljunova. Prije svega treba nešto kazati o kvaliteti zaštitnih stakala, koja se upotrebljavaju pri svarivanju. U Sovjetskom Savezu upotrebljavaju se dva tipa zaštitnih stakala, koja je istražio i preporučio Moskovski institut za zaštitu rada (11). Jedno su zaštitna stakla TIS (tjernoje izjumsko stjeklo), koja se proizvode u nekoliko nijansa a upotrebljavaju se prema jakosti električne struje, koja se primjenjuje kod svarivanja. Za plinsko svarivanje upotrebljavaju se TIS stakla broj 3—5. Za pomoćne radnike preporučuju se zaštitne naočare s NIS staklima želenskaste boje (nejtralnije izjumsko stjeklo), koje pružaju dovoljnu zaštitu od radijacije energije i iskara, a istovremeno omogućuju pravilnu kontrolu rada. U tablici 16 (6) prikazani su američki propisi, na osnovu kojih se primjenjuju stakla za zaštitu od radijacije energije.

Prema tim propisima preporučuju se kod svarivanja ova zaštitna stakla:

Zasjenjenje br. 3 i 4 za pomoćne radnike i radnike zaposlene u susjedstvu svarivačkog rada
- 5 kod lakog plinskog svarivanja, kod električnog otpornog svarivanja
- 6 kod srednjeg plinskog svarivanja, kod električnog lučnog svarivanja do 30 amp.
- 8 kod teškog plinskog svarivanja, kod električnog lučnog svarivanja od 30—75 amp.
- 10 kod električnog lučnog svarivanja od 75—200 amp.
- 12 kod električnog lučnog svarivanja od 200—400 amp.
- 14 kod električnog lučnog svarivanja, koje se vrši s električnom strujom, koja ima jakost veću od 400 amp.

Kako vidimo, intenzivnost zasjenjenja zaštitnih stakala se određuje prema jakosti plinskih plamenova, odnosno prema jakosti električne struje, koja se upotrebljava kod svarivanja. Intenzivnost zasjenjenja zaštitnih stakala može se odrediti i prema debljini (promjeru) elektrode, koja se upotrebljava kod svarivanja.
<table>
<thead>
<tr>
<th>Zasjenjenje br.</th>
<th>Gустоћа за видљиво светло*</th>
<th>Propusnosti u percentima</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimum</td>
<td>Standard</td>
</tr>
<tr>
<td>3</td>
<td>0.64</td>
<td>0.857</td>
</tr>
<tr>
<td>4</td>
<td>1.07</td>
<td>1.288</td>
</tr>
<tr>
<td>5</td>
<td>1.56</td>
<td>1.714</td>
</tr>
<tr>
<td>6</td>
<td>1.93</td>
<td>2.143</td>
</tr>
<tr>
<td>7</td>
<td>2.26</td>
<td>2.572</td>
</tr>
<tr>
<td>8</td>
<td>2.79</td>
<td>3.000</td>
</tr>
<tr>
<td>9</td>
<td>3.22</td>
<td>3.429</td>
</tr>
<tr>
<td>10</td>
<td>3.64</td>
<td>3.857</td>
</tr>
</tbody>
</table>

* Gустоћа (D) je definirana ovako: $D = \log \frac{I}{I_0}$; I_0 = intenzivnost svjetla prije prolaza kroz staklo, a I = intenzivnost svjetla isu prolaza kroz staklo. Propusnost (%) je: $T = \frac{1}{I_0}$; prema tome je $D = \log \frac{1}{T}$. Broj zasjenjenja je određen prema gустоћи po jednačbi: Broj zasjenjenja = $7.3D + 1$ s tolerancijom, koja je prikazana u tablici.
Vrlo se često smatra, da je dovoljno da se kao zaštitna stakla upotrebe bojarska stakla ove ili one nijanse. Smatra se na primjer, da žutozelenih stakla znatno apsorbiraju ultraviolette zrake, a go-
tovo potpuno infracrvene zrake. Kod tog prosuđivanja treba međutim
da smn vrlo oprezn. Naša domaća industrija zaštitnih naočara pristupi-
pila je ozbiljno rješavanju proizvodnje zaštitnih naočara za svarivače i
ekod toga je zatražila savjet Instituta za higijenu rada. Poduzeće,
kroje proizvodi zaštitne naočare, dostavilo je Institutu za higijenu
rada četiri vrste bojarskog stakla. Rezultati istraživanja prikazani
su u tablici 17. Istraživanja su pokazala, da nijedno od predviđenih
stakala ne zadovoljava minimalne norme, koje se traže za svarivački
posao (tablica 16). Taj primjer iznosimo zgod toga, da dokažemo,
da će se svarivanje ne mogu upotrebljavati bilo kakva "bojarinska
stakla", a pored toga iz tog se primjera vidi, da je pitanje zaštitne
očiju kod svarivanja ozbiljan problem, koji se uspješno može riješiti
samu na stručno-naučnoj bazi, uz suradnju niza specijalista (tehnolo-
oga, higijeničara, fizičara).

TABLICA 17.

Propusnost stakala za zaštitne naočare
(Mjerenja izvršena u Institutu za higijenu rada)

<table>
<thead>
<tr>
<th>Staklo br.</th>
<th>Vidljivo područje</th>
<th>Infračrveno područje do 3000 μm</th>
<th>Ultravioletno područje</th>
</tr>
</thead>
</table>
| | Srednja propu-
| | snost % | srednja propu-
| | | snost % | 313 | 334 | 360 | 490 |
| 1. (rozal) | 6.37 | 25.50 | 0.1 | 0.05 | 3.0 | 9.0 |
| 2. (plavo) | 37.35 | 40.55 | 0.1 | 0.04 | 3.0 | 9.0 |
| 3. (zeleno)| 12.05 | 19.36 | 0.08 | 0.15 | 0.0 | 0.2 |
| 4. (sivo) | 10.37 | 43.00 | 0.1 | 1.0 | 71.0| 43.0|

Nas je zanimalo, kakva se zaštitna stakla upotrebljavaju kod
svarivanja u našoj industriji. Zhog toga su u Institutu za higijenu
rada izvršena mjerenja zaštitnih stakala, koja se upotrebljavaju
ekod svarivanja u zagrebačkoj industriji. Ta mjerenja su pokazala,
da je procenat propusnosti za sve kvalitetne radijacijske energije vrlo
uzak (u vidljivom dijelu spektra ispod 0.0005%, a u ultravioletoim
ispod 0.00004%). Ta Istraživanja su međutim pokazala i to, da se u
našoj industriji za zaštitu očiju kod svarivanja upotrebljavaju za-
štitna stakla s vrlo jakom intenzivnošću zasjenjenja, i da se pritom
ne vodi računa o vrsti svarivanja (intenzivnosti zračenja), a to je
nepravilno s tehnološkom stajalistom, jer radnik zbog jakog zasjenjenja

224
nacari ne može da valjano kontrolira posao, koji vrši, a posljedica toga je slabiji kvalitet proizvoda. Iz svega toga se može zaključiti, da je problem zaštitnih stakala kod svarivanja od velikog ne samo zdravstvenog, već i tehnološkog značaja.

Obično se kod plinskog svarivanja upotrebljavaju zaštitne nacare, a kod elektroničkog svarivanja zaštitni štit ili šijem. Svarivačke zaštitne nacare moraju biti tako konstruirane, da metalne iskre ne mogu dopriti u prostor između oka i nacari. Na sl. 5 prikazane su zaštitne nacare, koje se najčešće upotrebljavaju u našoj industriji, a koje su i pored jednostavne izvedbe prikladne i dobre. Ventilacijske rupice na stijenama nacari treba da budu tako izgrađene, da metalne čestice ne mogu unapeti u oko. Okvir za nacare moraju biti izrađeni iz lakog materijala, koji je otopen prema iverima, što se upotrebljava za sterilizaciju nacari. Isto tako materijal, iz kojeg su nacare izrađene, ne smije kemijski reagirati sa znojem ili uzrokovati iritaciju i diskoloraciju kože.

U praksi je uobičajeno, da se po nekoliko radnika služe istim zaštitnim nacarmi. Na taj način postoji mogućnost, da se preko zaštitnih nacare prenesu infekcije oka od jednog svarivača na drugog. Zbog toga mora svaki svarivač imati svoje zaštitne nacare, koje treба redovno čistiti (prati sapunom u toploj vodi), a od vremena do vremena i sterilizirati. Najzgodnije je, da se nacare steriliziraju spomoću formaldehida (u formi plina 10 minuta) ili spomoću vruće pare (5 minuta).

Svarivački štitnik, koji se upotrebljava za zaštitu očiju i lica, treba da bude izrađen iz neagresivog lakog materijala (metal, koža, plastika i t. d.). Štitnik mora biti saveljen, tako da strane štitnika sprečavaju upad radijacijske energije sa strane i sa susjednih radnih mjesta na lice i u oči radnika. Štitnik mora biti dovoljno velik, tako da zaštići čitave lice, vrat i ostale dijelove glave. Rubovi štitnika, koji dolaze u dodir s licem, moraju biti zaobljeni, tako da ne mogu ozlijediti ili irritirati kožu. Plohe sa strane štitnika mogu biti šupljikave (radi ventilacije), ali rupice ne smiju imati veći promjer od 1 mm. U štitnik ugrađen je stakleni prozorčić velik oko 8 x 10 cm, kroz koji svarivač kontrolira svoj posao. Prema američkim propisima prozorčić na štitniku u horizontalnom smjeru ne smije biti manji od 10,8 cm, a u vertikalnom smjeru od 5,1 cm. Pri svarivanju udaraju o zaštitno staklo na štitniku i šijemu ušarcne čestice metalna i ostavljaju na staklu svoj trag (sl. 3). Da se zaštitni tamno staklo od takvog oštećenja, treba staviti pred njega obično bezbojno staklo, koje se prema potrebi mijenja. Štitnik, koji svarivač drži u lijevoj ruci, ima nadatak, da od radijacijske energije i uzarenih iskara pored očiju zaštititi i lice, vrat, uši i ostale dijelove glave. Radnik, koji upotrebljava štitnik, može za rad iskoristiti samo jednu ruku. To je negativna strana štitnika, i zbog toga se danas za zaštitu očiju i glave svarivača sve više upotrebljava specijalni zaštitni šijem, koji se može prema potrebi podići ili spustiti preko lica poput vizira.

Arhiv 15

Veliku pažnju treba obratiti zaštiti pomoćnih radnika i onih radnika, koji rade u susjedstvu svarivačkog posla. Mnogo se raspravlja o tome, u kojoj je udaljenosti svarivački rad opasan zbog isijavanja radiacijske energije. Kod toga treba istaknuti, da količina ultravioletnih, svjetlosnih i infracrvenih zraka ovisi o vrsti elektroda i metala, koji se svaruje, o stupnju temperature, koji je postignut pri svarivanju, o jakosti električne energije (odnosno plamena) i o veličini plohe rastaljenog metala. Prema tome o istim faktorima ovisi i veličina "zone opasnosti". Nema sumnje, da kod razvoja aktivirnog upale oka veliko značenje ima početak trajanja ekspozicije i subjektivna osjetljivost radnika. Zbog svih tih faktora vrlo je teško točno ocijeniti udaljenost, u kojoj prijeti opasnost od aktivirne energije. Općenito se smatra, da opasnost od radiacijske energije kod svarivanja postoji u širokoj zoni od 50 do 60 m od mjesta svarivanja. H. Kuhn se ne slaže s tim stajalištem i navodi (41), da je vrlo rijetko opazila aktivirnu reakciju na očima radnika, koji su radio u udaljenosti od 6 do 9 m od mjesta svarivanja. Sirina zone opasnosti je vrlo važna upravo radi zaštite pomoćnih radnika. U našoj se industriji vrlo često opaža, da pomoćni radnici često su u učenicu u privredi nisu kod svarivanja zaštićeni. Pomoćne radnike treba zaštimiti zaštitnim naočarima s nešto slabijom intenzivnošću zasjenjenja.

Zaštitna radnika, koji rade u blizini svarivanja, može se postići pomoću naročitih pokretnih zaštitnih pregrada ili stalnih kabina za svarivanje. Kabine za svarivanje su sa tri strane zatvorene čvrstim zidovima, a sa četvrte strane zastorom od crne tkanine. Na stražnjoj strani kabine obično se nalazi lokalni ventilacijski uređaj. Dokazano je, da su ultravioletske zrake reflektiraju sa zidova i tako indirektno dovode u opasnost svarivača i radnika, koji rade u istim prostorijama. Zbog toga se preporučuje, da se zidovi u radnim prostorijama, gdje se svarivanje (naročito u kabinaima), bojadištu takvim bojama, koje isporučuju ultravioletske zrake. Ta se zaštitna mjera mnogo propagira u sovjetskoj industriji (39), gdje je uobičajeno, da se zidovi svarivačkih kabina bojadištu smom ili zagasito plavom bojom, u koju treba umiješati određene količine cinkova oksida, jer taj snižuje refleksnu sposobnost zida.

Mnogi radnici vjeruju, da se upisne promjene u oku izazvane djelovanjem radiacijske energije mogu spriječiti, ako se u oči prije

II. Zaštita uha svarivača

III. Zaštita respiratornog trakta od dima i plinova

Zaštiti od dima i plinova, što se razvijaju kod svarivanja, ne obraća se u našoj industriji gotovo nikakva pažnja. Jedino je sredstvo u borbi protiv dima i plinova dobra ventilacija. Prije svega treba preporučiti, da se svarivanje, kad god je to moguće, vrši na olobočnom prostoru ili pod otvorenim krovom. U takvim slučajevima treba paziti, da vjetar odnosi dim i plinove od svarivača, a ne da ih nanosi u zonu disanja. Ako se svarivanje vrši u radnim prostorijama, onda treba najveću pažnju obratiti pravilnoj ventilaciji. Pri tome treba nastojati, da se dim i plinovi iskuš na mjestu, gdje se stvara, tako da ne doprnu u zonu disanja svarivača. Taj princip lokalne ventilacije na mjestu svarivanja moći će se s uspjehom primijeniti onda, ako se vrši stalno svarivanje manjih predmeta. Ekshaustor treba pritom postaviti što bliže mjestu svarivanja. Pri svarivanju velikih predmeta (kotlovi, vagonske konstrukcije i t. d.) ne će se moći provesti sistem lokalne ventilacije, i zbog toga treba takve svarivačke radove vršiti u prostornim, dobro ventiliranim dvoranama. Treba istaknuti, da se u takvim slučajevima mogu katkad s uspjehom upotrebiti mobilni lokalni aspiratori.

Naročitu pažnju treba obratiti ventilaciji svarivačkih kabina. Ventilacija u kabinama može se provesti spomoću ekshajstora (lokalna ventilacijska kapa) ili spomoću ventilacijskog uređaja smještenog ispod stola, koji ima šupljikavu radnu plohu. Bez obzira na sistem ventilacije važno je, da se u svakom konkretnom slučaju riješiti pitanje količine zraka, koja je potrebna, da održi nivo onesjećenja radne atmosfere u dopuštenim higijenskim granicama. Količina zraka potrebna za ventilaciju može se odrediti na razne načine. Witheridge (37) predlaže, da se pri svarivanju, koje se vrši spomoću obloženih čeličnih elektroda, odrediti količina zraka potrebnog za ventilaciju (koja će održati koncentraciju dima u radnoj atmosferi na 10—15 mg/m^3 zraka) pomoću ove formule:

\[m^2/min. = 433 \times \text{promjer elektrode u cm}^2 \]

trajanje elektrode u min.
Ako svarivanje vrši nekoliko osoba istovremeno, onda se u »minute po elektrodi« uračunava vrijeme svarivanja i vrijeme izmjena elektroda, a ako svarivanje vrši jedna osoba na prekide, onda se u »trajanje elektrode u minutama« uračunava samo stvarno vrijeme izgaranja elektrode.

U sovjetskoj literaturi (33) preporučeno je, da se kod svarivanja u kabinama upotrijebe mjesečno isisavanje zraka s jakosću od 1000 do 1500 m³ zraka na sat. Mjesto isisavanja treba lokalizirati neposredno iznad električnog luka.

Tebbene i Drinkar (21) preporučuju kod svarivanja s obloženim elektrodam ventilacijsku rutu prema vrsti elektrode od 7–42 m²/min., po svakom svarivaču, a minimalna brzina zraka je struje za lokalnu ventilaciju varira kod toga prema vrsti elektrode od 23–38 m na minutu. Prema jednom drugom prijedlogu (37) treba pri svarivanju, koje se vrši u svarivačkim kabinama, primijeniti ventilacijsku rutu od oko 14 m³ zraka/min. po m² poda. Treba prema svarivatelju, razumijenim izazovima, da se za ventilaciju kod svarivanja ne mogu dati neke točne standardne vrijednosti. Najbolje je, ako se količine zraka potrebe za ventilaciju izračunaju na razne načine, i onda se na bazi takvog računanja izabere najprikladnije ventilacijske konstante.

U izuzetnim slučajevima, ako se svarivanje vrši u zatvorenum, tijsnim i neventiliranim prostorima (kotlovi, cisterne i t. d.), treba svarivača snabdjeti cijevnom maskom.

Respiratore s filtrom protiv otrovnih dimova treba preporučiti kod svarivanja predmeta, koji sadržavaju veće količine olova ili mangana (mliječni nalič; svarivanje legura i t. d.).

IV. Zaštita koje od opekлина

Već je spomenuto, da štitnik ili šijem zaštitu glavu i vrat od uzarenih iskara i rastaljenog metala, koji prkaju pri svarivanju (sl. 2). Za zaštitu ostalih dijelova tijela svarivača treba predvidjeti ova sredstva: 1. specijalnu odjeću (radni kombinezon) dobro zatvorenu oko vrata, pojasa, ručnih zglobova i gležnjeva, 2. kožnu pregaču, 3. kožne rukavice, koje sežu preko lakta.

Pri svarivačkim radovima iznad glave mora svarivač imati širok štitnik ili šijem i kožno ili asbestno radno odelje.

V. Zaštita svarivača od eksplozije acetilena

Prema tim propisima bilo je dopušteno držati kalcijev karbid u zgradama za stanovanje i u prostorijama, u kojima se nalaze aparati za proizvodnju acetilena, samo u količini do 300 kg, i to u bačvama od najviše po 110 kg. Za smještaj većih količina karbida trebalo je predvidjeti naročita zatvorena stvarišta zaštićena od vlage i pozara,
a osvijetljena kroz prozor. U stovarišta carbida smjele su ulaziti samo za to ovlaštene osobe uz određene mjere opreza (zabrana pušenja). U Pravilniku se odratila naročita pažnja propisima o gradnji i rukovanju aparatima za proizvodnju acetilena. Bilo je određeno, da ni u jednom dijelu acetilenskog aparata ne smije tlak prijeći 1,1 atmosferu, a temperatura u generatoru 80° C. Prema sovjetskim propisima (11) tlak u aparatu za proizvodnju acetilena ne smije biti veći od 1,0 atmosfera, a temperatura u generatoru viša od 50° C. Svakak aparat trebao je imati sigurnosni ventil i naprave za čišćenje (uključujući otrovnih primjesa), ispiranje i sušenje acetilena. Prema istim propisima hilo je dopušteno, da aparatima za proizvodnju acetilena rukuju samo odrasle i pouzdane osobe, koje poznavaju konstrukciju i rad aparata. I sovjetski propisi zabranjuju osobama, koje su mlade od 18 godina, rukovanje acetilenskim aparatima. Iako su neki propisi o proizvodnji i upotrebi kalcijeva carbida i acetilena, koji se nalaze u starom Pravilniku, zastarjeli, ipak oni, tako duge, dok se ne propisu nove odredbe, mogu poslužiti kao smjernice za zaštitu od eksplozije pri proizvodnji i upotrebi acetilena.

Naš novi Opći pravilnik o higijenskim i tehničkim zaštitnim mjerama pri radu (Sl. list FNRJ od 25, II. 1947.) ne sadržava specijalne odredbe o zaštiti od eksplozije pri proizvodnji acetilena, ali se među općim odredbama mogu naći mnogi korisni savjeti, koje treba primijeniti pri zaštiti osoblja, koje rukuje acetilenskim aparatima (Rad s lako zapaljivim i eksplozivnim materijama, čl. 32—39; Temperatura i važnost zraka radnih prostorija, čl. 79; i t. d.).

VI. Opće higijenske mjere.

Poznato je, da se svarivači mnogo znoje (rad u toplini, koka zaštitna odjeća) i zbog toga treba u radnim prostorijama predvidjeti dovoljne količine zdrave vode za piće.

Zdravlju svarivača prijeći određene opasnosti, koje se mogu pravilnim higijenskim i tehničkim zaštitnim mjerama potpuno uklo- niti, ali za provođenje tih mjera traži se aktivno sudjelovanje svarivača. To se može najuspješnije postići higijenskim odgojem i pravilnom zdravstvenom propagandom.

ZAKLJUČAK

1. Iako se pri svarivanju upotrebljavaju mnogobrojne i razmno- vrene energije i materije, koje mogu uzrokovati lakša i teža poremećenja na raznim organismima čovječeg tijela, ipak svarivanje ne predstavlja po zdravlje radnika neku izvanrednu i veliku opasnost,
jer se sve četnosti (radijacija energija, otrovn plinovi, pare i dim, užarena materija, električna energija), što prijete zdravlju radnika, mogu pomoću higijenskih i tehničkih zaštitnih mjera (ventilacija, zaštitna oprema i t. d.) ukloniti.

2. Od značajnih proučenih zabilježenih u stranoj literaturi, što stoje u vezi sa četnim djelovanjem plinova, para i dima (simptomni kompleks gornjih respiratornih putova, sideroza, snizeni krvni tlak), zapažen je među našim svarivačima samo simptomni kompleks gornjih respiratornih putova. Izražene sideroze i snizeni krvni tlak nisu nađeni među našim svarivačima.

3. Akutna i teža kronična otrovjanje pojavljuju se pri svarivanju samo pod izvanrednim okolnostima.

4. U općem zdravstvenom stanju nema značajnih razlika između svarivača i radnika zaposlenih u drugim sličnim ravnjama.

5. Svarivanje ne predstavlja po zdravlje žena neku specifičnu opasnost. Ako se izbjegnu svarivački radovi, pri kojima su potrebni teški fizički napori, onda mogu žene s uspjehom, bez štetnog po zdravlje, vršiti svarivački posao.

7. U našoj zemlji ne postoje specijalne odredbe o zaštiti zdravlja radnika zaposlenih pri svarivanju. Takve odredbe, u kojima treba naročito pažnju obratiti na ventilaciju, zaštitnu opremu i mjere protiv eksplozija, trebalo bi što prije propisati.

Institut za higijenu rada,
Zagreb

LITERATURA

5. Drinker Ph., Hatch Th.: Industrial Dust, New York (1936)
11. Sinjew J. P.: Osnovi tehnike bezopasnosti, Moskva (1930)
26. Drinker Ph.: Shipyard Health Problems, J. Ind. Hyg. and Toxicol. 26 (1944) 86
33. Letavjet A. A.: Kurs Gigieny truda, Moskva (1940)
35. Hodgman: Handbook of Chemistry and Physics, Cleveland (1947)
37. Patty A. F.: Industrial Hygiene and Toxicology, New York (1948)
38. Zolotnickiy D. N.: Tehnika bezopasnosti v stroitelstve, Moskva (1949)
41. Kuhn S. H.: Eyes and Industry, St. Louis (1950)
42. Šakić D.: Profesionalna oboljenja oka, Arh. za hig. rada 1 (1950) 112

231
SUMMARY

WELDERS' OCCUPATIONAL HAZARDS

The problem of occupational hazards incurred by welders is presented on the basis of data from literature as well as from materials and experience collected at the Institute of Industrial Hygiene of the Yugoslav Academy in Zagreb.

In the course of 1949 50 welders working in Croatian industries were examined and 353 in the course of 1950. It was established that 33.1% of the welders suffered from conjunctivitis (while there were 6.9% in the control group), 37.7% suffered from cough (32.1% in the control group) and from headache 26.2% (15.4% in the control group). In 38.5% of the welders (Table 7) traces of burns were found (0.9% in the control group) distributed in Table 14 according to location. Examination of blood pressure did not show statistically important differences between welders and the control group (Tables 11—13) to the effect that the welders' blood pressure be lower. 50 arc-welders who had spent more than 10 years in their occupation underwent detailed radiological examination. Only few cases of intensified lung markings were discovered, but no nodulations typical for siderosis.

One case of a mortal poisoning with nitrous gases (edema of the lung) is described which had occurred during welding.

The author also proposes measures for the protection of all workers directly connected with welding.

Institute of Industrial Hygiene,
Zagreb
Slika 3. Svarivači vrlo često imaju zaštitne naočare na čelu umjesto na očima.
Slika 4. Kod svarivanja prohaju užarene iskre
Učenik u privredi, koji pomaže kod rada, nema zaštitne naočare
Slika 5. Na staklu zaštitnih naočala vide se tragovi užarenih čestica.