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MODELLING THE MECHANICAL RESPONSE OF TWO-LAYERED ARTERY USING 
THERMOMECHANICAL ANALOGY APPROACH 
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Original scientific paper 
This work deals with the prediction of the mechanical response of a section of a human common carotid artery (CCA). The arterial residual stress state is 
accounted for using the thermomechanical analogy (TMA) approach, which is applied in this work to model the mechanical response of a two-layered 
arterial structure. The starting point to model the arterial residual stress state is normally the cut-open section, which is in the case of patient-specific artery 
not known. With TMA approach, however, instead of using the arterial zero-stress cut-open configuration to predict the arterial residual stress state, a 
thermomechanical model of the CCA is considered with its zero-stress geometry defined based on the actual CCA in vivo configuration. The 
approximation to the CCA residual stress state is then obtained by exposing the auxiliary CCA model to a volumetric deformation, enforced via adequate 
thermal dilatations. The approach is validated on a circular arterial model and by predicting the CCA cut-open zero-stress state. 
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Modeliranje mehaničkog odziva dvoslojne stijenke arterije uporabom termo-mehaničke analogije 
 

Izvorni znanstveni članak 
Ovaj rad obrađuje problem predviđanja mehaničkog odziva dijela zajedničke arterije glave (ZAG). Zaostala naprezanja u arteriji uzeta su u obzir 
uporabom termo-mehaničke analogije (TMA), koja se primjenjuje u ovom radu za potrebe modeliranja mehaničkog odziva dvoslojne strukture stijenke 
arterije. Obično se modeliranju zaostalih naprezanja u arteriji pristupi s uzdužno otvorenim modelom arterije, tzv. cut-open section, koji u slučaju 
bolesnikove arterije nije poznat. S TMA pristupom, umjesto uporabe uzdužno prerezane stijenke arterije, koja doduše osigurava početno stanje bez 
zaostalih naprezanja, u termo-mehaničkom modelu zajedničke arterije glave također je postignuto početno stanje bez zaostalih naprezanja ali na modelu 
stvarne, in vivo arterije. Tim pristupom, zaostalo naprezanje u ZAG aproksimirano je podvrgavanjem ZAG modela obujamskom deformacijom, t.j. 
primjenom odgovarajućih termičkih dilatacija. Takav pristup potvrđen je na modelu arterije kružnog presjeka i postizanjem stanja bez naprezanja u 
slučaju uzdužnog rezanja stijenke.   
 
Ključne riječi: metoda konačnih elemenata; termo-mehanika; zajednička arterija glave; zaostala naprezanja   
 
 
1 Introduction   
 

Mechanical response of the arterial wall has been 
shown to participate in pathogenesis of atherosclerosis 
[1]. An efficient way to study arterial wall mechanics is 
by means of numerical models. However, due to complex 
behaviour of the artery and its irregular geometry, several 
simplifications normally need to be adopted in treating a 
patient-specific artery. 

Common carotid artery (CCA) can be at healthy 
young individuals treated as a two-layered structure, 
composed of intima-media and adventitia layer [2]. Both 
layers exhibit anisotropic material response and are at 
physiological conditions subject to the so-called pre-
stresses and residual stresses (RS). Pre-stresses represent 
stresses in the arterial wall due to blood pressure, whereas 
RSs arise from non-uniform growth and remodelling 
processes during development of a human individual [3]. 
For a patient-specific artery RSs cannot be experimentally 
obtained in non-invasive manner and are thus unknown, 
however, it is commonly accepted that for realistic 
prediction of arterial stress state RSs should be accounted 
for [4].  

The effect of RSs on the biomechanical response of 
arteries is well documented and discussed in literature [5, 
6]. If either circumferential or longitudinal strips are 
excised from a load free arterial tube their curvature will 
change [4], which indicates multi-dimensional nature of 
RSs. For the in vivo observed artery the cut-open state 
represents only a hypothetical (imaginary) state, since the 
artery cannot be cut out from the body. In order to assess 
RSs and to determine the arterial material parameters, the 

uniform strain hypothesis is normally adopted [4, 7]. The 
hypothesis suggests that cells living at different locations 
across the vessel wall experience the same mechanical 
environment [8], which results in a presumption that at 
physiological conditions the transmural distribution of 
circumferential strain is uniform.  

Residual stress state can be predicted by starting the 
numerical computation from the arterial cut-open (zero-
stress) configuration, as presented in [9, 10]. However, in 
case of patient-specific artery this approach is practically 
impossible. In spite of that, the most widely used 
approach to model patient-specific arterial response, in 
particular when studying the change of arterial response 
with respect to various hemodynamic conditions or to 
stent implementation, is still to take the arterial unloaded 
configuration as its initial zero-stress state [11, 12], and 
thus neglect RSs completely. The initial stress-free 
configuration of the artery is thereby obtained by properly 
scaling the arterial in vivo configuration. One of 
somewhat better approaches is using an inverse 
formulation of the elastostatic equilibrium problem [12], 
where the stresses in a given deformed state are predicted 
based on the deformed configuration and the 
corresponding blood pressure. The approach, however, 
enables only a prediction of the arterial pre-stresses (and 
not RSs). Another widely used approach for predicting 
the arterial pre-stresses is based on the concept introduced 
by Gee et al. [11], which uses a multiplicative split of the 
deformation gradient to produce a displacement-free pre-
stressed in vivo configuration.  

To incorporate RSs in patient-specific arteries, 
Alastrué et al. [13] applied a simplified initial strain field, 
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obtained from the opening angle problem solution for 
cylindrical geometries, to actual in vivo (closed) arterial 
geometry. The applied strain field is however non-
compatible with a real non-cylindrical arterial geometry. 
Polzer et al. [4] recently presented an algorithm which 
predicts RSs through volumetric tissue growth. The 
approach is designed to determine such gradient of RS 
that the homogeneous stress hypothesis is satisfied. The 
procedure is performed in an iterative manner which can 
become somewhat time consuming. In addition, the initial 
arterial configuration, on which RSs are iteratively 
applied, cannot be determined and has to be obtained in 
some other way. Schröder and Brinkhues [14] analysed 
gradients of suitable invariant stress measures in the 
thickness direction of the arterial wall. RSs were then 
obtained by smoothing these gradients between the inner 
and outer margins of individual arterial layer (which was 
divided further into individual radial sections) using their 
mean volumetric values. Another approach to determine 
RSs is by stimulating growth and remodelling processes. 
Such works can be found in [3, 15, 16], however, their 
application is demonstrated only on circular arterial 
geometries.  

Recently, the use of thermomechanical analogy 
(TMA) approach to model the arterial residual stress state 
has been presented by the authors [17] where an idealised 
single-layered model of an artery has been treated. The 
aim of the present work is to apply the TMA approach to 
predict the mechanical response of a two-layered human 
CCA. For that purpose an auxiliary thermomechanical 
(TM) model of the CCA is constructed with its zero-stress 
geometry defined based on the actual CCA in vivo 
geometry. By enforcing volumetric dilatations into this 
model (meaning, by properly shrinking the model via 
thermal dilatations) an approximation to the CCA residual 
stress state is obtained. The key step of the TMA 
approach, however, is to properly define the properties of 
the TM model. For this, the mechanical response of a 
circular arterial segment, corresponding to the observed 
artery, is needed. This can be obtained based on the data 
provided from literature or, as in our case, using 
experimental data along with some in vitro assumptions 
and solving an identification problem (as, for instance, 
presented by Stålhand [18]). 

In the following sections (sections 2 and 3.1), first, 
the concept of the TMA approach as well as its purpose is 
presented in a somewhat simple and easy-to-understand 
example. Then, in section 3.2 ("Applying TMA approach 
to an arterial segment") the concept of using the TMA 
approach to treat an arterial segment is presented. The 
main part of the paper follows in section 4 ("Case study – 
Treating a patient-specific arterial segment") where a 
segment of a human CCA is treated with the purpose to 
predict its in vivo stress state. The predicted CCA RSs and 
the in vivo stresses are presented in section 4.4 where the 
approach is also validated. This is performed on a circular 
arterial segment and by predicting the cut-open state of 
the CCA.  
 
2 Setting the problem solution strategy   

 
In attempting to assess the stress state in a patient-

specific artery we are confronted with a series of issues 

resulting directly from the nature of the problem and 
therein incorporated uncertainties and missing 
information. While by nature in the considered boundary 
value problem (BVP) the mechanical response is 
normally treated as elastic, the only true information 
known about the artery is its configuration in the loaded 
state and the applied pressure load. In order to allow a 
determination of the respective stress state, the artery’s 
stress-free configuration (or any intermediate 
configuration with appertaining stress state) and the 
material behaviour should be given. However, when 
treating a patient-specific artery, none of them is specified 
in advance. In fact, it is feasible to solve the problem of 
stress determination only when ideal cylindrical geometry 
is accounted for and along with some empirical evidence 
of the problem. 

Based on the above conclusion we set up the 
following supposition regarding the solution of the stress 
determination problem in a patient-specific artery: If the 
problem solution can be found for the case of ideal 
cylindrical geometry, then a reasonably fair 
approximation to the stress state in a patient-specific 
artery can be obtained by a corresponding statically and 
kinematically consistent mapping of the ideal case 
solution.  

Along with physical reliability of the above 
statement, the following must be fulfilled: i) existence of 
the ideal case solution, and ii) existence of appropriate 
mapping that will allow to obtain the solution of the 
patient-specific artery problem based on the ideal case 
solution. In this regard, two major questions vital for 
setting the problem solution strategy arise: i) How the 
actual patient-specific arterial geometry can be 
associated with the ideal cylindrical geometry? and ii) 
How the ideal case solution should be mapped onto the 
patient-specific artery without violating static and 
kinematic consistency of the problem? While the former 
seems to be manageable in a rather simple way, with the 
real case geometry substituted by the ideal case geometry 
on a basis of some equivalence principle, giving proper 
answer to the latter is a highly demanding task which we 
will try to resolve applying the TMA approach.  

Considering the stated above, the strategy for the 
solution of the stress determination problem in a patient-
specific artery can be divided basically into the following 
three steps: 

Step 1: Establish the ideal case geometry from the 
given real case geometry. 

Step 2: Solve the corresponding mechanical BVP for 
the ideal case.  

Step 3: Assess the original mechanical BVP solution 
by means of mapping of the corresponding ideal case 
solution.  

Numerous specific activities performed within step 3, 
in this text generally referred to as mapping of the ideal 
case solution, though literally not true or only partially 
true, are based on the TMA approach. Accordingly, step 3 
can be further divided into three main parts: 

Sub-step 3.1: Build a thermomechanical analogue (or 
mapping) model for the ideal case. 

Sub-step 3.2: Assess the stress state (in one of the 
problem’s configuration) on the real case geometry using 
the derived thermomechanical analogue model.  
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Sub-step 3.3: Assess the original mechanical BVP 
solution based on the stress state obtained in sub-step 3.2.  

Because understanding of the TMA approach is 
crucial for the solution of the considered mechanical 
BVP, the concept of the approach and the steps required 
therein will be presented first by considering a 
demonstrative example. 

 
3 General concepts behind using the TMA approach 

 
In this section, the TMA approach is presented 

together with general concepts and reasons for its 
application by considering a beam bending problem. 
Although in no direct relation with the problem of an 
observed arterial section per se, it will help us to highlight 
all the key steps of the methodology in a somewhat 
simple and easy-to-understand example. How much 
similar the two problems actually are from the 
methodological point of view will be demonstrated in 
section 3.2, with the TMA approach applied to an 
idealised arterial segment.  

In order to understand well the role of the TMA 
approach in the solution of the mechanical BVP, all three 
steps in the BVP solution procedure must be addressed. In 
this section, however, our focus is primarily on step 1 and 
step 3, the steps establishing correspondence between the 
ideal and real case. Step 2, the step dealing with solving 
of the ideal case mechanical BVP will be therefore 
addressed as short as possible, underlining however 
characteristic features of the solution procedure.  
 
3.1 Stress assessment in a beam bending problem  
3.1.1 Problem description  

 
Let us observe an initially curved beam of a 

rectangular cross-sectional area in its straightened and 
stretched configuration Ω2 (Fig. 1a). The goal that we 

want to achieve in this section is to determine the stresses 
in observed beam’s configuration Ω2. In this 
configuration, which is the only known configuration of 
the problem, the beam is characterized by its length L2, 
variable cross-sectional area A2(x) and height h2(x). The 
magnitude of the pulling force is assumed to be known, 
its value being F0. For the sake of simplicity let us assume 
incompressible and linearly elastic material behaviour 
with the known value of Young’s modulus E0. Let us also 
assume that no further information is known except some 
empirical evidence relating to the distribution of stresses, 
specific to the nature of the considered problem. 

The nature of the mechanical response of the beam is 
the following: by removing F0, the beam shrinks in the 
axial (x) direction and expands in the transversal (z) 
direction. The obtained configuration Ω1λ, which is 
characterized by the length L1, cross-sectional area A1(x) 
and height h1(x), is not yet stress free, because the zero-
stress configuration Ω0 is actually represented by the 
curved beam in the absence of any externally applied load 
(see Fig. 1a). While it is obvious that the stresses in the 
configuration Ω1λ (referred to also as residual stresses in 
the case of artery problem) are caused by bending of the 
curved bar, their magnitude, however, is not known, 
because the initial configuration Ω0 of the beam is not 
known (i.e., given). In the stress-free configuration Ω0 the 
beam is characterized by the length L0, cross-sectional 
area A0(x), height h0(x) and radius of curvature R0(x).  

Because the initial stress-free configuration of the 
beam is not known, the stresses in any other configuration 
of the beam cannot be computed.  In the following, to 
obtain an approximate solution of the problem, we 
proceed in accordance with the problem solution strategy 
and respective steps in the solution procedure, described 
in the previous section. 

 

 
Figure 1 Configurations of the beam example: (a) the observed "real case" problem, and (b) the "ideal case" substitution problem 

 
3.1.2 Idealising the geometry of the beam, Step 1  

 
In order to obtain an estimation to the mechanical 

response of the investigated beam, the observed real case 
problem (Fig. 1a) is substituted by an ideal case problem, 
obtained by idealising beam’s geometry (Fig. 1b). The 
idealisation consists of assuming that the longitudinal axis 

of the beam in its loaded state C
2Ω  is a straight line, and 

that the cross-sectional area and its height are constant, 

thus: ( )C
2 2A x A=   and ( )C

2 2h x h=  . The idealisation 
further implies that the beam’s geometry in the stress-free 
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configuration C
0Ω  is characterised by a single radius of 

curvature with as-yet-unknown radius 0R .  
 

3.1.3 About solving the ideal case BVP, Step 2 
 

In the absence of knowing the radius 0R  additional 
information characterising the problem is needed to solve 
the BVP. In this regard, let us suppose that, by some 
phenomenological reason evidenced empirically, the 
gradient of the stress field is known for the final 
configuration of the beam. The discussed specifics of the 
stress distribution may be referred as the hypothesis of 
known stress gradient distribution1. In Fig. 1b, the slope 
of the stress distribution in the loaded configuration C

2Ω  
is specified by the angle φ0. Acquiring knowledge about 
the angle φ0 makes the ideal case problem solvable. The 
radius 0R  can be easily determined by using the above 

hypothesis, whereas the remaining parameters 0L , 0A  

and 0h  are obtained from the incompressibility condition 
by taking the complete unloading of the beam into 
account.  Based on these results, the mechanical response 
of any intermediate configuration between C

0Ω  and C
2Ω  

in Fig. 1b can be determined. Thus, in the configuration 

1λΩ  the stress distribution is ( ) ( )0, tanx x z zσ ϕ= − . 
 

3.1.4 Introducing thermomechanical analogue model,  
Sub-step 3.1 

 
In the following, let us look for an alternative 

approach to solve the ideal case BVP. This may at first 
seem redundant, but it is essential in order to solve the 
original real case BVP. Namely, the problem that arises 
is, how the obtained mechanical response of the idealised 
beam (i.e., either from states C

2Ω  or C
1λΩ ) can adequately 

be mapped onto the beam of real geometry (Fig. 1a). 
Unfortunately, it can be easily demonstrated that direct 
scaling based on the change in geometry is not adequate, 
because it leads either to stress non-equilibrium or strain 
incompatibility. In this work, therefore, the the TMA 
approach is used.  

The first step in the TMA approach is setting up of a 
thermomechanical analogue model capable of 
reproducing the same stress distribution and configuration 
as established by the C

1λΩ  state, without the bending (Fig. 
2). From the field of continuum thermomechanics it is 
known that the state C

1λΩ  (i.e., its configuration and 
stresses; Fig. 2a) can also be established by enforcing 
appropriate thermal (volumetric) dilatation in a clamped-
clamped straight beam, with no end rotation allowed, but 
free to extend in the longitudinal direction, as presented in 
Fig. 2b. More specifically, by exposing the beam in its 

                                                           
1 As mentioned, it is presumed that this is a well-known hypothesis of 
the observed beam problem, similarly as the uniform strain hypothesis in 
arteries, where φ0 = 0 for circumferential strains at the mean blood 
pressure. 

stress-free configuration C
0Ψ  to the temperature field 

resulting from the imposed temperature difference ΔTa 
and ΔTb, applied respectively on the upper and lower 
surface of the beam, the targeted stress distribution and 
configuration can be obtained in the thermally deformed 
configuration C

1λΨ . Namely, a linear temperature 
distribution over the cross-section, which is obtained as 
the solution of the specified steady-state heat transfer 
BVP, gives rise, under the given mechanical boundary 
conditions and assuming linear elastic behaviour, to a 
linear stress distribution over the cross-section. The 
introduced analogue model will be referred henceforth as 
the thermomechanical analogue model, shortly the TM 
model.  

From the point of ensuring consistent mapping we are 
looking for, the conceived TM model is advantageous 
because it is essentially a fictitious model, meaning that 
we can chose its initial geometry arbitrarily, in principle. 
Thereby the material properties of the model as well as 
the thermal loading need to be determined accordingly, 
i.e., in such a way to establish correspondence with the 
initial configuration of the TM model C

0Ψ  and the 

targeting state C
1λΩ .  

The most reasonable decision in defining the initial 
configuration of the TM model is to adopt the geometry 
of the beam in its loaded state C

2Ω . Namely, this is the 
only geometry in the considered beam problem that is 
given from the very beginning (which is also the case 
when treating patient-specific arteries, as seen later).  

 

 
Figure 2 Stress distribution in the beam configuration C

1λΩ , obtained: a 

by bending initially curved beam from its stress-free configuration C
0Ω , 

and b by enforcing thermal dilatation in stress-free configuration C
0Ψ  of 

the TM model 
 
Taking into consideration that the TM model is 

actually an auxiliary model, its material properties are not 
required to be in any relation with material of the 
observed beam problem per se. So, the purpose now is to 
determine the properties of the TM model in such a way, 
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that the configuration and the stresses in its loaded state 
C
1λΨ  will match the state C

1λΩ  of the idealised beam.  
Given to the nature of boundary conditions prescribed 

on the TM beam (no end rotation and free longitudinal 
extension, Fig. 2b), the beam does not deflect when 
exposed to linear change in the temperature  

( ) m,T x z T zϑ∆ = ∆ + ∆  and a linear distribution of 

stresses originate. Here, ( )m b a / 2T T T∆ = ∆ + ∆  is the 

mean temperature change and ( )b a 2/T T hϑ∆ = ∆ − ∆   is 
the temperature gradient.  

 Determination of the TM model material properties 
is subject to the constraints that originate from the above 
stated matching demands. In particular, the elongation 

Lψ∆  and transversal contraction hψ∆  of the TM model 
are prescribed, as well as the stress distribution 

( ) ( )0, tanx x z zψσ ϕ= − . Considering the respective strain 

distributions, ( ),x x zψε  and ( ),z x zψε , and linear elastic 
behaviour the following constraints must be fulfilled: 

 

( )

( )

m 0 1 2

m 0 1 2

0

( ) ( , ) /

( , ) tan

x

x

z

x

L z x z E

T z L L L

h T h h h
x z z

ψ ψ ψ

ψ ψ

ψ ψ ψ

ψ

σ

a ϑ

a

σ ϕ

∆ = +
+ ∆ + ∆ = −

∆ = ∆ = −

= −

 

 

     (1) 

 
where Eψ  is Young’s modulus and x

ψα  and z
ψα  are 

respectively the coefficients of thermal expansion in the 
axial and transverse direction of the beam (Fig. 3a). 

 

 
Figure 3 The TMA approach: (a) thermomechanical model of the idealised beam, (b) thermomechanical model of the real beam, and c mechanical 

response of the real beam (Fig. 1a) 
 
In principle, as the above system of equations is 

expressed in terms of five parameters, three material 
( Eψ , x

ψα , z
ψα ) and two loading (ΔTm, ϑ∆ , or 

equivalently ΔTa, ΔTb) parameters, its fulfilment can be 
achieved under different combination of the respective 
parameters’ values. Having only three equations and five 
unknowns, a set of selected three parameters can be 
expressed in terms of the remaining two, with their values 
chosen arbitrarily. Certain parameter pairs, however, 
cannot be chosen arbitrarily, e.g.  ( x

ψα , ΔTm) or 

( x
ψα , z

ψα ). From the system of equations (1) it also 
follows that a meaningful solution is obtained only when 

m 0T∆ ≠  and 0ϑ∆ ≠ . 
With a consistent combination of the TM model 

parameters determined, the TM model is completely 
defined. Because appropriate specification of the TM 
model is vital for solving the original real case BVP, let 
us remind what principal characteristics of the conceived 
model are.  

Firstly, the TM model stress-free configuration C
0Ψ  

(Fig. 2a) is identical to the ideal case configuration C
2Ω  

which represents the beam in its loaded state (Fig. 1b). 
Secondly, the boundary conditions in the TM model are 
prescribed in a way that conditions on the boundary, 
characterising the ideal case intermediate configuration 

C
1λΩ  state, are attained by thermal loading. Thirdly, the 

TM model material and thermal loading parameters are 
specified so that in its loaded configuration C

1λΨ  the 
same stress distribution and configuration, as established 
by the C

1λΩ  state, is obtained.  
 

3.1.5 Assessing the real case beam problem by means of 
the TM model, Sub-step 3.2 
 
So far we have shown that the idealised beam 

configuration C
1λΩ  and corresponding stresses have been 

calculated by two equivalent approaches, with the 
application of mechanical loading (bending) and with the 
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application of thermal loading using the TMA approach. 
The ideal case mechanical BVP solution is thereby used 
to characterise the corresponding TM model.  

Now, taking into consideration that by applying the 
TMA approach a consistent state of stresses and strains is 
achieved by definition, it could be in the same manner 
applied to solve the original mechanical BVP. The 
application of the TMA approach on the real beam 
geometry, taking the above determined values of the TM 
model material and loading parameters as well as 
respective boundary conditions into account, is quite 
justified when considering phenomenological and 
geometrical similarity between the two cases (note that 
the ideal case has been obtained by idealising the 
geometry of the real case).  

First, following the same procedure as above, a new 
TM model 0Ψ  (Fig. 3b), with the material properties and 
associated boundary conditions of the ideal case TM 
model adopted, is constructed considering the real beam 
configuration 2Ω  (Fig. 1a). The 0Ψ  configuration is 
stress-free. Application of the previously determined 
thermal loads ΔTa and ΔTb gives rise to a temperature 
field that obeys the heat transfer equation in the 
considered real case domain. Finally, in consequence of 
the established temperature field and given boundary 
conditions the stresses appear in the TM model, which 
deforms to the configuration 1λΨ . In this way, i.e. by 
considering the thermomechanical analogy, a fair 
approximation of the intermediate 1λΩ  configuration and 
the corresponding stress state for the real case beam 
problem is obtained.  

The strains obtained by the TM model, however, 
cannot be considered as an approximation to the strains of 
the 1λΩ  configuration, because neither the configuration 

0Ψ  resembles the zero-stress configuration 0Ω  nor the 
strains are related to stresses by the true constitutive law. 

 
3.1.6 Assessing the real case beam problem by means of 

the TM model, Sub-step 3.3 
 
Having determined the 1λΩ  configuration and 

corresponding stress distribution we are now able to 
assess correctly the state of strains in the 1λΩ  
configuration. This is performed by considering the actual 
material behaviour of the beam. Practically, this is 
obtained by switching the material properties and 
loadings of the TM model in the configuration 1λΨ  

( 1 1λ λΨ = Ω ) to real material properties and loadings 
(Fig. 3c). With such a model obtained, releasing the 
stresses completely defines the zero-stress configuration 

0Ω , whereas applying the pulling force F0 yields the 

stresses in the given loaded configuration 2Ω , the 
specified problem task being thus finally solved. 
 
 
 

3.2 Applying TMA approach to an arterial segment 
3.2.1 Problem description and its solution 

  
The subject of observation is a real arterial segment 

in its loaded (in vivo) state 2Ω . For the sake of 
simplicity, let us assume that the longitudinal axis of the 
segment is straight and that the shape of the segment’s 
cross section is constant (Fig. 4a). Additionally, because 

of time variation of blood pressure ( )CAP t , which is 

assumed to be known, it follows that ( )2 2 tΩ = Ω . The 
artery is considered as a two-layered structure, composed 
of intima-media (IM) and adventitia (A) layer. The 
adopted constitutive behaviour is hyperelastic, isotropic 
and incompressible. Further, there exists some empirical 
evidence regarding the stress and strain distribution in the 
loaded state, specific to the nature of the considered 
problem, which is also assumed known. The purpose in 
the following is to determine the stress state in the loaded 
configuration 2Ω  of the observed arterial segment. 

In order to find the solution of the problem, the 
corresponding BVP must be formulated first. From 
empirical evidence, the mechanical response of a real 
arterial segment is the following (Fig. 4a). In the loaded 
configuration 2Ω , the artery is loaded with blood 

pressure CAP . By removing the pressure, the artery 
shrinks in the radial direction and takes the so called 
stretched configuration 1λΩ . By further cutting the artery 
transversely, the artery shrinks in the axial direction (for 
the stretch λ) and takes the unloaded configuration 1Ω . In 
this state, although the artery is free of external loads, it is 
still subject to internal stresses. Finally, by cutting the 
artery longitudinally, it springs-open and takes the zero-
stress configuration 0Ω . In reality, due to different 
natural causes originated from the artery’s growth, the 
stresses in the two-layered structure need not to vanish 
completely. For the purpose of this work we will assume, 
however, that in the zero-stress configuration 0Ω  the two 
layers are stress free, meaning that the same opening 
angle 0 0 0

IM AΘ Θ Θ= =  would characterize both layers 
if they were delaminated.  

It is clear that even in the case the material behaviour 
of both layers were specified, a determination of the 
respective stress state in the loaded configuration 2Ω  is 
not possible, because the artery’s stress-free configuration 

0Ω  (or any intermediate configuration with the 
appertaining stress state) is not known. To solve the 
problem nevertheless, the empirical evidence specific to 
the stress and strain distribution of the arterial loaded state 
should be accounted for. How this additional information 
is considered in the BVP solution procedure will be 
presented in section 4 ("Case study – Treating a patient-
specific arterial segment"), where the case of a patient-
specific artery will be computationally analysed. 

For the same reasons as discussed in the 
demonstrative beam example case, we consider the TMA 
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approach adequate to find an approximate solution to the 
considered real arterial segment problem. We therefore 
proceed in accordance with the problem solution strategy 
and respective steps, described in section 2 ("Setting the 
problem solution strategy"). 

Because step 1 (simplifying/idealising the geometry 
of the real artery, Fig. 4b) and sub-steps 3.2 and 3.3 
(mapping the stresses of the idealised artery to the real 

artery) of the solution procedure are performed 
computationally in the same manner as in the beam 
example, the emphasis will be given to a detailed 
description of the topics related to step 2 and sub-step 3.1. 
The specifics regarding the solution procedure steps that 
are by-passed here will be thoroughly addressed in section 
treating the patient-specific arterial segment (section 4). 

 

 
Figure 4 Predicting the mechanical response of a patient-specific arterial segment Ω2: (a) patient-specific arterial segment, (b) idealised arterial segment, 

(c) idealised thermomechanical arterial segment, and (d) thermomechanical model of patient-specific arterial segment 
 

3.2.1 Treating the idealised arterial segment, Step 2 
 
To estimate the mechanical response of the arterial 

segment, its cross-sectional shape is idealised into a 
circular one. The geometry of the circular arterial segment 
in the loaded configuration C

2Ω  is thus defined by the 

outer radius of the adventitia layer A
or  and the layer 

thicknesses 2
Aδ  and 2

IMδ  ( 2 2 2
A IMδ δ δ+ = ). In the cut-

open zero-stress configuration C
0Ω  the segment is defined 

with the outer radius of the adventitia layer A
oR , the layer 

thicknesses 0
Aδ  and 0

IMδ  ( 0 0 0
A IMδ δ δ+ = ), and the 

opening angle 0Θ . The lengths of the arterial segment in 
those configurations are respectively L2 and L0. 

In setting the BVP equations for the circular arterial 
segment the above described characterisation of the 
arterial mechanical response is taken into account. The 
deformation and respective principal stretches of a 
material particle from the zero-stress configuration C

0Ω  

to the loaded configuration C
2Ω  are characterised as 

follows. Closing of the cut-open artery (configuration 
C
1Ω ) is defined by the opening angle 0Θ  and the axial 

stretch Λ , which is followed by additional axial stretch 
λ , when reinserting the arterial segment in the human’s 
body (configuration C

1λΩ ). Finally, the in vivo state 

(configuration C
2Ω ) is obtained by applying the blood 

pressure CAP  on the inner surface of the IM layer. 

Although the blood pressure varies with time ( )CAP t , 
the problem can be treated as quasi-static [19]. Therefore, 
we will denote the time dependence in the following 
equations only occasionally.  

The material particles located on the circumference 
( )r r t=  in the configuration ( )C

2 tΩ  are supposed to 
take the circumferential position defined by the reference 
radius ( )R r  in the configuration C

0Ω . From the 
incompressibility condition the following correspondence 
relation is obtained: 

 

( ) ( )2 2 2

0

2

( )

where: .

A A
o o

A A
o o

R r R r r

r r r

πλΛ
Θ

δ

 = − − 
 

− ≤ ≤

          (2) 

 
When all three successive motions of the particle 

(from C
0Ω  to deformed configurations C

1Ω , C
1λΩ  and 
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C
2Ω ; Fig. 4b) are accounted for, the deformation of the 

material particles in the loaded configuration C
2Ω  is 

defined by the principal stretches:  
 

0

0

( )( ) ,  ( ) ,  ( ) .
( )r z

R r rr r r
r R rφ

Θ πλ λ λ λΛ
π λΛ Θ

= = =  (3) 

 
Above, rλ , φλ , and zλ  are respectively the radial, 
circumferential and axial principal stretch. 

The stress state in the two arterial layers, 
{ },s IM A∈ , resulting from the described deformation 

(3) is expressed by the Cauchy stress tensor σ , which for 
an isotropic incompressible material reads: 
 

{ }T2 ; , .
s

s s s s s s
s

Wp p s IM A∂
= − + = − + ∈

∂
I I F F

C
ss   (4) 

 
In the equation ps is the Lagrange multiplier that 

enforces incompressibility, I is the identity tensor and sF  
is the deformation gradient tensor:  
 

diag ( ),  ( ),  ( ) .s
r zr r rφλ λ λ =  F      (5) 

 

Further, Ts s s=C F F  is the right Cauchy-Green 

tensor and sW  is the strain energy density function. The 
same functional structure of the strain energy density 
function is considered for both layers [9]:  

 

( )1exp 3 1 ,
2

s s
s sa b

s
b

c cW I
c

  
= − −      

      (6) 

 

with s
ac  and s

bc  being the constitutive model parameters 

of the respective layer and 1
sI  is the first invariant of the 

tensor sC . 
When the assumed material behaviour (6) is taken 

into account, the non-zero components of the stress tensor 
(4) are expressed as: 

 

(

)

2 2 2

2

( ) ( ) ( )

( ) ( ) exp ( ) ( )
2

( ) 3 ; , , ..

s s s
kk kk

s
s s b
kk k a r

z

r p r r

cr r c r r

r k r z

φ

ss

s λ λ λ

λ φ

= − +


= + +


+ − =


           (7) 

 
Apart from fulfilling the equilibrium equations: 
 

d 0,
d

s ss
rrrr

r r
φφss s −

+ =         (8) 

 
in each layer domain, the respective radial stress 
distributions have to satisfy the associated boundary 
conditions:  

( ) ( )CA , 0 ,IM IM A A
rr i rr or P rσ σ= − =      (9) 

 
and the continuity condition at the layers’ interface 

IM A
o ir r= :  

 

( ) ( ) .IM IM A A
rr o rr ir rσ σ=             (10) 

 
The symbols "o" and "i" are used respectively to 

denote the outer and the inner radius of the layer. 
The set of equations (2)-(10) completely defines the 

BVP of the circular arterial segment. Assuming the 
material behaviour and zero-stress configuration C

0Ω  as 

known ( A
oR , 0

Aδ , 0
IMδ , 0L , 0Θ ), the mechanical response 

of all of segment’s configurations in Fig. 4b can be 
determined. The solution of the considered BVP 
comprises a determination of the loaded configuration 

C
2Ω  ( A

or , 2
Aδ , 2

IMδ , 2L ) and the corresponding stress 
distribution.  
In order to enable the stress computation (7), the 
functional dependence of the Lagrange multipliers 

( )IMp r  and ( )Ap r  has to be determined. From the 
equilibrium equations (8) the following dependence is 
obtained after taking the boundary conditions (9) into 
account:  
 

( )

( )

CA( ) ( )

d ;

d( ) ( ) ;

IM
i

A
o

IM IM
rr

r
IM IM IM IM

rr i o
r

r
A A A A A A

rr rr i o
r

p r P r

r r r r
r

rp r r r r r
r

φφ

φφ

σ

σ σ

σ σ σ

= + −

− − ≤ ≤

= + − ≤ ≤

∫

∫

      (11) 

 
From the stress continuity condition (10) it comes out 

that the radii IM
ir , IM A

o ir r=  and A
or  of the loaded 

configuration C
2Ω  are interconnected by the relation: 

 

( ) ( )CA d d ,
A IM

o o

A IM
i i

r r
A A IM IM

rr rr
r r

r rP
r rφφ φφσ σ σ σ− − = −∫ ∫       (12) 

 
from where direct dependence of the loaded configuration 

( )C
2 tΩ  on the applied blood pressure ( )CAP t  is 

manifested. Also, considering that the three radii are 
constrained by the incompressibility condition, it is 
evident that in the BVP definition either the blood 
pressure ( )CAP t  or the corresponding configuration 

( )C
2 tΩ , represented e.g. by the radius ( )A

or t , should be 
specified. 

With the Lagrange multipliers ( , )IMp r t  and 

( , )Ap r t  determined (11), stresses can be computed from 
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(7) for any value of the pressure ( )CAP t . This obviously 
enables, when setting in the Eqs. (11) and (12) the 
pressure to zero, a determination of the stretched 
configuration C

1λΩ  and computation of the corresponding 
(residual) stresses.  

 
3.2.3 Thermomechanical analogue model of the idealised 
arterial segment, Sub-step 3.1 
 

In the TMA approach, setting up of a 
thermomechanical analogue model capable of 
reproducing the same stress distribution and 
configuration, as established in the C

1λΩ  state of the 
idealised arterial segment, is the first step. The 
distribution of RSs in the configuration C

1λΩ  is 
characterised by the closing and axial stretching of 
initially cut-open artery. The circumferential stress φφσ  
is affected primarily by bending, whereas the axial stress 

zzσ  is affected by stretching (see for instance [20]). 
Similarly as in the beam bending example, such a 
mechanical response can be obtained when a two-layered 
cylindrical (TM) tube segment, clamped at both ends, is 
exposed to adequate temperature change, Fig. 4c. More 
specifically, by exposing the tube segment in its stress-
free configuration C

0Ψ  to a temperature field resulting 
from the imposed temperature difference iT∆ , oT∆  and 

mT∆  (Fig. 4c), the targeted stress distribution and 
configuration can be obtained in the thermally deformed 
configuration C

1λΨ . The two layers of the TM model are 
supposed to be defined in a way to give the mechanical 
response similar to the one, experienced by the IM and A 
layer of the circular arterial segment. 

In view of later application of the introduced TM 
model to the analysis of the real artery, the elimination of 
the closing up of the (initially) cut-open section is 
advantageous. In the case of idealised arterial segment, all 
deformed configurations of the TM model are actually 
cylindrical. The logical step is now to adopt the in vivo 
configuration C

2Ω  as the TM model’s stress-free 

configuration C
0Ψ . Since the initial and final 

configuration of the TM model are given, its material 
properties and thermal loading have to be properly 
defined in order to obtain stress distribution and 
configuration as obtained in the targeting C

1λΩ  state. 

In order to catch the targeted φφσ  and zzσ  
distributions by the TM model, the assumed material 
behaviour has to be cylindrically transversely isotropic. 
Additionally, since the RSs are small in comparison to the 
stresses in the arterial loaded (in vivo) state, the material 
behaviour of the TM model is assumed linearly elastic. 
Considering the TM model is not allowed to deform in 
the axial direction, the stress state caused by the change of 
the temperature field ( )T r  can be expressed in terms of 
the radial displacement ( )u r  [17], as follows: 

 

{ }

P PT P

PT P P

TP P

d
d
d ; ,
d
d
d

s s
s s s s s
rr

s s
s s s s

s s
s s s s
zz

u uA A T
r r
u uA A T s IM A
r r
u uA T
r r

φφ

s β

s β

s β

Ψ Ψ

= + −

= + − ∈

 
= + −  

 

      (13) 

 
with the following relationships between the parameters 
that characterise the respective material behaviour with 
respect to "in-plane" (P) and transverse (T) direction 

(elastic moduli P
sE , T

sE , Poisson ratios P
sν , TP

sν  and 

PT
sν , coefficients of thermal expansion P

sα , T
sα ) defined 

as:  
 

( ) ( )

( ) ( )

P TP PT P P TP PT
P PT

2
P TP P TP T P

TP T

2
P TP PT TP PT P

P P P PT P TP T

T TP P T T TP P PT T

1
, ,

1 ( )
, ,

1 2 2 ( ) ,

,

2 ,

s s s s s s s
s s

s s

s s s s s s
s s

s s

s s s s s s s

s s s s s s s

s s s s s s s s s

E E
A A

D D
E E

A A
D D

D

A A A

A A E E

ν ν ν ν ν

ν ν ν ν

ν ν ν ν ν ν

β ααα 

β αα  ν ν

− +
= =

+ −
= =

= − − −

= + +

= + =

      (14) 

 
The mechanical response of the TM model is to be 

evaluated considering the temperature field change that 
results as a steady-state solution to the heat transfer BVP 

with the imposed temperature difference IM
i iT T∆ = ∆ , 

A
i oT T∆ = ∆  and IM A

o i mT T T∆ = ∆ = ∆ , applied 

respectively on the inner ( IM
iρ ) and outer ( A

oρ ) surface 

of the TM model and on the interface ( IM A
o iρ ρ= ) 

surface between the two layers. Since the TM model is a 
fictitious model, isotropic and temperature independent 
thermal properties can be assumed, which yields the 
following temperature distribution: 

 

( ) ln ;
ln

s s
s s s so i

i i oss
io

s
i

T T rT r T rrr
rr

r

 ∆ − ∆
= ∆ + ≤ ≤       

 

      (15) 

 

The displacement field ( )su r  can be determined as a 
solution of the two pairs of first-order differential 
equations establishing the relationship between the 

variables ( )su r  and  ( )s
rr rs  [17]: 
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PT P

P P P
2

PT PT
P 2

P P

PT P

P

d
d

d ( ) 1
d

1 ;

s s ss s
srr

s s s

s s s ss
srr rr

s s

s s s
s s
i os

Au u T
r rA A A

A AuA
r rA r A

A T r
rA

s β

ss

β rr

= − + +

   
= − + − +      
   

 
+ − ≤ ≤  
 

           (16) 

 
subject to the traction-free boundary conditions: 

 

( ) ( )0 , 0IM IM A A
rr i rr oσ r σ r= =                (17) 

 
and the continuity conditions at the layers’ interface:  

 

( ) ( ) ( ) ( ), .IM IM A A IM IM A A
rr o rr i r o r iu uσ r σ rrr  = =      (18) 

 
Finally, by a proper consistent combination of the 

TM model parameters the required stress and 
configuration correspondence between the C

1λΨ  and C
1λΩ  

states is established. With this, all the necessary data 
required in the subsequent analysis of the real arterial 
segment (sub-steps 3.2) are obtained. 

 
4 Case study – Treating a patient-specific arterial 

segment 
 
Similarly as discussed in the beam example, the only 

data that are available when treating a patient-specific 
artery are its loaded (in vivo) configuration 2Ω  under the 
exerted blood pressure variation. In the sequel, the 
solution methodology based on the TMA approach will be 
used to determine the in vivo stress state of a patient-
specific arterial segment. In the case study, experimental 

data of a healthy, non-smoking 28-year-old male’s CCA 
are considered. 

 
4.1 Experimental data 

 
The CCA in vivo configuration was obtained using a 

high-resolution echo-tracking device Philips iU22 (Philips 
Healthcare) and a L9-3 linear probe. Ultrasound (US) 
image of the CCA transversal view (in systole) was 
recorded approximately 20 mm proximal to the carotid 
bulb. From the US image, the outer contour of the 

adventitia layer ( A
oΓ ) was then obtained, Fig. 5a. The 

average value of the corresponding arterial thickness sysδ  
was obtained using M-mode US measurements (Fig. 5b), 
being 0.45 mm. The in vivo cross section of the CCA 
configuration, depicted in Fig. 5a, was then obtained by 
assuming the IM thickness represents two-thirds and the A 
thickness one-third of the total arterial thickness [2, 21]. 
For the purpose of numerical analysis, the arterial 
segment was assumed to be straight in the longitudinal 
direction. 

An average distention waveform cycle of the inner 
arterial radius ( )IM

ir t  was obtained from M-mode US 
measurements (Fig. 5b) by averaging the distention 
waveforms of three heart cycles. During US 
measurements, the blood pressure was measured on the 
subject’s left brachial artery. The pressure-radius 
waveform of the CCA segment (Fig. 5b) was then 
obtained by, first, assuming that the mean and diastolic 
pressures are nearly constant throughout the large artery 
tree [22] and, then, by combining the diameter-derived 
pulse pressure method [23] and the exponential 
relationship between the arterial cross-sectional area and 
pressure, as presented in [24, 25]. 

 
Figure 5 Experimental data of the CCA segment: (a) the in vivo CCA geometry (where A

oΓ   is the outer adventitia surface in systole, and IM and A are 
the intima-media and adventitia layers) and (b) the obtained blood-pressure waveform 

 
4.2 Arterial behaviour characterization  
 

In characterizing the arterial behaviour we make use 
of the equivalent circular arterial segment, as discussed in 

previous sections. Arterial material properties can be 
either presumed from literature or can be identified from 
the measured pressure-dilatation waveform through the 
heart cycle of an artery. The feasibility of characterizing 
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the arterial material properties based on the in vivo 
clinical data was, for instance, demonstrated by Schulze-
Bauer and Holzapfel [21], Masson et al. [26] and Stålhand 
et al. [27]. In order to assess the stress state in the circular 
arterial segment, and consequently in the real artery, a 
recourse to certain less or more objective suppositions and 
in vitro obtained data is needed. Consequently, it is on the 
degree of truthfulness of the adopted unknown 
information that the objectivity of the computed stress 
depends.  

Regarding stretching of the arterial segment the 
following two suppositions were adopted in the 
investigated case: i) the in vivo axial stretch λ was set to 
10% (obtained based on measurements made in situ, 
before extraction of the human carotids [9]), and ii) the 
axial contraction Λ, which is associated with the 
longitudinal cut of the unloaded arterial segment, is set to 
unity [26]. With these stretches assumed the respective 
lengths of the arterial segment in the unloaded 
configuration C

1Ω  and zero-stress configuration C
0Ω  are 

specified as well.  
As a principal constraint imposed in determining the 

mechanical response of a circular arterial segment is the 
acceptance of the uniform strain hypothesis [7], which 
presumes a uniform transmural distribution of 
circumferential strain at physiological conditions. Besides 
that, we assume that some additional knowledge relating 
to the stress distribution is available. Explicitly, we 
assume: i) the ratio 1κ  between the circumferential and 
axial stress is known for one (arbitrary) value of the blood 
pressure, and ii) the ratio 2κ   between the circumferential 
stresses at the IM-A interface is known as well. In this 
work, according to Masson et al. [28], where CCA 
circular segments in seven young subjects were 
characterized, 1κ  was set to 1.9 (corresponding to the 
segment’s outer media surface in systole), and 2κ  was 
set to 5.0, according to [29]. 

The characterization of the circular arterial segment’s 
behaviour is twofold; it encompasses identification of the 
zero-stress configuration C

0Ω  parameters (and 0Θ ), on 
one hand, and complete material parameters 

characterisation ( A
ac , A

bc , IM
ac  and IM

bc  for the 
assumed constitutive behaviour), on the other hand. This 
inverse problem can be resolved by solving a 
minimization problem. The goal is to obtain such values 
of the unknown parameters 

{ }0, , , , ,A A A IM IM
o a b a bR c c c cΘ=u , which will match the 

computed response of the circular arterial segment to the 
experimental response as close as possible. The measure 
of the agreement is given by the objective function 

( )χ χ= u , formulated as:  
 

( ) ( ) ( ) ( )( )
( ) ( )( )

2CA
P λ

1
2

λ

PN

k k
k

i o

P P

g φ φ

χ χ χ

λ λ

=
= + = − +

+ −

∑u u u u

u u

    (19) 

 

with functions ( )Pχ u  and ( )λχ u  accounting for: i) the 
difference between the computed and experimental 
pressure load, represented respectively by the computed 

and measured intraluminal pressures ( )kP u  and CA
kP , 

and ii) the transmural gradient of the circumferential 
strain, taking into account the uniform strain hypothesis. 
In relation (19), PN  denotes the number of points from 
the experimentally obtained pressure-radius waveform 
(Fig. 5b) considered in the optimization,  

( )i IM IM
irφ φλ λ=  and ( )o A A

orφ φλ λ=  are the computed 

circumferential stretches at the inner and outer surface of 
the segment’s wall, and λg  is the weighting factor.   

With the obtained best-fit values, presented in Table 
1, the characterization of the circular arterial segment is 
accomplished. In the following, in order to apply the 
TMA approach, we are interested in the C

1λΩ  state of the 
arterial segment. As already discussed, based on this state 
the associated TM model is characterized, as performed in 
the following subsection.  
 

Table 1 The identified parameters of the circular arterial segment 

 (mm)A
oR  0  ( )Θ °  ( )kPaA

ac  
A
bc  ( )kPaIM

ac  IM
bc  

4,93 117,96 30,47 0,106 80,07 1,13 
 

4.3 The TM model characterization  
 
In order to apply the TMA approach to the observed 

patient-specific arterial geometry, the properties of the 
TM model need to be properly defined first. Considering 
that the mathematical framework governing the 
mechanical response of the TM model is given by the 
Eqs. (13) – (18), the characterization actually means 
finding out such values of the TM model parameters with 
which the correspondence between the stress and 
configuration of states C

1λΨ  and C
1λΩ  will be established. 

Note that the targeting state C
1λΩ  has been determined in 

the previous section.  
The zero-stress configuration C

0Ψ  of the two-layered 
TM model is defined based on the loaded (systolic) 
geometry of the corresponding idealized arterial segment 
(configuration C

2Ω , Fig. 4b). More specifically, the 

geometry C
2Γ  is adopted as the interface surface between 

the layers of the TM model, whereas the corresponding 

layer thicknesses IM
ψδ  and A

ψδ  (Fig. 4c) are initially 
unknown and have to be properly determined within the 
TM model characterisation procedure. Although it could 
be realised differently, the choice of relating the TM 

model’s interface surface with the geometry C
2Γ  is 

considered to give the TM model the best configuration 
correspondence and robustness for the subsequent 
application to the real artery.  

The TM model characterisation includes: i) 
determination of the thermal loadings 
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( IM
i iT T∆ = ∆ , A

i oT T∆ = ∆ and 
IM A

o i mT T T∆ = ∆ = ∆ ), ii) characterization of 

material parameters (being P
IMEψ , T

IMEψ , P
AEψ , T

AEψ , 

P
IMψα , T

IMψα , P
Aψα , T

Aψα ; where the Poisson ratios 

are assumed given: P P 0,45IM Aψ ψν ν= =  and 

PT PT 0,1IM Aψ ψν ν= = ) , and iii) determination of the 

respective layer thicknesses ( IM
ψδ and A

ψδ ). The 
characterisation is treated as an optimisation problem with 
the TM model calculations performed considering 
different values for the open model parameters. It is 
supposed, accordingly, that the values of the optimisation 
variables’ vector v: 

 
(

)
P T P T P

T P T

,  ,  , , , , , ,

, , , , ,

IM IM A A IM
i m o

IM A A IM A

T T T E E E Eψ ψ ψ ψ ψ

ψ ψ ψ
ψ ψ

α

ααα   δ α

= ∆ ∆ ∆v
 

obtained by the minimisation of the corresponding 
objective function ( )χ χ= v , give the required 

correspondence between the C
1λΨ  and C

1λΩ  state. In 
order to account for: i) the relative error between the 
computed C

1λΨ  and targeted C
1λΩ  stress states, and ii) the 

discrepancy between the computed geometry of the TM 
model and the geometry of the circular arterial segment in 
the configuration C

1λΩ , the objective function ( )χ χ= v  
is structured as follows: 

 

( ) ( )

( )

2
c

, , 1

2

ρ
, ,

1 m m mN
k k

m
m r z km k

k k

k i m o k

S S
N S

g

φ

Ψ

c

rr
r

= =

=

 −
 = +
 
 

 −
 +
 
 

∑ ∑

∑

v
v

v
       (20) 

 

where the vectors c
mS  and mS ; { }, ,m r zφ∈  are 

holding respectively the computed ( C
1λΨ ) and targeted 

( C
1λΩ ) discrete values of the radial, circumferential, and 

axial stress2, and mN ; { }, ,m r zφ∈  is the length of the 

vector mS . The quantities k
Ψρ  and kρ ; { }, ,k r zφ∈  

belong to the computed C
1λΨ  and targeted C

1λΩ  state, 
respectively, and represent the inner (i), interfacial (m) 
and outer (o) radii. The scalar ρg  is the weighting factor. 

The minimisation of the objective function 
( )χ χ= v  yields the best-fit values of the TM model 

parameters, tabulated in Tab. 2. The accomplished 
identification is a significant step in the TMA approach, 
because the identified values of the geometrical and 

                                                           
2 Note that in Sm, only the non-zero values of the stresses are included. 

material parameters also define the CCA TM model 0Ψ , 
according to the TMA approach. By applying the 
identified thermal loads onto the CCA TM model, its 
loaded configuration 1λΨ  follows. 

 
Table 2 The identified parameters of the circular TM segment 

Layer (s) 
( )kPa

s
PEψ

 
( )1/K

s
P
ψα

 
( )kPa

s
TEψ

 
( )1/K

s
T
ψα

 
( )mm

s
ψδ  

IM 240,734 -0,275 407,604 -0,055 0,630 
A 138,012 -0,270 166,909 -0,051 0,305 

      

 ( )C
iT∆

°
 

( )C
mT∆

°
 

( )C
oT∆

°
   

 0,954 1,181 1,254   
 

4.4 Results and discussion 
 
In this section, the results of stress determination of 

the observed patient-specific CCA are presented. 
The purpose of considering the possibility of 

computing the RSs by means of the corresponding TM 
model is not at all a demonstration of an alternative 
solution way, as one could conclude from the study in the 
previous section, but exclusively exposing the potential 
the TMA approach possesses in regard to the treatment of 
the real arteries’ geometries. Since the above specified 
TM model C

0Ψ  gives correct distribution of RSs and 

geometry of the stretched configuration C C
1 1λ λΩ = Ψ  in 

the case of the idealized arterial segment by definition, the 
computed stresses in the loaded configuration C

2Ω , when 
the blood pressure is applied, are correct as well. If now, 

instead of on the geometry C
2Γ  (Fig. 4b) the geometry 

ΓA
o  of the real arterial segment (Fig. 5a) is taken as the 

interface surface between the layers, and the above 

identified thicknesses IM
ψδ  and A

ψδ  are assumed as the 

respective layer thicknesses, a new TM model 0Ψ  is 
obtained. The material behaviour and temperature loads 
of the model are also taken from the circular TM model. 
In analogy with the proven response behaviour of the 

C
0Ψ  TM model, it is expected that the 0Ψ  TM model is 

capable to give a reasonably fair approximation of the 
distribution of RSs and geometry of the stretched 
configuration 1 1λ λΩ ≈ Ψ  of the real arterial segment, 
which is a precondition for the reliability of the 
subsequent stress state determination in the loaded 
configuration 2Ω  of the artery. 

The stresses in the patient-specific artery are thus 
obtained in two steps. Firstly, the distribution of RSs is 
computed by means of the 0Ψ  TM model (sub-step 3.2). 
Secondly, based on the obtained RSs and configuration 

1 1λ λΩ ≈ Ψ  the arterial segment is exposed to the actual 
blood pressure variation (sub-step 3.3).  
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4.4.1 Prediction of the CCA stretched state 
 
While the computation of the mechanical response of 

the C
0Ψ  TM model could be done analytically, due to 

rotational symmetry of the idealized arterial segment, the 
analysis of the 0Ψ  TM model has to be performed 
numerically. The most convenient method to cope with 
the irregular 3D geometry of the CCA is the finite 
element (FE) method. The volume domain representing 
the TM model was discretized into approximately 20000 
finite elements with temperature and displacement 
degrees of freedom (Fig. 6).  

For the TM model’s material mechanical behaviour 
the values in Tab. 2 are adopted, while for the heat 
transfer analysis the choice of the assumed isotropic and 
temperature independent thermal properties is arbitrary, 
because of the steady-state solution and prescribed 
temperatures as the boundary conditions.   

 

 
Figure 6 The Geometrical model of the TM arterial model (Ψ0) and a 

detail of the FE discretization 
 
In computing the mechanical response of the TM 

model, first, the steady-state heat conduction problem is 
solved. The resulting temperature distribution over the 
thickness of the segment is obtained based on the applied 
thermal loadings ( iT∆ , oT∆  and mT∆ ), identified for the 
circular TM segment C

0Ψ . The established temperature 
field gives rise to the stress and displacement field 
distributions in the TM model, which approximate the 
RSs and geometry of the arterial segment in its stretched 
configuration 1λΩ .  

In Fig. 7a, both the geometry of the 1λΩ  
configuration and the residual circumferential stress 
distribution are displayed. The bending-like distribution 
through the arterial wall thickness is easily recognizable, 
with the circumferential stress in the IM layer ranging 
from –9 kPa on the inner surface to approx. 5 kPa on the 
outer surface, whereas in the A layer, in contrast to IM, 
but fully in accordance with the bending nature, the stress 
is tensile, with an average value around 4 kPa. The 
residual circumferential and axial stress distributions 
through the wall thickness along four 90° sector’s lines 
(L0, L90, L180, L270) are plotted in Fig. 7b, where for 
comparison also the RSs of the circular arterial segment 

are displayed. Through the wall thickness the axial 
stresses practically coincide, whereas the circumferential 
stresses differ slightly. On one hand, this could be 
attributed to the CCA somewhat irregular geometry, and 
on the other hand, to the FE discretization (which, 
especially, has an effect near the inner and outer surface 
of the IM layer). Irrespective of that, the predicted RSs are 
in quantitative agreement with the data from prior works 
in this field [13, 30].  

In Fig. 7b, additionally, the stresses predicted with 
the circular TM segment ( C

1λΨ  state) are presented. As 
seen in the figure, the stress distribution of the TM 
segment practically overlaps the stresses of the circular 
arterial segment ( C

1λΩ  state). This was expected since the 
properties of the TM model are determined based on the 

C
1λΩ  state stresses and configuration. However, what this 

result shows is the feasibility of using the TMA approach 
for predicting the arterial bending as well as stretching 
stresses. 

 
 4.4.2 The predicted CCA loaded state 

 
The deformed state 1λΨ  of the CCA TM model is 

supposed to resemble the stretched configuration 1λΩ  of 

the CCA. Considering further that in the 1λΨ  
configuration the stresses of the TM model approximate 
the RSs in the 1λΩ  configuration, the deformed and 

stressed 1λΨ  FE model can be adopted as the starting-
point for the subsequent analyses regarding the arterial 
mechanical response. Although the zero-stress 
configuration 0Ω  is not known, the strains in the 1λΩ  
configuration can be determined by assigning the 
assumed arterial material behaviour to the adopted 
stressed FE model, which completes determination of the 

1λΩ  state. 

The loaded state 2Ω  of the artery is obtained by 

exposing the obtained FE model, representing the 1λΩ  
state, to the applied blood pressure. Both the geometry of 
the 2Ω  configuration and the circumferential stress 
distribution, predicted for the CCA loaded state (in 
systole), are displayed in Fig. 8a. As seen in the figure, 
the stresses are dominant in the IM layer, with the peak 
value around 200 kPa, whereas the average stress value in 
the A layer is around 40 to 50 kPa, which is in 
quantitative agreement with the data from [29]. In Fig. 8b, 
the circumferential and axial stress distributions through 
the wall thickness along four 90o sector’s lines (L0, L90, 
L180, L270) are plotted. In comparison to the 
circumferential stress distribution, predicted for the 
loaded circular arterial segment, the circumferential 
stresses of the CCA are somewhat higher. On one hand, 
this occurs as a consequence of compressive RSs, which 
are in the case of the CCA slightly lower at the inner IM 
surface. Another reason is the variable thickness of the 
CCA stretched state Ω1λ, which affects the stresses, 
caused by the application of the blood pressure, notably. 
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Figure 7 The predicted stretched states ( 1λΩ ): (a) residual circumferential stresses of the CCA segment and (b) stresses predicted for the CCA, 

circular arterial and circular TMA segment 
 

 
Figure 8 The predicted loaded (systolic) states (Ω2): (a) circumferential stresses of the CCA and (b) stresses predicted for the CCA and circular 

arterial segment 
 

 
Figure 9 Predictions of the CCA zero-stress state: (a) the CCA cut-open state #1

0Ω , and (b) the CCA cut-open state with both layers further delaminated 

 
4.4.3 Validation of the TMA approach 

 
The TMA approach is validated by evaluating the 

stresses in the presumed CCA zero-stress state Ω0. 
Accordingly, the CCA in the Ω1λ state is cut twice: by the 
first, transversal, cut the in vivo stretch λ is released, while 
by the second, longitudinal, cut the arterial segment cut-
opens (see Fig. 4a).  

The predicted equilibrium state of the arterial 
segment, obtained by transversally and longitudinally 

cutting the CCA from the Ω1λ state, is represented by the 
von Mises equivalent stress, displayed in Fig. 9a. As seen 
in the figure, the obtained state is almost free of RSs. In 
this state, however, both layers are still considered tight 
together. If now the two layers were further delaminated, 
the stresses in the separated layers would even further 
reduce, as shown in Fig. 9b. Considering that for the 
circular arterial segment the same opening angle was 
assumed for both layers, we could expect the same would 
occur in the case of CCA. However, because of its 
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irregular geometry, slightly different amount of openings 
is predicted. 
 
5 Conclusion   

 
An important aspect in modelling the stress state of 

human arteries is the inclusion of RSs. Besides having a 
significant influence on the in vivo stress distribution, 
understanding of RSs seems to be crucial in consideration 
of vascular growth and remodelling. Although several 
methods can be found in literature to include RSs in human 
(i.e., patient-specific) arteries, none of them is universally 
accepted. They are mostly very time consuming and are 
able to predict only the arterial RSs, whereas they cannot 
predict the corresponding geometry of the artery, or the 
predicted arterial state is not fully consistent.   

The main purpose of this work is to prove the potential 
of the TMA approach in predicting the in vivo stresses in 
the human CCA segment, with the arterial RSs accounted 
for. As demonstrated, the approach enables to predict the 
patient-specific arterial residual stress state (and the 
corresponding configuration) by means of an auxiliary TM 
model and solving the related BVP. Because the stress-free 
configuration of the TM model is based on the in vivo 
geometry of the artery, there is no need at all to model the 
unknown CCA cut-open zero-stress configuration. 
Although in this work the CCA was treated as a two-
layered structure of constant cross-section, the approach 
can be used as well to account for all three arterial layers 
and axially variable cross-section. Also, in principle, there 
is no restriction in its applicability regarding consideration 
of another material behaviour law.  

The real benefit of the TMA approach can be regarded 
from the point of the arterial residual stress state modelling. 
Without the TMA approach, normally, several repetitions 
of numerical analysis are needed to find the proper residual 
stress state [4], which can be very time consuming. In the 
case of the TMA approach, on the contrary, applying the 
material properties of the circular TM model and respective 
thermal loads to the stress-free in vivo CCA geometry 
yields an approximation to the CCA residual stress state in 
one single numerical analysis. Furthermore, the approach 
also enables a prediction of the residual stress state 
configuration, which can be considered as a major 
drawback of most existing methods. Although they predict 
the RSs, they cannot predict the corresponding geometry of 
the residual stress state configuration.  

In the end, considering the numerical efficiency and all 
the properties of the TMA approach, discussed in detail in 
this work, a conclusion can be drawn that the approach 
could contribute, along with the non-invasive medical 
imaging techniques, to better assessment and understanding 
of the in vivo stress state of patient-specific arteries. 
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