Navigacijski kurs u matematičkim primjerima - upotreba sferne geometrije

Marie Chodorová
Department of Algebra and Geometry Palacky University at Olomouc e-mail: marie.chodorova@upol.cz

Lenka Juklová
Department of Algebra and Geometry Palacky University at Olomouc
e-mail: lenka.juklova@upol.cz

Dana Smetanová
Department of Informatics and Natural Sciences
Institute of technology and Business
České Budějovice
e-mail: smetanova@mail.vstecb.cz

Abstract

\section*{Summary}

The paper deals with applications of methods of spherical geometry in naval navigation. It summarises the essential knowledge of spherical geometry and presents some exercises and their solutions. These exercises can be applied in explanations of the basic principles of naval navigation.

Sažetak

U radu se govori o aplikacijama metoda sferne geometrije u brodskoj navigaciji. Dan je pregled osnovnih podataka o sfernoj geometriji uz nekoliko vježbi i njihova rješenja. Ove vježbe mogu se primijeniti pri pojašnjavanju osnovnih principa brodske navigacije.

DOI 10.17818/NM/2017/3.9
UDK 656.052.1:514
Professional paper / Stručni rad
Rukopis primljen / Paper accepted: 27. 6. 2017

KEY WORDS

navigation course
latitude and longitude
spherical geometry

KLJUČNE RIJEČI
navigacijski kurs
geografska širina i dužina
sferna geometrija

1. INTRODUCTION / Uvod

Euclid described the five basic axioms of geometry in his work Elements around the year 300 BC . Today, they are called the axioms of Euclidean geometry. You could say that Euclidean geometry describes the flat world. The description of the properties of Euclidean space gave rise to analytical geometry which facilitates approximations of the description of local properties of space and their applications using the Cartesian coordinate system. Such a description can be widely applied in solving various technical and physical issues, travel itineraries, etc.

Considerations over the validity of Euclid's fifth axiom (the parallel postulate) changed significantly the view of the geometric perception of the world and influenced the modern development of geometry. Its disproof allowed the description of a world which is not flat (the so-called non-Euclidean geometry). The origin of non-Euclidean geometries falls into the first half of the $19^{\text {th }}$ century and is connected with the names Bolyai and Lobachevsky. The non-Euclidean description of the world is dealt with by e.g. spherical and differential geometry The development of knowledge of non-

Euclidean geometry space introduced a number of applications. One of them is the description of curved space (Earth, the Universe ...).

Spherical geometry is applied in the area of planning of long journeys on the Earth and mostly in naval and air navigation (c.f. [3], [4], [8], [9], [11] and [12]). Differential geometry studies curvature, transmission of properties by their display, geodetic curves and other properties of space (c.f. [2], [10]). For example, geodetic curves are curves which have zero geodetic curvature at each point. In other words, they are the curves along which movement is the "most economical" (time, distance or energy). Geodetic curves on a sphere are used in naval navigation as orthodromes (c.f. [9]). The methods of differential geometry allow to study the movements in long distances and are applied in air and naval navigation, in descriptions of the Universe (c.f. [2], [9], [10]). One of the best known methods of application of differential geometry is Einstein's General Theory of Relativity.

The paper presents exercises (instructions and solutions) from naval navigation which applies the methods
of spherical geometry. Let us note that the method of solution is presented in a manner comprehensible for secondary school graduates. The exercises may be used to explain the basic principles of naval navigation.

2. SPHERICAL GEOMETRY AND ITS APPLICATION TO NAVIGATION COURSE / Sferna geometrija i njezina primjena na navigacijski kurs

Earth's surface can be considered as spherical surface with the radius $r=$ 6371 km . The coordinates of points on the sphere are determined in the usual manner. Each point on the sphere (with the exception of the poles) has two geographic coordinates - the latitude and longitude. The latitude is denoted φ and longitude is denoted λ, evidently ; $\varphi \in\left\langle\frac{-\pi}{2}, \frac{\pi}{2}\right| ; \lambda \in(-\pi, \pi\rangle$, the coordinates of the point A (on the sphere) are written in the form $A=(\varphi, \lambda)$. The system of latitudes and longitudes generates an orthogonal coordinate network of parallels and meridians on the globe. Every main circle is the geodetic curve on the sphere. Finding the shortest route from the place to the place B is a basic task of spherical
geometry. This route (i.e. the shortest route from A to B in the sentence above) is the length of the $\operatorname{arc}(\leq \pi)$ of the main circle which intersects points A, B.

To solve the examples some notions need to be defined. For more details see e.g. [8].

Definition 2.1 Let A, B be points on the sphere and k the main circle passing through points A, B. The size of the central angle (\leq π) relevant to arc $A B$ of the main circle k is called the spherical distance of points A, B.

Definition 2.2 Let A, B, C be three different points on the sphere. The triangle $A B C$ consisting of arcs $A^{A} B, B^{A} C, A^{\prime} C$ of main circles relevant to central angels less than or equal to π is called the spherical triangle. The spherical distances a, b, c of points $B, C ; A, C ; A$, B, respectively, are called the sides of the spherical triangle $A B C$. The angles between arcs $A^{A} B, A^{\prime} C$ in the point $A, A^{\prime} B$, $B^{A} C$ in the point $B, B^{\wedge} C, A^{C} C$ in the point C are denoted α, β, γ, respectively and they are called the inner angles of the spherical triangle. The spherical triangle with at least one inner right angle is called the right spherical triangle.

Definition 2.3 Let's consider the point A on the sphere and the rotation, which turns the north point of horizon to the east. The navigation course is the angle φ of this rotation. The rotated point indicates the direction of movement in a given navigation course. The angle φ measures from 0° to 360°.

Definition 2.4 The number $|\pi-\varphi|$ is called deviation of angle φ (or deviation of angle φ from right angle).

The following theorems hold for spherical triangles:

Theorem 2.1 (Spherical sinus theorem) Let $A B C$ be the spherical triangle, a, b, c be the spherical distances of points B, C; $A, C ; A, B$ and α, β, γ be the inner angles of spherical triangle $A B C$, respectively. Then the following forms are valid (1)

$$
\begin{align*}
& \sin a: \sin b=\sin \alpha: \sin \beta \\
& \sin a: \sin c=\sin \alpha: \sin \gamma \tag{1}\\
& \sin b: \sin c=\sin \beta: \sin \gamma
\end{align*}
$$

Remark 2.1 If the spherical triangle $A B C$ is the right triangle (where $\gamma=\frac{\pi}{2}$) then equations (1) have the form

$$
\begin{aligned}
\sin a & =\sin \alpha \cdot \sin c \\
\sin b & =\sin \beta \cdot \sin c
\end{aligned}
$$

Theorem 2.2 (Spherical cosinus theorem) Let $A B C$ be the spherical
triangle, a, b, c be the spherical distances of points $B, C ; A, C ; A, B$ and α, β, γ be the inner angles of spherical triangle $A B C$, respectively. Then the following forms are valid
a) $\cos a=\cos b \cdot \cos c+\sin b \cdot \sin c \cdot \cos \alpha$ $\cos b=\cos a \cdot \cos c+\sin a \cdot \sin c \cdot \cos \beta$ $\cos c=\cos a \cdot \cos b+\sin a \cdot \sin b \cdot \cos \gamma$
b) $\cos \alpha=-\cos \beta \cdot \cos \gamma+\sin \beta \cdot \sin \gamma \cdot \cos a$ (3) $\cos \beta=-\cos \alpha \cdot \cos \gamma+\sin \alpha \cdot \sin \gamma \cdot \cos b$ $\cos \gamma=-\cos \alpha \cdot \cos \beta+\sin \alpha \cdot \sin \beta \cdot \cos c$

Remark 2.2 If the spherical triangle $A B C$ is the right triangle (where $\gamma=\frac{\pi}{2}$) then equations (3) have form
a) $\cos c=\cos a \cdot \cos b$
b) $\cos \alpha=\sin \beta \cdot \cos a$
$\cos \beta=\sin \alpha \cdot \cos b$
$0=-\cos \alpha \cdot \cos \beta+\sin \alpha \cdot \sin \beta \cdot \cos c$
Theorem 2.3 Let $A B C$ be the spherical triangle, a, b, c be the spherical distances of the points $B, C ; A, C ; A, B$ and α, β, γ be the inner angles of the spherical triangle $A B C$, respectively. Only one of the inner angles at most belongs to a quadrant other than the opposite side. It is the angle, which is opposite the side with the smallest deviation.

Proofs of these theorems are simple exercises from geometry; we can find them for example in [8].

Example 2.1 Let A, B be two places on the globe given by the latitude and longitude, $A=\left(\varphi_{1}, \lambda_{1}\right), B=\left(\varphi_{2}, \lambda_{2}\right)$. Determine the shortest route d from A to B.

Solution: The spherical distance of these points has to be found and the arc length d is computed - the shortest route from A to B. They are three trivial cases - one of the points is the pole ($\varphi_{1}= \pm \frac{\pi}{2}$ or $\left.\varphi_{2}= \pm \frac{\pi}{2}\right)$, both points have the same longitude or the absolute value of the difference of longitudes is π.

In these cases, the points A, B lie on the same meridian or on the opposite meridians. Than the spherical distance of points A, B is equal to $\left|\varphi_{1}-\varphi_{2}\right|$ and $d=r \cdot\left|\varphi_{1}-\varphi_{2}\right|$.

Now, suppose points A, B are not in the above-mentioned special positions. Let's consider the spherical triangle $A B C$, where C is the North Pole. Denote α the spherical distance of points B, C, b the spherical distance of points A, C and c the spherical distance of points A, B. Clearly $a=\frac{\pi}{2}-\varphi_{2}, b=\frac{\pi}{2}-\varphi_{1}$ (and with respect to Definition $2.20<a<\pi, 0<b<\pi)$. The angle $\gamma=\left|\lambda_{1}-\lambda_{2}\right|$ if $0<\left|\lambda_{1}-\lambda_{2}\right|<\pi$ or $\gamma=$ $2 \pi-\left|\lambda_{1}-\lambda_{2}\right|$ if $\pi<\left|\lambda_{1}-\lambda_{2}\right|<2 \pi$ (Fig. 1). It means that $0<\gamma<\pi$ and $\cos \gamma=\cos \left|\lambda_{1}-\lambda_{2}\right|$ $=\cos \left(\lambda_{1}-\lambda_{2}\right)$.

Figure 1 The spherical distance c of points A, B is computed (Theorem 2.2). Slika 1. Izračunata je sferna udaljenost c od točaka A, B (Teorem 2.2)

$$
\begin{gathered}
\cos c=\cos a \cdot \cos b+\sin a \cdot \sin b \cdot \cos \gamma \\
\cos c=\sin \varphi_{1} \cdot \sin \varphi_{2}+\cos \varphi_{2} \cdot \cos \left(\lambda_{1}-\lambda_{2}\right) \\
c=\cos ^{-1}(\cos c)
\end{gathered}
$$

The shortest route from the point A to the point B is $d=r \cdot c$, where r is the radius of Earth.

Now the angles α, β are computed (Theorem 2.1, Theorem 2.3)

$$
\begin{equation*}
\sin \alpha=\frac{\sin a}{\sin c} \cdot \sin \gamma \tag{6}
\end{equation*}
$$

$\sin \beta=\frac{\sin b}{\sin c} \cdot \sin \gamma$.
We obtain two angles for α, β, but only one of them is allowable (Theorem 2.3). The angle $\alpha(\beta)$ determines the navigation course to move from the point $A(B)$ to the point $B(A)$ along the main circle.

Example 2.2 The ship sails from Rio de Janeiro $\left(22^{\circ} 55^{\prime} S, 43^{\circ} 09^{\prime} W\right)$ to Lisbon via the shortest route.

How long does the voyage take if the ship sails at an average speed $15 N M h^{-1}$ (nautical miles ${ }^{1}$ per hour). What are the navigation courses of departure and arrival?

At which point the ship crosses the equator?

Solution: We denote $A=\left(\varphi_{1}, \lambda_{1}\right)=$ $\left(-22^{\circ} 55^{\prime},-43^{\circ} 09^{\prime}\right)$ as the point of departure, $B\left(\varphi_{2}, \lambda_{2}\right)=\left(38^{\circ} 42^{\prime},-9^{\circ} 11^{\prime}\right)$ as the point of arrival, C as the North Pole and $\mathrm{M}=\left(\varphi_{3}\right.$, λ_{3}) as the point where the ship crosses the equator (Fig. 2).

[^0]

Figure 2
Slika 2
a) The spherical distance of points A, C is $b=\frac{\pi}{2}-\varphi_{1} \doteq 1,9708 \mathrm{rad}\left(\varphi_{1}=-22^{\circ} 55^{\prime} \doteq\right.$ $-0,4 \mathrm{rad}$, the spherical distance of points B, C is $a=\frac{\pi}{2}-\varphi_{2} \doteq 0,8954 \mathrm{rad}\left(\varphi_{2}=38^{\circ} 42^{\prime}\right.$ $\doteq 0,6754 \mathrm{rad}$). (Example 2.1). The spherical distance c of points A, B is computed from equations (3), where $\lambda_{1}=-43^{\circ} 09^{\prime} \doteq$ $-0,7531 \mathrm{rad}, \lambda_{2}=-9^{\circ} 11^{\prime} \doteq-0,1603 \mathrm{rad}$ and γ $=\lambda_{2}-\lambda_{1}=0,5928 \mathrm{rad}$. We obtain
$\cos c=\cos \left(\frac{\pi}{2}-\varphi_{2}\right) \cdot \cos \left(\frac{\pi}{2}-\varphi_{1}\right)+\sin \left(\frac{\pi}{2}-\varphi_{2}\right) \cdot \sin \left(\frac{\pi}{2}-\varphi_{1}\right) \cdot \cos \gamma$ $\cos c=\sin \varphi_{2} \cdot \sin \varphi_{1}+\cos \varphi_{2} \cdot \cos \varphi_{1} \cdot \cos \gamma$
$\operatorname{cosc}=0,3527$
$c \doteq 1,2103 \mathrm{rad}$
The distance d of points A, B is $d=r \cdot c$, i . $\mathrm{e} . \mathrm{d} \doteq 7711 \mathrm{~km} \doteq 4163,62 \mathrm{NM}$.

The voyage time t is computed from the known form $t=\frac{d}{v}$, where v is average speed. Therefore $t=\frac{4163,62}{15} \doteq 227,5747 h \doteq$ 11days14h.

The angles α, β are computed from equations (6). The side c of the spherical triangle $A B C$ has the smallest deviation from the right angle, therefore only the angle γ belongs to a quadrant other than it's opposite side. We obtain $\sin \alpha \doteq 0,4463$ and $\alpha \doteq 0,466 \mathrm{rad} \doteq 27^{\circ} 46^{\prime} 26^{\prime \prime}, \sin \beta \doteq$ 0,55 and $\beta \doteq 0,5823 \mathrm{rad} \doteq 33^{\circ} 21^{\prime} 51^{\prime \prime}$. Navigation course on arrival is $\pi-\beta \doteq$ $146^{\circ} 38^{\prime} 09^{\prime \prime}$.

Result: The navigation course at the departure was $27^{\circ} 46^{\prime} 26^{\prime \prime}$, the navigation course at the arrival was $146^{\circ} 38^{\prime} 09^{\prime \prime}$. The ship travelled $7711 \mathrm{~km}(4163,62 \mathrm{NM})$ in 11days $14 h$.
b) Now let's consider the spherical triangle $A M C$, spherical distance of points M, C is $b^{\prime}=\frac{\pi}{2}$. ξ is denoted as the inner angle at vertex C and x as the side opposite to angle ξ (Fig. 2). The equations (4) are applied on the triangle $A M C$, we obtain successively
$\cos \frac{\pi}{2}=\cos x \cdot \cos \left(\frac{\pi}{2}-\varphi_{1}\right)+\sin x \cdot \sin \left(\frac{\pi}{2}-\varphi_{1}\right) \cdot \cos \alpha$
$x \cdot \sin \varphi_{1}+\sin x \cdot \cos \varphi_{1} \cdot \cos \alpha$
$0=\cos$

Since $\varphi_{1} \neq \frac{\pi}{2}, a \neq \frac{\pi}{2}, x \neq \frac{\pi}{2}$ and $x<c<\frac{\pi}{2}$ also we obtain

$$
\tan x=\frac{-\tan \varphi_{1}}{\cos \alpha} \doteq 0,4778
$$

The length d^{\prime} of the way route A to M is $d^{\prime}=r \cdot x \doteq 2840 \mathrm{~km} \doteq 1533,35 \mathrm{NM}$.

The angle ξ at the vertex C is computed from forms (1), Theorem 2.1.

$$
\frac{\sin \xi}{\sin \alpha}=\frac{\sin x}{\sin \frac{\pi}{2}}
$$

$\sin \xi=\sin x \cdot \sin \alpha \doteq 0,4268 \cdot 0,4447 \doteq 0,2009$

$$
\xi \doteq 0,2022 \mathrm{rad} \doteq 11^{\circ} 27^{\prime} 28^{\prime}
$$

It means that the longitude of the point M is $\lambda_{3}=\lambda_{1}+\xi=-0,5508 \doteq$ $-31^{\circ} 33^{\prime} 31^{\prime \prime}$, i. e. $31^{\circ} 33^{\prime} 31^{\prime \prime}$ of the west longitude.

Result: The ship crosses the equator at the point M whose - longitude is $31^{\circ} 33^{\prime} 31^{\prime \prime} W$ and its distance from the point A is $2840 \mathrm{~km}(1533,35 \mathrm{NM})$.

Example 2.3 The ship still sails on the main circle and it crosses the equator at the angle $\alpha=50^{\circ}$ and the parallel l of latitude $\varphi=15^{\circ}$ at an angle ψ. Compute the angle $\psi\left(\leq \frac{\pi}{2}\right)$.

Solution: A is denoted as the point in which the ship crosses the equator e, B as the point in which the ship crosses the parallel l, m as the meridian of the point B. We can consider the right spherical triangle $A B C$, where $C=e \cap m$ (Fig.3). Clearly $\alpha=\varphi$ and $\varphi=15^{\circ} \doteq 0,2618 \mathrm{rad}, \alpha$ $=50^{\circ} \doteq 0,8727 \mathrm{rad}$ are given .

Figure 3
Slika 3.

We obtain from equations (4) $\sin \beta=\frac{\cos \alpha}{\cos \alpha}=0,6655$, we obtain two angles satisfying the equation, $\beta_{1} \doteq 0,7281 \mathrm{rad}$ $\doteq 41^{\circ} 43^{\prime} 04^{\prime \prime}, \beta_{2} \doteq 2,4135 \doteq 138^{\circ} 16^{\prime} 56^{\prime \prime}$. Since the parallel and meridians intersect orthogonally, it is obvious that $\psi=\frac{\pi}{2}-\beta_{1}$ $=\beta_{2}-\frac{\pi}{2}=48^{\circ} 16^{\prime} 56^{\prime \prime}$.

Example 2.4 Two ships detected the telegraph signal SOS. The first ship is at the point $A=\left(24^{\circ} 45^{\prime} N, 138^{\circ} 18^{\prime} E\right)$ and it has the navigation course $\omega_{1}=72^{\circ} 38^{\prime}$, the second ship is at the point $B=\left(15^{\circ} 27^{\prime} N\right.$, $175^{\circ} 34^{\prime} E$) and it has the navigation course $\omega_{2}=360^{\circ}-8^{\circ} 53^{\prime}$. Compute latitude φ and longitude λ of the point C, where the ship
in danger is located (Fig. 4).

Figure 4 Slika 4

Solution: Three spherical triangles $A B N, A B C$ and $A C N$ are considered, N is the North Pole. The two sides of the spherical triangle $A B N$ are $\frac{\pi}{2}-\varphi_{1}, \frac{\pi}{2}-\varphi_{2}$ and the inner angle at the point N is $\lambda_{2}-\lambda_{1}$ (Fig. 4). Its side c and inner angles α_{1}, β_{1} are computed (Theorem 2.1). $\varphi_{1}=24^{\circ} 45^{\prime}$
$\doteq 0,423 \mathrm{rad}, \varphi_{2}=15^{\circ} 27^{\prime} \doteq 0,2697 \mathrm{rad}, \lambda_{1}$ $=138^{\circ} 18^{\prime} \doteq 2,4138 \mathrm{rad}, \lambda_{2}=175^{\circ} 34^{\prime} \doteq$ $3,0642 \mathrm{rad}, \omega_{1}=72^{\circ} 38^{\prime} \doteq 1,2677 \mathrm{rad}, \omega_{2}=$ $351^{\circ} 7^{\prime} \doteq 6,1281 \mathrm{rad}$ are known.
$\cos c=\cos \left(\frac{\pi}{2}-\varphi_{1}\right) \cdot \cos \left(\frac{\pi}{2}-\varphi_{2}\right)+\sin \left(\frac{\pi}{2}-\varphi_{1}\right) \cdot \sin \left(\frac{\pi}{2}-\right.$
$\left.\varphi_{2}\right) \cdot \cos \left(\lambda_{2}-\lambda_{1}\right)$
cosc $\doteq 0,8081$
$c \doteq 0,6298 \mathrm{rad}$
Next we have

$$
\begin{gathered}
\cos \left(\frac{\pi}{2}-\varphi_{2}\right)=\cos \left(\frac{\pi}{2}-\varphi_{1}\right) \cdot \cos c+\sin \left(\frac{\pi}{2}-\varphi_{1}\right) \cdot \operatorname{sinc} \cdot \cos \alpha_{1} \\
\cos \alpha_{1}=\frac{\sin \varphi_{2}-\sin \varphi_{1} \cdot \cos c}{\cos \varphi_{1} \cdot \operatorname{sinc}} \\
\cos \alpha_{1} \doteq-0,1345 \\
\alpha_{1} \doteq 1,7057 \mathrm{rad} \\
\cos \left(\frac{\pi}{2}-\varphi_{1}\right)=\cos \left(\frac{\pi}{2}-\varphi_{2}\right) \cdot \cos c+\sin \left(\frac{\pi}{2}-\varphi_{2}\right) \cdot \operatorname{sinc} \cdot \cos \beta_{1} \\
\cos \beta_{1}=\frac{\sin \varphi_{1}-\sin \varphi_{2} \cdot \cos c}{\cos \varphi_{2} \cdot \operatorname{sinc}} \\
\cos \beta_{1} \doteq 0,2095 \\
\beta_{1} \doteq 1,7819 \mathrm{rad}
\end{gathered}
$$

The spherical triangle has sides a, b, c, inner angles α, β, γ. The side c has been computed and the inner angels α, β can be determined from the given navigation courses ω_{1}, ω_{2}, clearly $\alpha=\alpha_{1}-\omega_{1} \doteq$ $0,4380 \mathrm{rad}, \beta=\beta_{1}-\left(2 \pi-\omega_{2}\right)=\beta_{1}+\omega_{2}-2 \pi$ $\doteq 1,6268 \mathrm{rad}$.

Now the inner angle γ at the vertex C (Theorem 2.2 b$)$) and sides a, b are computed (Theorem 2.1)

$$
\begin{gathered}
\cos \gamma=-\cos \alpha \cdot \cos \beta+\sin \alpha \cdot \sin \beta \cdot \cos c \\
\cos \gamma \doteq-0,083 \\
\gamma \doteq 0,3923 \mathrm{rad} \\
\sin a=\frac{\sin \alpha}{\sin \gamma} \cdot \sin c \doteq 0,2717 \\
\alpha \doteq 0,2751 \mathrm{rad} \\
\sin b=\frac{\sin \beta}{\sin \gamma} \cdot \sin c \doteq 0,6395 \\
b \doteq 0,6939 \mathrm{rad}
\end{gathered}
$$

Finally the spherical triangle $A C N$ is considered and its side $\frac{\pi}{2}-\varphi$ is computed (Theorem 2.2) (φ is the latitude of the point C) and its inner angle $\lambda-\lambda_{1}$, where λ is longitude of the point C (Theorem 2.1). $\cos \left(\frac{\pi}{2}-\varphi\right)=\cos b \cdot \cos \left(\frac{\pi}{2}-\varphi_{1}\right)+\sin b \cdot \sin \left(\frac{\pi}{2}-\varphi_{1}\right) \cdot \cos \omega_{1}$ $\sin \varphi=\cos b \cdot \sin \varphi_{1}+\sin b \cdot \cos \varphi_{1} \cdot \cos \omega_{1}$ $\sin \varphi \doteq 0,4952$
$\varphi \doteq 0,5181 \mathrm{rad} \doteq 29^{\circ} 41^{\prime} 01^{\prime \prime}$

$$
\sin \left(\lambda-\lambda_{1}\right)=\frac{\sin b \cdot \cos \varphi}{\sin \omega_{1}}
$$

$\sin \left(\lambda-\lambda_{1}\right) \doteq 0,5821$
$\lambda-\lambda_{1} \doteq 0,6213 \mathrm{rad}$
$\lambda \doteq 3,0351 \mathrm{rad} \doteq 173^{\circ} 54^{\prime}$

Result:The ship in danger has latitude $29^{\circ} 41^{\prime} 01^{\prime \prime} N$ and and longitude $173^{\circ} 54^{\prime} E$.

Remark 2.3 The shortest route from the point A to the point B on the sphere (also so called great-circle distance) is the main circle. But the ship sailing along this circle still changes the navigation course, which is unfavourable for shipping as each great-circle distance is approximated (piecewise) by some (arcs of) rhumb lines. A rhumb line is a curve that intersects all meridians at equal angles. It means a ship sailing along a rhumb line has a fixed navigation course. When the great-circle distance is
approximated by some rhumb lines then the ship has a fixed navigation course for each of the rhumb lines.

3. CONCLUSION / Zaključak

The paper presents exercises in naval navigation and their solutions. They were deliberately selected in a way which is comprehensible for people familiar with secondary school mathematics. They can be used to describe the principles of naval navigation and to make lessons of mathematics more interesting at both secondary and tertiary schools. Students need to learn gradually the possible applications of the mathematical apparatus. Later, they might encounter various applications based in the mathematical apparatus (albeit not apparent at first sight). Among the interesting applications in the areas of transport and navigation belong [1], [5] - [7], [13].

REFERENCES / Literatura

[1] Čejka, J., Bartuška, L., Bartušková, Application of Mathematical Methods in Transport and Logistic Area, P. In $15^{\text {th }}$ Conference on Applied Mathematics, Aplimat 2016, STU Bratislava, 2016, pp. 225-234, ISBN 978-80-227-4531-4.
[2] Gray, A. Modern Differencial Geometry of Curves and Surfaces, London, 1993
[3] Kos, S. Calculation of navigational parameters in meridian, equator and parallel sailing by means of relative coordinates and correlation factors, Naše more, 2003, 50 (3-4), pp. 87-93, ISSN 0469-6255.
[4] Kos, S., Vranić, D., Zec, D. Differential equation of loxodrome on a sphere. Journal of Navigation, 1999, 52 (3), pp. 418-420. ISSN 0373-4633.
[5] Krile, S. A heuristic approach to satellite link capacity planning applied in mobile networks. Promet - Traffic - Traffico, 2003, 15 (1), pp. 19-29 ISSN 0353-5320
[6] Krile, S. Efficient heuristic for non-linear transportation problem on the route with multiple ports. Polish Maritime Research, 2013, 20 (4), pp. 80-86. ISSN 1233-2585.
[7] Krile, S., Bonačić, D. New generation of satellites and optimal capacity planning. In: Proceedings Elmar - $47^{\text {th }}$ International Symposium Electronics in Marine, Zadar, Croatia, 2005, pp. 331-334, ISSN 1334-2630.
[8] Kůst, J.: Sférická trigonometrie (Spherical trigonometry), SPN Praha, 1964, publ. č. 35-2-02
[9] [9] Lenart, A. S. Orthodromes and Loxodromes in Marine Navigation. Journal of Navigation, 2017, 70 (2), pp. 432-439. ISSN 0373-4633.
[10] Mikeš, J. et al. Differential geometry of special mappings, Olomouc, 2015, ISBN 978-80-244-4671-4.
[11] Petrović, M. Orthodrome-loxodrome correlation by the middle latitude rule. Journal of Navigation, 2014, 67(3), pp. 539-543. ISSN 03734633.
[12] Smetanová, D., Vargová, M., Biba, V., Hinterleitner I. Mercator's Projection - a Breakthrough in Maritime Navigation. Naše More, 2016, 63 (3) pp. 182-184. ISSN 0469-6255.
[13] Stopka, O., Kampf, R. Determining the most suitable layout of space for the loading units' handling in the maritime port , Transport, 2016, pp. 1-11. Online ISSN: 1648-3480.

[^0]: ${ }^{1}$ A nautical mile (NM) is a unit of measurement defined as exactly. It is defined as one minute of latitude, which is equivalent to one sixtieth of a degree of latitude (Source: https://en.wikipedia.org/ wiki/Units_of_measurement)

