Prethodno priopćenje

Primljen / Received: 12.2.2016. Ispravljen / Corrected: 18.5.2016. Prihvaćen / Accepted: 11.8.2016. Dostupno online / Available online: 10.10.2017.

Analiza ekscentrično opterećenih kratkih ab stupova ojačanih polimerom armiranim staklenim vlaknima

Autori:

Doc.dr.sc. Gaurang R. Vesmawala, dipl.ing.građ. SVNIT - Državni institut za tehnologiju, Indija Odjel za primjenjenu mehaniku grv@amd.svnit.ac.in

Pradeep B. Kodag, dipl.ing.građ. SVINT - Državni institut za tehnologiju, Indija Odjel za primjenjenu mehaniku <u>pkodag@gmail.com</u>

Gaurang R. Vesmawala, Pradeep B. Kodag

Analiza ekscentrično opterećenih kratkih ab stupova ojačanih polimerom armiranim staklenim vlaknima

U radu je provedena eksperimentalna analiza armiranobetonskih stupova kako bi se odredila učinkovitost kružnih, pravokutnih i kvadratnih poprečnih presjeka ojačanih polimerom armiranim staklenim vlaknima (GFRP), pod utjecajem ekscentričnog opterećenja. Parametri koji se analiziraju su vrsta poprečnog presjeka i vrijednosti ekscentričnosti. Dobiveno je da se kod kružnih presjeka zbog jednolikog opterećenja postiže veće povećanje čvrstoće u usporedbi s kvadratnim i pravokutnim presjecima. Također se čvrstoća i duktilnost stupova povećavaju ojačanjem presjeka polimerom armiran vlaknima.

Ključne riječi:

duktilnost, ekscentričnost, stup, polimer armiran staklenim vlaknima (GFRP)

Preliminary report

Gaurang R. Vesmawala, Pradeep B. Kodag

Investigation of GFRP strengthened RC non-slender columns under eccentric loading

An experimental analysis of reinforced-concrete columns was conducted in the paper to evaluate the effectiveness of circular, rectangular and square cross sections strengthened with the glass fibre reinforced polymer (GFRP) when subjected to eccentric loading. Parameters analysed in the paper are the type of cross section and eccentricity values. It was established that, due to uniform loading, the strength increase of circular sections is greater compared to square and rectangular sections. In addition, the strength and ductility of columns increase with the fibre reinforced polymer wrapping.

Key words:

ductility, eccentricity, column, glass fibre reinforced polymer (GFRP)

Vorherige Mitteilung

Gaurang R. Vesmawala, Pradeep B. Kodag

Analyse von exzentrisch belasteten kurzen GFK-verstärkten Stahlbetonsäulen

In der Arbeit wurde eine experimentelle Auswertung von exzentrisch belasteten Stahlbetonsäulen zur Prüfung der Effizienz von kreisförmigen, rechteckigen und quadratischen, glasfaserverstärkten Querschnitten durchgeführt. Die analysierten Parameter waren die Art des Querschnitts und der Wert der Exzentrizität. Es hat sich gezeigt, dass bei kreisförmigen Querschnitten infolge einer gleichmäßigen Belastung eine Steigerung der Festigkeit im Vergleich zu quadratischen und rechteckigen Querschnitten erreicht wird. Darüber hinaus steigen die Festigkeit und Duktilität der Säulen, deren Querschnitt mit einem GFK-verstärkten Polymer verstärkt wurde.

Schlüsselwörter:

Duktilität, Exzentrizität, Säule, glasfaserverstärkter Kunststoff (GFK)

1. Uvod

Radovi poput održavanja, ojačanja i obnove postojećih građevina postali su značajan dio sektora građevinarstva jer su nastale brojne promjene kao što su namjene građevina, korozija armature, nekvalitetno građenje i promjena uvjeta opterećenja. Osim toga, građevine se trebaju obnavljati kako bi udovoljile novim zahtjevima projektiranja. Stoga se u posljednjih nekoliko desetljeća znanstvenici sve više bave problematikom ojačanja i obnove postojećih građevina.

U ovom se radu istražuje utjecaj ojačanja stupova polimerom armiranim vlaknima (engl. *fibre reinforced polymer* - FRP) pod djelovanjem koncentričnog opterećenja. Uzdužno opterećenje na stupove u praksi je rijetko kada centrično. Na stupove djeluju opterećenja kod kojih je ekscentričnost prisutna na jednoj ili dvije osi i to zbog smještaja stupa u prostoru, slučajnih opterećenja ili loše izvedbe. S obzirom na to, potrebno je analizirati utjecaj ekscentričnog opterećenja na armiranobetonske stupove ojačane FRP-om.

Prema rezultatima prethodnih studija, kružni presjek mnogo je djelotvorniji od kvadratnih i pravokutnih presjeka. Kružni oblik izuzetno je otporan na tlačno opterećenje zbog jednolikog pritiska u kružnim presjecima. Na uglovima kvadratnih i pravokutnih presjeka dolazi do koncentracije naprezanja, što dovodi do neadekvatnog oblaganja presjeka te u konačnici do slabije nosivosti. Zbog toga je oblik poprečnog presjeka stupa izuzetno značajan parametar [1-3].

Rochette i Labossiere izradili su studiju o povećanju učinkovitosti oblaganja stupova. Zaključili su da se uglovi stupova pravokutnog i kvadratnog presjeka mogu zakositi, kako bi se izbjegla koncentracija naprezanja te time poboljšala učinkovitost oblaganja i povećala nosivost. Međutim, i u zakošenju presjeka postoje ograničenja jer se u poprečnom presjeku nalazi armatura [2]. Ye i dr. [4] su ustanovili da se posmična čvrstoća armiranobetonskih (ab) stupova može povećati vanjskim ojačanjem stupova, tj. oblaganjem polimerom armiranim ugljičnim vlaknima (engl. carbon fibre reinforced polymer - CFRP). Tamar El Maaddawy [5] proveo je eksperimentalno istraživanje o konstrukcijskom ponašanju ekscentrično opterećenih i korozijom oštećenih ab stupova obloženih CFRP-om. M.N.S. Hadi proveo je više istraživanja [10, 11] o ponašanju stupova obloženih FRP kompozitima pod utjecajem različite ekscentričnosti [6, 7], zatim o primjeni raznih FRP ovoja kao što je CFRP i stakleno vlakno tipa E [8, 9], te o različitom broju FRP slojeva. You-Yi Wei i Yu-Fei Wu prikazali su novi radni dijagram za betonske stupove ojačane FRP-om. Taj se dijagram može koristiti općenito za pravokutne stupove. Može se koristiti i za kvadratne stupove, tj. kada omjer duljina stranica poprečnog presjeka (h/b) iznosi 1, a za kružne stupove, tj. kada omjer polumjera zaobljenja i stranice, 2r/b, iznosi 1 [12]. Lam L. i Teng J. [13] predlažu modul za izračunavanje krivulje naprezanje - relativna deformacija betona ojačanog FRPom. Analiza konačnih elemenata koju su proveli A. Pravin i A.S. Jamwal pokazuje da je ojačanje FRP-om sa staklenim vlaknima

tipa E prihvatljivo rješenje za povećanje čvrstoće i duktilnosti betonskih elemenata podvrgnutih centričnom uzdužnom opterećenju. Parametri kao što su debljina i konfiguracija sloja, koji se analiziraju u ovom istraživanju, pokazuju da bi se mogla preporučiti konfiguracija standardna-spiralna-standardna, pri čemu se pod standardnom podrazumijeva da su trake postavljene okomito na os stupa), [14]. Guogiang L. i dr [15] analizirali su utjecaj debljine, krutosti i orijentacije vlakana FRP slojeva, također i spojnu površinu FRP ovoja i betona. Luke Bisby i dr. [16] prikazali su rezultate programa ispitivanja koji se odnose na kružne FRP-om ojačane armiranobetonske stupove realne vitkosti, pod utjecajem ekscentričnog uzdužnog opterećenja. Podaci dobiveni tijekom ispitivanja uspoređeni su s teoretskim M-N interakcijskim dijagramima s nedavno publiciranim smjernicama za projektiranje M-N interakcije u ab stupovima ojačanim FRP-om.

Osna tlačna čvrstoća i maksimalni tlak ojačanja

Prema normi ACI 440.2R-08 [17], izrazi (1) i (2) primjenjuju se za proračunavanje osne tlačne čvrstoće kratkog betonskog elementa normalne težine ovijenog FRP-om. Za neprednapete elemente s čeličnom spiralnom armaturom primjenjuje se izraz (1):

$$P_{n} = 0.85 [0.85f'_{cc}(A_{g} - A_{st}) + f_{v} \cdot A_{st}]$$
(1)

a za neprednapete elemente s čeličnim sponama, izraz (2):

$$P_{n} = 0.8 \left[0.85 f'_{cc} (A_{g} - A_{st}) + f_{v} \cdot A_{st} \right]$$
(2)

Prema podacima iz dostupne literature, na uzorcima kružnog poprečnog presjeka obavljena su brojna ispitivanja osne tlačne čvrstoće, a tek manji broj ispitivanja obavljen je na armiranobetonskim uzorcima pravokutnog poprečnog presjeka ojačanim FRP-om. Postojeći model čvrstoće betona ojačanog FRP-om može se iskazati izrazom (3), prema [9]:

$$\frac{f_{oc}^{\prime}}{f_{co}^{\prime}} = 1 + k_1 \left(\frac{f_1}{f_{co}}\right)$$
(3)

gdje su f'_{cc} i f'_{co} tlačne čvrstoće ovijenog i neovijenog betona, dok je k₁ koeficijent učinkovitosti ovijanja. Koeficijent učinkovitosti ovijanja izračunava se prema izrazima (4), (5) i (6), [18].

$$k_{1} = 3,5 \left(\frac{f_{1}}{f_{co}}\right)^{0.15}$$
(4)

$$f_{cc}^{'} = f_{c}^{'} + \Psi_{f} \cdot 3, 3 \cdot k_{a} f_{l}$$
(5)

$$f_{|} = \left(\frac{2 \cdot E_{f} \cdot n \cdot t_{f} \cdot \varepsilon_{f_{0}}}{D}\right)$$
(6)

Prema normi ACI 440.2R-08 [17], maksimalna tlačna čvrstoća ovijenog betona f'_{cc} i maksimalni tlak ojačanja f₁ izračunavaju se prema izrazima (5) i (6), pri čemu se uvodi i dodatni koeficijent umanjenja $\psi_f = 0.95$. Može se pretpostaviti da koeficijent učinkovitosti deformacije FRP-a k_e iznosi 0.55. Za pravokutne poprečne presjeke vrijednost f₁ iz izraza (5) i (6) odgovara maksimalnom tlaku ojačanja ekvivalentnog kružnog poprečnog presjeka, gdje promjer D odgovara dijagonali pravokutnog poprečnogpresjeka(slika 1.).Uizrazu(5) vrijednostf'_jejednoosna tlačna čvrstoća betonskog valjka, a koeficijent učinkovitosti k_a obuhvaća geometriju kružnog odnosno pravokutnog poprečnog presjeka. Kod kružnih poprečnih presjeka pretpostavlja se da faktor oblika k_a iznosi 1. Za pravokutne poprečne presjeke izračunava se faktor oblika k_x pomoću izraza (7), prema [17]:

$$k_{e} = \frac{A_{e}}{A_{c}} \left(\frac{b}{h}\right)^{2}$$
⁽⁷⁾

Efektivna deformacija FRP-a pri slomu $\epsilon_{\rm fe}$ iz izraza (6) iskazuje se kako slijedi:

$$\varepsilon_{fe} = k_{\varepsilon} \cdot \varepsilon_{fu} \tag{8}$$

$$D = \sqrt{b^2 + h^2} \tag{9}$$

Omjer (A /A,) iz izraza (7) iskazuje se na sljedeći način:

Slika 1. Ekvivalentni kružni poprečni presjek [17]

Slika 2. Bočni tlak ojačanja zbog djelovanja FRP ovoja

Upotrijebljene oznake i njihovo značenje:

- A_c površina poprečnog presjeka betona u tlačnom elementu [mm²]
- A_e površina učinkovito (efektivno) ojačanog poprečnog presjeka, [mm²]
- A_c bruto površina presjeka betona [mm²]
- A_{st} ukupna površina uzdužne armature [mm²]
- b kraća dimenzija tlačnog elementa pravokutnog poprečnog presjeka [mm]
- D promjer tlačnog elementa kružnog poprečnog presjeka [mm]
- E, modul elastičnosti FRP-a [MPa]
- f′_ jednoosna tlačna čvrstoća betonskog valjka [MPa]
- f′ _ tlačna čvrstoća ovijenog betona [MPa]
- f′ _{co} tlačna čvrstoća neovijenog betona [MPa]
- f, naprezanje u FRP-u [MPa]
- f, maksimalni pritisak ojačanja zbog FRP ovoja [MPa]
- f, zadana granica popuštanja nenapete armature [MPa]
- h dulja dimenzija tlačnog elementa pravokutnog poprečnog presjeka [mm]
- n broj slojeva FRP-a
- P_n nazivna osna tlačna čvrstoća betonskog presjeka [N]
- radijus zaobljenja pravokutnog poprečnog presjeka ojačanog pomoću FRP-a [mm]
- t, nazivna debljina jednog sloja FRP-a [mm]
- $\epsilon_{_{fe}}$ efektivna relativna deformacija FRP-a pri slomu [mm/mm]
- ϵ_{f_1} konačna relativna deformacija FRP-a pri slomu [mm/mm]
- faktor smanjenja čvrstoće
- k_a koeficijent učinkovitosti FRP-a za određivanje f'_{cc} (na temelju geometrije poprečnog presjeka)
- k koeficijent učinkovitosti relativne deformacije FRP-a
- k1 koeficijent učinkovitosti ojačanja
- r_g omjer površine uzdužne armature i površine poprečnog presjeka tlačnog elementa
- $\psi_{\rm f}~$ faktor smanjenja čvrstoće FRP-a

Tablica 1. Podaci o uzorcima stupova

Oznaka uzorka	Ojačanje	Broj slojeva GFRP-a	Dužina [mm]	Oblik poprečnog presjeka	e _x [mm]	e _v [mm]		
U(C/S/R)EO	neojačan	/	700		0	0		
W(C/S/R)E0	ojačan GFRP-om	jedan	700		0	0		
U(C/S/R)E30	neojačan	/	700	kružni / kvadratni /	30	30		
W(C/S/R)E30	ojačan GFRP-om	jedan	700	pravokutni	30	30		
U(C/S/R)E40	neojačan	/	700		40	40		
W(C/S/R)E40	ojačan GFRP-om	jedan	700		40	40		
Napomena: U = neoj	Napomena: U = neojačani uzorak; W = ojačani uzorak; e , e = ekscentričnosti duž osi x i v; C = kružni poprečni presjek; S = kvadratni poprečni							

Napomena: U = neojacani uzorak; W = ojacani uzorak; $e_x e_y$ = ekscentricnosti duz osi x i y; C = kruzni poprecni presjek; S = kvadratni popr presjek; R = pravokutni poprečni presjek.

3. Eksperimentalno ispitivanje

3.1. Program ispitivanja

Eksperimentalno je ispitivanje provedeno na kružnim, kvadratnim i pravokutnim uzorcima koji su bili ojačani polimerom armiranim staklenim vlaknima. Korištene su trake s jednosmjernim staklenim vlaknima koje su s uzorkom armiranog betona bile povezane epoksidnom smolom. Svojstva GFRP vlakana i smole, preuzeta iz specifikacije proizvođača, prikazana su u tablicama 2. i 3.

Parametri su određeni na ukupno 54 uzorka koji su izrađeni u dvije faze. U prvoj je fazi ispitano 27 neojačanih uzoraka, a u drugoj 27 uzoraka ojačanih GFRP-om. Ispitivanje je provedeno pomoću univerzalnog uređaja za ispitivanje. Slojevi traka GFRP-a omotani su okomito na uzdužnu os stupa. Predviđen je odmak od 5 mm kako bi se izbjegao izravan kontakt između

slojeva GFRP-a i uređaja za ispitivanje. Opća svojstva i dimenzije uzoraka stupova prikazana su u tablici 1. Za svaku skupinu od 18 stupova (kružnog, kvadratnog i pravokutnog oblika), na šest je stupova provedeno centrično ispitivanje, šest stupova je ispitano s ekscentričnošću opterećenja od 30 mm, a preostalih šest stupova ispitano je s ekscentričnošću opterećenja od 40 mm.

3.2. Svojstva materijala

Provedena su ispitivanja kako bi se odredila svojstva projektirane mješavine betona te vlačna čvrstoća glatke i rebraste armature. Svojstva polimera armiranog staklenim vlaknima (GFRP) i epoksidne smole usvojena su prema specifikaciji proizvođača.

3.2.1. Beton

Za projektiranu mješavinu betona usvojen je omjer od 1:1,56:2,95 te vodovezivni omjer od 0,5. Jedan kubni metar betona sadržavao je 360 kg cementa, 562 kg sitnozrnatog agregata i 1062 kg krupnozrnatog agregata. Nakon 28 dana, tlačna čvrstoća betona varirala je od 25 MPa do 27 MPa. Za sve je uzorke usvojeno rasprostiranje slijeganjem od 75 do 80 mm.

3.2.2. Armatura

U ovom je radu kao uzdužna armatura korištena glatka armatura promjera 10 mm. Kao poprečna armatura (spone) korištena je glatka armatura promjera 6 mm. Razmak između šipki iznosio je 200 mm. Granična čvrstoća uzdužne i poprečne armature iznosila je 510-525 MPa tj. 275-285 MPa. Podaci o armaturi kružnih, kvadratnih i pravokutnih stupova prikazani su na slikama 3., 4. i 5.

Slika 3. Podaci o armaturi za stup kružnog poprečnog presjeka

Slika 4. Podaci o armaturi za stup kvadratnog poprečnog presjeka

Slika 5. Podaci o armaturi za stup pravokutnog poprečnog presjeka

Tablica 2. Svojstva vlakana

Materijal Svojstvo	GFRP
Vlačna čvrstoća [MPa]	2060
Modul elastičnosti [MPa]	75900
Relativna gustoća	2,56
Debljina vlakana [mm]	0,43
Smjer pružanja vlakana	jednosmjerno
Izduženje pri lomu	0,04

3.2.3. Polimer armiran staklenim vlaknima i epoksidna smola

U tablicama 2. i 3. iskazana su svojstva polimera armiranog staklenim vlaknima (GFRP) i epoksidne smole, koji su u ovom istraživanju korišteni za vanjsko ojačanje armiranobetonskih uzoraka.

3.3. Pripremanje uzoraka

Kalupi za kružne, kvadratne i pravokutne poprečne presjeke izrađeni su po mjeri kako bi se osigurala kvalitetna izrada uzoraka s obzirom na to da se zahtjevi razlikuju od onih za tradicionalne uzorke. Kao kalupi su korištena dva uzdužno odrezana valjkasta dijela jer to omogućuje jednostavno vađenje uzorka iz kalupa. Na vrhu, na sredini i na dnu kalupa zavarene su čelične ploče tako da se osigura jednaka površina presjeka po čitavoj dužini uzorka (slika 6.). Uzorci su izvađeni iz kalupa nakon 24 sata, te su zatim njegovani tijekom od 28 dana.

Za svaku skupinu poprečnih presjeka (tj. za presjeke kružnog, kvadratnog i pravokutnog oblika) izrađeno je ukupno 18 armiranobetonskih stupova. U svakoj podgrupi tri uzorka nisu ojačana, a preostala tri ojačana su jednim slojem GFRP obloge. Oplata za kvadratne i pravokutne uzorke izrađena je od ploča iverice debljine 18 mm. Na odgovarajući su način održavane vertikalne stranice kalupa i poprečni rubovi u kutovima kalupa. Nakon njege, uglovi pravokutnih armiranobetonskih poprečnih presjeka obrađeni su brusilicom kako bi se postigla glatka kontaktna površina. Nepravilnosti u uglovima dodatno su obrađene kitom. Sve su nepravilnosti detaljno otklonjone

Tablica	3.	Svojstva	a smole
---------	----	----------	---------

Materijal Svojstvo	Epoksidna smola
Vlačna čvrstoća [MPa]	50
Modul elastičnosti [MPa]	3200
Relativna deformacija	5 %

prije nanošenja FRP-a. Za miješanje smole služile su odgovarajuće plastične posude. Miješanje i prikladno doziranje komponenata smole obavljeno je u skladu s uputama proizvođača. Najprije je na vanjsku površinu betona nanesen temeljni premaz, a zatim su kitom zapunjene male pore na površini betona. Prvi sloj smole nanesen jer prije potpunog sušenja temeljnog premaza i kita. Smola se nanosila u slojevima pomoću valjka za ličenje. Zatim je u smolu pažljivo utisnut sloj GFRP-a pomoću plastičnog valjka, prateći pritom liniju zakrivljenosti stupa. Mjehurići zraka eliminirani su pomoću valjka, a nakon toga je nanesen jedan ili nekoliko slojeva smole [19].

Slika 6. Kalupi za kružne stupove

4. Mjerna oprema

Neojačani i ojačani uzorci stupova ispitani su pomoću univerzalnog uređaja za ispitivanje (UTM) kapaciteta 2000 kN. Vrijednosti uzdužnog opterećenja stupova praćene su na digitalnom zaslonu UTM-a. Veličine osnih i bočnih deformacija mjerene su pomoću LVDT senzora (eng. *Linear Variable Differential Transformer*) za mjerenje vertikalnih pomaka.

Kod stupova na koje se nanosi ekscentrično opterećenje poduzete su mjere opreza kako bi se opterećenje nanijelo na točno mjesto. Prije ispitivanja, na gornju površinu uzorka postavljena

Slika 7. Uređaji i opis pokusa za ispitivanje uzoraka stupova

je čelična pločica odgovarajućih dimenzija. Pločica je poravnana pomoću libele da bi se izbjegla ekscentričnost uređaja. Pritom je trebalo paziti da se izbjegne kontakt donje trake uzorka stupa, tj. da se osigura pravilno pozicioniranje pločice na uzorak i da se izbjegne nanošenje dodatne sile na uzorak tijekom ispitivanja. Oko uzorka postavljena je zaštita kako bi se tijekom ispitivanja izbjeglo oštećivanje uređaja ili ozljeđivanje osoba.

Kružni prsten promjera većeg od promjera uzorka stupa postavljen je na dno pločice da se pločica ne bi odmicala od površine stupa i to bez nanošenja dodatne sile na uzorak tijekom ispitivanja. Uređaj za ispitivanje prikazan je na slici 7.

5. Eksperimentalni rezultati i rasprava

Rezultati eksperimentalnog ispitivanja prikazani su u tablicama 4 i 5. Opterećenje se izravno može očitati na elektroničkom digitalnom zaslonu univerzalnog uređaja za ispitivanje. Vrijednosti pomaka, kako vertikalnih tako i bočnih, registrirani su na LVDT senzorima koji čine dio sustava za prikupljanje podataka. Eksperimentalne vrijednosti graničnog opterećenja i uvjeta sloma sažeto su prikazane u tablici 5.

Eksperimentalni rezultati iskazani su kao vrijednosti tlačnog opterećenja i bočnih deformacija. Kod ovakvog ispitivanja mogu se dobiti različiti modovi sloma kao npr. drobljenje betona, lom FRP-a, odvajanje FRP-a od podloge, ljuskanje betona, te kombinacija odvajanja i loma FRP-a. Najčešće vrste slomova koje su zabilježene u ovom istraživanju bile su drobljenje betona i lom GFRP-a uslijed vlačnog naprezanja.

5.1. Ponašanje ojačanih i neojačanih stupova pod utjecajem centričnog opterećenja

Opterećenje je postupno povećavano u inkrementima od po 1 kN/s, sve do sloma uzorka. Ponašanje svih uzoraka tijekom uzdužnog opterećenja bilo je konzistentno. Do pucanja GFRP ovoja pri uzdužnom opterećenju najčešće je dolazilo na vrhu i na dnu. Neovijeni uzorci popuštali su na uobičajen način, pri

> čemu je zabilježena pojava vertikalnih pukotina koje su se širile po površini, a slom kod obloženih uzoraka bio je vrlo bučan. To bučno pucanje znak je prijenosa naprezanja s betona na GFRP oblogu. Popuštanje je bilo kontinuirano i završavalo je bučnim pucanjem. Ispupčenja su zabilježena na svim stranama uzorka. Kod svih je uzoraka do sloma dolazilo drobljenjem betona, nakon čega bi se slomio sloj GFRP-a, što bi na kraju dovelo do konačnog sloma uzorka. GFRP ovoji otkazivali su na nekom određenom mjestu, nakon čega bi se pukotine širile prema gore i dolje. Pritom bi dolazilo do oslobađanja vrlo velike količine energije, što je na kraju

bilo popraćeno eksplozivnom bukom, a to znači da je GFRP ovoj ravnomjerno štitio betonsku jezgru. Povećanje opterećenja bilo je popraćeno postupnim širenjem betona, nakon čega bi uslijedio lom GFRP ovoja. Odvajanje sloja GFRP-a zabilježeno je u vrlo rijetkim slučajevima.

5.2. Ponašanje ojačanih i neojačanih stupova pod utjecajem ekscentričnog opterećenja

Uzorci su se bitno drugačije ponašali pod utjecajem ekscentričnog opterećenja. U slučaju takvog opterećenja, stupovi su bili podvrgnuti ne samo uzdužnom tlačnom djelovanju već i momentom zbog ekscentrične uzdužne sile. Do sloma je dolazilo ispupčenjem stupa u jednom smjeru. Zabilježena je niža nosivost nego kod centričnog opterećenja stupova. Uočeno je da se nosivost stupa nedvojbeno smanjuje s povećanjem stupnja ekscentričnosti.

Izvijanje stupa uočeno je u kvadrantu u kojem je naneseno opterećenje. Kod ojačanih stupova pucanje je bilo gotovo nečujno, a uočen je manji lom vlakana. Obrazac loma uočen je kod neojačanih stupova, ali kod ojačanih stupova nije zabilježena bitna promjena. Obloga GFRP nije bitno oštećena nakon popuštanja uzorka. Razni modovi sloma prikazani su na slikama od 8.a do 8.d.

5.3. Odnos opterećenja i deformacija

Ponašanje neobloženih i GFRP-om ojačanih uzoraka kružnih, kvadratnih i pravokutnih poprečnih presjeka pri nanošenju opterećenja prikazano je na slikama od 9. do 11. Na tim su slikama prikazane i uzdužne i bočne deformacije zabilježene pomoću LVDT senzora.

5.3.1. Centrično opterećenje

Pod centričnim opterećenjem zabilježeno je konzistentno ponašanje kako kružnih tako i pravokutnih uzoraka. Povećanje

opterećenja bilo je popraćeno povećanjem uzdužnih i bočnih deformacija. Buka uzrokovana pucanjem zabilježena je prije sloma, što označava početak prijenosa naprezanja s nabubrenog betona na oblogu od GFRP-a. Opterećenje je kontinuirano povećavano sve do maksimalne vrijednosti. Maksimalna nosivost neojačanih uzoraka pri slomu iznosila je 560 kN, 400 kN i 235 kN za kružne, kvadratne i pravokutne uzorke, što odgovara vrijednostima deformacije od 9,5 mm, 7,6 mm i 6,8 mm.

Maksimalna nosivost ojačanih uzoraka pri slomu iznosila je 972 kN, 795 kN i 486 kN za kružne, kvadratne i pravokutne uzorke, što odgovara vrijednostima deformacije od 12,9 mm, 11,3 mm i 10,9 mm. Zahvaljujući vanjskom ojačanju od GFRP-a, povećana je nosivost i duktilnost uzoraka stupova istog poprečnog presjeka.

5.3.2. Ekscentrično opterećenje

Primjenom čelične pločice i kuglice provedeno je ekscentrično opterećenje, pri čemu je veličina eksentriciteta iznosila 30 i 40 mm za neojačane uzorke i za uzorke ojačane GFRP-om. Uvođenjem ekscentričnog opterećenja dolazilo je do znatnog smanjenja nosivosti uzoraka. Kružni uzorci ponašali su se ipak znatno bolje od kvadratnih i pravokutnih uzoraka. Tome je razlog činjenica da su kvadratni i pravokutni uzorci podvrgnuti koncentraciji naprezanja u kutovima, dok je naprezanje kružnih uzoraka pratila zaobljenost uzorka. U plastičnom području, nosivost kružnih uzoraka bila je veća od nosivosti kvadratnih i pravokutnih uzoraka.

Kod neovijenih uzoraka podvrgnutih ekscentričnom opterećenju, do sloma je dolazilo uslijed pucanja betona u kvadrantu u kojem je naneseno ekscentrično opterećenje. Uočena je i pojava ljuštenja betona, pa je trebalo završiti ispitivanje. To je rezultiralo smanjenjem nosivosti neojačanih uzoraka podvrgnutih ekscentričnom opterećenju. Prefiks "L" koji se koristi u opisu slika od 9. do 11. označava bočnu deformaciju.

Slika 8. Modovi sloma stupova: a) Lom FRP obloge kružnog stupa; b) Lom FRP-a u donjim kutovima; c) Ljuskanje betona; d) Ispupčenje na ovijenom stupu

Slika 9. Odnos opterećenja i deformacija kružnih uzoraka

Slika 10. Odnos opterećenja i deformacija kvadratnih uzoraka

Iz tablice 4. vidljivo je da je maksimalni tlak uslijed FRP ojačanja veći kod kružnih poprečnih presjeka u usporedbi s kvadratnim i pravokutnim poprečnim presjecima. Promjena u maksimalnom tlaku ojačanja zbog FRP obloge iznosila je 20 % za kvadratne presjeke u odnosu na kružne presjeke, a zabilježena je dodatna razlika od 13,75 % za pravokutne presjeke u odnosu na kvadratne. Omjer čvrstoće ojačanog i neojačanog betona f'_{cc} / f'_{co} i maksimalni tlak ojačanja (f,) zbog djelovanja FRP obloge veći je kod kružnog poprečnog presjeka u usporedbi s kvadratnim i pravokutnim poprečnim presjecima. Također je ustanovljena dobra podudarnost teoretskih i eksperimentalnih rezultata za kružne i kvadratne uzorke, s maksimalnom varijacijom od 9 % kod kružnih uzoraka. Eksperimentalni rezultati za pravokutne poprečne presjeke pokazuju varijaciju rezultata od približno 40-50 % u odnosu na teoretske rezultate. Stoga se može zaključiti da ojačanje pravokutnih poprečnih presjeka nije učinkovito kada je odnos h/b veći od 2.

Slika 11. Odnos opterećenja i deformacija pravokutnih uzoraka

5.3.3. Duktilnost

Duktilnost je značajan parametar betonskih stupova ojačanih FRP-om. Vrijednost duktilnosti može se odrediti mjerenjem površine ispod krivulje opterećenja - deformacija uzorka stupa. Kod neovijenih centrično opterećenih uzoraka duktilnost je kvadratnih i pravokutnih uzoraka manja za 46 tj. 69 % u odnosu na kružne uzorke. Kod ojačanih centrično opterećenih uzoraka duktilnost je kvadratnih i pravokutnih uzoraka manja za 26

Tablica 4.	Čvrstoće	ojačanog i	neojačanog	betonskog stup	a te maksimalni tl	ak ojačanja (f) uslijed FRP	obloge
------------	----------	------------	------------	----------------	--------------------	----------------	---------------	--------

Poprečni presjek	Eksperiment			Proračun					f′,, (proračun) / f′,,
	f ′ _{co}	f′ _{cc}	f' _{cc} / f' _{co}	f,	f ₁ / f ' _{co}	k,	f' _{cc} / f' _{co}	f′ _{cc}	(eksperiment)
Kružni	25,85	42,82	1,66	3,08	0,119	4,82	1,57	40,07	0,94
Kružni	25,69	43,73	1,70	3,08	0,120	4,81	1,58	39,88	0,91
Kružni	25,77	43,35	1,68	3,08	0,120	4,81	1,58	39,97	0,92
Kvadratni	26,95	36,45	1,35	2,47	0,092	5,01	1,46	35,50	0,97
Kvadratni	25,85	35,07	1,36	2,47	0,096	4,98	1,48	34,21	0,98
Kvadratni	24,50	34,14	1,39	2,47	0,101	4,94	1,50	32,62	0,96
Pravokutni	26,15	21,64	0,83	2,12	0,081	5,10	1,41	31,40	1,45
Pravokutni	25,35	20,71	0,82	2,12	0,084	5,08	1,42	30,45	1,47
Pravokutni	25,80	21,06	0,82	2,12	0,082	5,09	1,42	30,98	1,47

	Točka s	iloma GFRP obloge	N = X'+ = 1 = = =		
Oznaka uzorka	Opterećenje [kN]	Osna deformacija [mm]	Nacin sioma		
UCEO	560	9,5	Ljuštenje zaštitnog sloja betona		
WCEO	972	12,9	Slom FRP-a na polovici visine popraćen jakom bukom		
UCE30	390	5,5	Ljuštenje zaštitnog sloja betona		
WCE30	550	12,9	Slom FRP-a na polovici visine popraćen jakom bukom		
UCE40	320	10,6	Ljuštenje zaštitnog sloja betona		
WCE40	400	10	Slom FRP-a na polovici visine popraćen jakom bukom		
USEO	395	7,6	Ljuštenje zaštitnog sloja betona		
WSEO	795	11,3	Značajan pad opterećenja i buka		
USE30	321	8,5	Ljuštenje zaštitnog sloja betona		
WSE30	400	10,8	Značajan pad opterećenja i buka		
USE40	216	8,4	Ljuštenje zaštitnog sloja betona		
WSE40	300	9,2	Značajan pad opterećenja i buka		
UREO	235	6,8	Značajno ljuštenje		
WREO	486	10,9	Značajan pad opterećenja uz malu buku		
URE30	272	7,6	Značajno ljuštenje		
WRE30	255	9,7	Značajan pad opterećenja uz malu buku		
URE40	183	7,5	Značajno ljuštenje		
WRE40	235	8,3	Značajan pad opterećenja uz malu buku		

Tablica 5	. Cjeloviti	prikaz	eksperimentalnih	rezultata :	za sve uzorke
-----------	-------------	--------	------------------	-------------	---------------

tj. 57 % u odnosu na kružne uzorke. Smanjenje duktilnosti također je zabilježeno kod ekscentrično opterećenih uzoraka. Kvadratni i pravokutni oblik poprečnog presjeka i ekscentričnost opterećenja nepovoljno su djelovali na učinkovitost ojačanja, što je dovelo do smanjenja duktilnosti. To je prikazano na slici 12.

Slika 12. Duktilnost neojačanih uzoraka i uzoraka ojačanih GFRP-om (neojačani uzorci: U - unwrapped, ojačani uzorci: W - wrapped)

6. Zaključak

Izrađena su ukupno 54 armiranobetonska kratka uzorka stupova (18 kružnih uzoraka, 18 kvadratnih uzoraka i 18 pravokutnih uzoraka) opterećenih centričnom i ekscentričnom tlačnom silom do sloma, kako bi se odredio utjecaj oblika poprečnog presjeka i ekscentričnosti na ponašanje stupova ojačanih FRP-om. Na temelju eksperimentalnih ispitivanja i usporedbe raznih vrijednosti opterećenja i deformacija, izvedeni su sljedeći zaključci za razne vrijednosti ekscentričnosti:

- Nosivost armiranobetonskih kratkih stupova može se bitno povećati ovijanjem stupova trakama od GFRP-a. Ojačanjem stupova ovijanjem GFRP-om značajno se povećava nosivost uzoraka podvrgnutih centričnom opterećenju, ali se učinkovitost smanjuje kada se na uzorke nanosi ekscentrično opterećenje.
- Slom uzoraka ovijenih GFRP-om nastupao je naglo uz veliku buku, a slomu je prethodio tipičan zvuk pucanja. Do sloma je uglavnom dolazilo u gornjim i donjim dijelovima uzorka.
- Zbog ravnomjernog tlaka, nosivost kružnih stupova bila je znatno veća od nosivosti kvadratnih i pravokutnih stupova. Nosivost kvadratnih i pravokutnih stupova bila je niža zbog koncentracije naprezanja u uglovima, što je uočeno tijekom analize načina sloma.
- Ojačanje uzoraka može biti jedno od rješenja za povećanje čvrstoće i duktilnosti centrično opterećenih uzoraka.
- Vrijednost ekscentričnosti bitno je utjecala na maksimalnu nosivost: maksimalno opterećenje se smanjivalo s povećanjem ekscentričnosti. GFRP obloga armiranobetonskih kratkih stupova omogućila je postizanje visokih vrijednosti deformacija bez sloma.
- Odvajanje sloja FRP-a zabilježeno je tek u rijetkim slučajevima. Stoga se može zaključiti da je zadani preklop bio dostatan za prijenos opterećenja s betona na FRP.

LITERATURA

- Mirmiran, A., Shahawy, M., Samaan, M., Echary, H.E., Mastrapa, J.C., Pico, O.: Effect of column parameters on FRP confined concrete, ASCE Journal Composite Construction, 2 (1998) 4, pp. 175-85, https://doi.org/10.1061/(ASCE)1090-0268(1998)2:4(175)
- [2] Rochette, P., Labossiere, P.: Axial testing of rectangular columns models confined with composites, ASCE Journal Composite Construction, 4 (2000) 3, pp. 129-36, https://doi.org/10.1061/ (ASCE)1090-0268(2000)4:3(129)
- [3] Teng, J.G., Lam, L.: Compressive behaviour of carbon fibre reinforced polymer-confined concrete in elliptical columns, ASCE Journal Structural Engineering, 128 (2002) 12, pp. 1535-43, https://doi.org/10.1061/(ASCE)0733-9445(2002)128:12(1535)
- [4] Ye, L., Yue, Q., Zhao, S., Li, Q.: Shear strength of reinforced concrete columns strengthened with carbon-fiber-reinforced plastic sheet, ASCE Journal Structural Engineering, 128 (2002) 12, pp. 1527-34, https://doi.org/10.1061/(ASCE)0733-9445(2002)128:12(1527)
- [5] Tamer, El, M.: Post-repair performance of eccentrically loaded RC columns wrapped with CFRP composites, Journal Cement and Concrete Composites, 30 (2008), pp. 822-830, https://doi. org/10.1016/j.cemconcomp.2008.06.009
- [6] Hadi, M.N.S.: Behaviour of Fibre RC Columns Wrapped with FRP under Eccentric Loads, Australasian Structural Engineering Conference (ASEC), Melbourne, Australia, 26 - 27 June 2008.
- [7] Hadi, M.N.S.: Behaviour of FRP strengthened concrete columns under eccentric compression loading, Composite Structures, 77 (2007), pp. 92-96, https://doi.org/10.1016/j. compstruct.2005.06.007
- [8] Hadi, M.N.S.: The behaviour of FRP wrapped HSC columns under different eccentric loads, Composite Structures, 78 (2007), pp. 560-566, https://doi.org/10.1016/j.compstruct.2005.11.018
- Li, J., Hadi, M.N.S.: Behaviour of externally confined high-strength concrete columns under eccentric loading, Composite Structures, 62 (2003), pp. 145-153, https://doi.org/10.1016/S0263-8223(03)00109-0

- [10] Hadi, M.N.S.: Comparative study of eccentrically loaded FRP wrapped columns, Composite Structures, 74 (2006), pp. 127-135, https://doi.org/10.1016/j.compstruct.2005.03.013
- [11] Hadi, M.N.S.: Behaviour of FRP wrapped normal strength concrete columns under eccentric loading, Composite Structures, 72 (2006), pp. 503-511, https://doi.org/10.1016/j.compstruct.2005.01.018
- [12] Wei, Y.Y., Wu, Y.F.: Unified stress-strain model of concrete for FRPconfined columns, Construction and Building Materials, 26 (2012), pp. 381–392, https://doi.org/10.1016/j.conbuildmat.2011.06.037
- [13] Teng, J.G., Jiang, T., Lam, L., Luo, Y.Z.: Refinement of a designoriented stress-strain model for FRP-confined concrete, Journal Composite Construction, 13 (2009), pp. 269-78, https://doi. org/10.1061/(ASCE)CC.1943-5614.0000012
- [14] Azadeh, P., Aditya, S.J.: Effects of wrap thickness and ply configuration on composite-confined concrete cylinders, Composite Structures, 67 (2005), pp. 437-442, https://doi. org/10.1016/j.compstruct.2004.02.002
- [15] Li, G., Kidane, S., Pang, S.S., Helms, J.E., Stubblefield, M.A.: Investigation into FRP repaired RC columns, Composite Structures, 62 (2003), pp. 83-89.
- [16] Luke, B., Michael, R.: Axial-flexural interaction in circular FRPconfined reinforced concrete columns, Construction and Building Materials, 24 (2010), pp. 1672–1681, https://doi.org/10.1016/j. conbuildmat.2010.02.024
- [17] American Concrete Institute (ACI): Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures, ACI-440.2R-08, Farmington Hills, MI, 2008.
- [18] Toutanji, H.A.: Stress-strain characteristics of concrete columns externally confined with advanced fibre composite sheets, ACI Material Journal, 96 (1999) 3, pp. 397-404.
- [19] Hayder, A.R.: Strengthening Design of Reinforced Concrete with FRP, CRC Press, Taylor & Francis Group, Boca Raton, Florida, U. S., 2014.