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ON THE INVERSE LIMITS OF T0-ALEXANDROFF SPACES
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Abstract. We show that if X is a locally compact, paracompact
and Hausdorff space, then X can be realised as the subspace of all maxi-
mal points of the inverse limit of an inverse system of partial orders with
an appropriate topology (equivalently T0-Alexandroff spaces). Then, the
space X is homeomorphic to a deformation retract of that limit. Moreover,
we extend results obtained by Clader and Thibault and show that if K is a
simplicial complex, then its realisation |K| can be obtained as the subspace
of all maximals of the limit of an inverse system of T0-Alexandroff spaces
such that each of them is weakly homotopy equivalent to |K|. Moreover,
if K is locally-finite-dimensional and |K| is considered with the metric
topology, then this inverse system can be replaced by an inverse sequence.

1. Introduction

Very often one describes a given class of spaces by means of other spaces.
One way to do this is by inverse limits or more generally by limits of diagrams.
For example, it is known ([13, p. 308]) that a topological space is a compact
Hausdorff space if and only if it is homeomorphic to the inverse limit of an
inverse system of compact polyhedra. Another known example ([18, Proposi-
tion 1.1.7]) says that every compact, Hausdorff and totally disconnected space

(i.e., connected components are only one point sets) is homeomorphic to the
inverse limit of an inverse system of discrete spaces. Discrete spaces are a
particular case of Alexandroff spaces. So, it seems natural to consider inverse
systems of these spaces as a generalization of the discrete case. Because of
connections of these spaces with partial orders (more details in Section 2), we
have a partial order on the product of T0-Alexandroff spaces and therefore
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on the inverse limit as well. Moreover, T0-Alexandroff spaces and simpli-
cial complexes are closely related. This suggests that the inverse systems of
T0-Alexandroff spaces and their limits can be used to investigate the inverse
limits of inverse systems of simplicial complexes, in particular, the compact
Hausdorff spaces. We use the technique of the open covers and as it is well
known, with every open cover one can associate a simplicial complex called
its nerve. Such constructions like the nerve and others (like the Vietoris-Rips
complex) are being used in the computational topology. More details can be
found in [4]. All of this makes reasonable to consider the inverse systems of
Alexandroff spaces and their inverse limits.

T0-Alexandroff spaces seem to be not very interesting at the first glance.
For this reason they were not investigated for a long time. This situation
changed in the sixties when McCord and Stong published their papers [9] and
[16] about finite topological spaces, their properties and relations between
them and simplicial complexes. In particular, with every finite simplicial
complex, we can associate a finite space that is weakly homotopy equivalent
to its realisation and vice versa. This result is also true for arbitrary simplicial
complexes, see [1, Chapter 1], [8, Theorem 5.1.2] and [9] for more details.

E. Clader ([2]) showed that the realisation |K| of a finite simplicial com-
plex K is homotopy equivalent to the inverse limit of an inverse sequence of
finite T0-spaces that are weakly homotopy equivalent to |K|. The same result
was noticed by Wofsey in [20, p. 25]. Thibault ([17, Section 2.4]) discussed
Clader’s proof and extended her result to the class of locally finite simplicial
complexes. However, in this case the inverse sequence of finite spaces is re-
placed by a similar sequence of T0-Alexandroff spaces that are locally finite
and also weakly homotopy equivalent to |K|. Also, Flachsmeyer ([6], [13, p.
415]) showed that a space X is a compact T1-space if and only if it is homeo-
morphic to the subspace of all minimal points of the inverse limit of an inverse
system of finite T0-spaces

1. Moreover, with every T1-space X , he associated
([13, p. 416]) an inverse system of finite spaces where the subspace of all min-
imal points of its limit is homeomorphic to the Wallman’s compactification of
X . See [13, Chapter IV.2] for more details.

The aim of this paper is to give an extension of Clader and Thibault’s
results in two different ways. First, we show that if X is a locally compact,
paracompact and Hausdorff space, then it can be realised as a strong deforma-
tion retract of the inverse limit of an inverse system of T0-Alexandroff spaces
which is the subspace of all maximal points. However, we do not get a se-
quence of T0-Alexandroff spaces but an inverse system of such spaces indexed
by the set of all locally finite open covers of the given space X . We use a
technique similar to the Flachsmeyer’s one.

1The order considered by Flachsmeyer is dual to the order considered in this paper.
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Next, we consider the class of simplicial complexes. In this case, the
system is indexed by all subdivisions of the given complex K. Here, every
T0-Alexandroff space is weakly homotopy equivalent to the realisation |K|. If
K is locally-finite-dimensional and |K| is considered with the metric topology,
the system can be replaced by an inverse sequence. In this case, the result is
a straightforward generalization of the one obtained by Clader and Thibault.

The paper consists of four sections. Except Introduction, Section 2 con-
tains all necessary definitions and results about Alexandroff spaces and sim-
plicial complexes. The case of locally compact, paracompact and Hausdorff
spaces is considered in Section 3. The main result of this section is stated
in Theorem 3.4 and Proposition 3.5 which state that every locally compact,
paracompact and Hausdorff space can be realised as the subspace of all max-
imal points of the inverse limit of an inverse system of T0-Alexandroff spaces
(equivalently partial orders with an appropriate topology) that is a strong
deformation retract of this limit. Moreover, Theorem 3.6 can be treated as
an analog of the theorem ([13, p. 310]) by H. Freudenthal concerning the
inverse limits of inverse sequences of compact metric spaces. The last Sec-
tion 4 concerns the realisations of simplicial complexes. It is shown that the
class of spaces that can be realised as in Section 3 is larger and contains re-
alisations of all simplicial complexes. Moreover, the system can be replaced
by the sequence constructed in [2] and [17] provided a simplicial complex K
is locally-finite-dimensional and its realisation is considered with the metric
topology.

2. Preliminaries

In this section we recall some properties of Alexandroff spaces and sim-
plicial complexes that are needed in the sequel. It is primarily based on [1],
[9], [16] and [17].

A topological space is called an Alexandroff space if the intersection of
its arbitrary family of open sets is open. If (X, τX) is an Alexandroff space
and x ∈ X , then Ux =

⋂

U∈τX ,x∈U

U is the minimal open set containing x. The

family {Ux}x∈X forms the minimal basis for the topology τX . A topology τX
on a set X is called Alexandroff provided (X, τX) is an Alexandroff space.

Given an Alexandroff space (X, τX), we define the relation ≤τX , where
x ≤τX y provided x ∈ Uy (equivalently Ux ⊆ Uy). This relation is reflexive
and transitive. It is a partial order if and only if X is a T0-space. Similarly,
with every transitive and reflexive relation ≤⊆ X × X , we can associate a
topology τ≤ on X with a basis given by the sets Ux = {y ∈ X : y ≤ x}. The
pair (X, τ≤) is a T0-space if and only if ≤ is a partial order. An Alexandroff
space that is a T0-space is called for short an A-space.

With an A-space X , we can associate an abstract simplicial complex
K(X), where the simplices are nonempty chains in X . By [9, Theorem 2], the
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space X is weakly homotopy equivalent to the realisation |K(X)|. Similarly,
with every simplicial complex K, we can associate an A-space χ(K), where
elements of χ(K) are simplices of K and the ordering is by the inclusion
relation. If X is an A-space, then the space χ(K(X)) is called the barycentric

subdivision of the space X and is denoted by X
′

. Inductively, we can form
the n-th barycentric subdivision X(n) = (X(n−1))

′

. Elements of the space X
′

are nonempty chains of X and the map sup : X
′ → X sending a chain C ∈ X

′

to its maximal element is a weak homotopy equivalence. More details can be
found in [1], [8] and [17].

A map f : X → Y between A-spaces is continuous if and only if it is
order preserving with respect to the orders associated with the topologies
on X and Y . Moreover, the categories of partial orders and T0-Alexandroff
spaces are isomorphic. Since elements of X can be identified with vertices of
K(X), the map f : X → Y yields a simplicial map K(f) : K(X) → K(Y ).
Similarly, with a simplicial map f : K → L, we can associate a continuous
map χ(f) : χ(K)→ χ(L).

Reversing the order of an A-space X , we get the space Xop. These spaces
have the same underlying set. Open sets in X correspond to closed sets of
Xop and vice versa. In particular, the set Ux ⊆ X is closed in Xop. The set
Fx = {y ∈ X : y ≥ x} is open in Xop and therefore closed in X . If f : X → Y
is a continuous function, then we have a function fop : Xop → Y op which is
the same as f as the function of sets. Obviously, f is continuous if and only
if fop is so.

Let K be a simplicial complex. Denote by V (K) the set of all its vertices.
The realisation |K| ([15, p. 110]) of K is the set of functions x : V (K)→ [0, 1]
such that for every x ∈ |K| the set {v ∈ V (K) : x(v) 6= 0} is a simplex of
K. The geometric interior of a simplex σ ∈ K is Int|σ| = {x ∈ |K| : x(v) 6=
0 if and only if v ∈ σ}. The open star Stσ of a simplex σ ∈ K is the union
of all geometric interiors Int|τ |, where σ ⊆ τ . Clearly, Stσ is the set of such
x ∈ |K| that x(v) 6= 0 for every v ∈ σ. Every point x ∈ |K| lies in the
geometric interior of a unique simplex carr(x) called the carrier of x. Notice
that the geometric interiors of different simplices are disjoint. See [5, Chapter
2] for more details.

If K is a simplicial complex, the space |K| is usually endowed with a
topology in two different ways. The first one is called the weak topology, where
a set U ⊆ |K| is open if the intersection U ∩ |σ| is open in the realisation |σ|
for every simplex σ ∈ K. The second way is the metric topology given by

the metric d(x, y) = (
∑

v∈V (K)

(x(v) − y(v))2)
1

2 for x, y ∈ |K|. The diameter

of every positive-dimensional simplex is
√
2 with respect to this metric. See

for example [15, Chapter 3] for more details. In view of [15, Theorem 8,
p. 119], these two topologies coincide if and only if K is locally finite. In
particular, they coincide when K is just a simplex. If K is not locally finite,
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then the metric topology is weaker than the weak topology. Write |K| for the
realisation of K with the weak topology and |K|m with the metric topology
respectively. In view of [7, Proposition 3.3.7], the identity function id|K| :
|K| → |K|m is a homotopy equivalence.

3. Locally compact, paracompact and Hausdorff spaces

Let K be a simplicial complex and K(n) its n-th barycentric subdivision.
In [2] and [17] elements of the space Xn = χ(K(n))op are the simplices of
K(n) and the ordering is by the reversed inclusion relation. The functions
fn,m : Xm → Xn for m ≥ n sending an element from Xm to its carrier in

K(n) form an inverse sequence {X,N, fn,m}, where N is the set of natural
numbers.

With the complex K(n), we can associate an open cover {Stσ : σ ∈ K(n)}
of the space |K| given by open stars of simplices of K(n). If σ ⊆ τ for
σ, τ ∈ K(n), then Stτ ⊆Stσ. Hence, the space of open stars ordered by the
inclusion is obviously homeomorphic to Xn. Second important point is that
the space χ(K)op is the quotient space of |K| with respect to the relation given
by: x ∼ y provided carr(x) =carr(y) in K(n) (compare [20, p. 13]). Indeed,
classes of ∼ are the geometric interiors of simplices of K. Since, a simplex
determines its geometric interior and vice versa, we can identify elements of
Xn with those of |K|/ ∼. Let p : |K| → |K|/ ∼ be the quotient map. Notice
that a set U ⊆ |K|/ ∼ is open if and only if p−1(U) ∩ |σ| is open in |σ| for
every σ ∈ K. Equivalently, it is open if and only if it contains the geometric
interior of τ whenever σ ⊆ τ and Int|σ| ∈ U . Hence, the spaces |K|/ ∼ and
χ(K)op are homeomorphic.

Similar approach was used earlier by Flachsmeyer (compare [13, p. 416]).
He associated a finite T0-space with every finite open cover of a given space
X .

Recall that a space X is called locally compact if every x ∈ X has an
open neighbourhood U such that its closure U is compact. An open cover U
of a space X is locally finite if every point of X has an open neighbourhood
that meets finitely many elements of U . An open cover U of a space X is
a refinment of an open cover V if every element of U is contained in some
element of V . A space X is called paracompact if every open cover of X has
an open refinment that is locally finite. Recall also, that every metric space
is paracompact and every paracompact Hausdorff space is normal.

Let X be a locally compact, paracompact and Hausdorff space and let
IX be the set of all its locally finite open covers. Obviously, IX 6= ∅ and
for every finite family U1, . . . , Un of open subsets of X , there exists a locally
finite, open cover that contains Ui for i = 1, . . . , n. The set IX is directed by
the inclusion relation. It should not be confusing that an element Bα of IX
will be identified with the supscript α. Let Bα ∈ IX and x ∈ X . The local
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finiteness implies that the set

Uα
x =

⋂

U∈Bα, x∈U

U

is open for every x ∈ X . Define the relation ∼α⊆ X ×X such that x ∼α y
provided Uα

x = Uα
y . This is an equivalence relation. Let Xα be the quotient

set of X with respect to the relation ∼α and pα : X → Xα the quotient
function. Since the cover Bα is locally finite, every class E of ∼α is contained
in finitely many elements of Bα. So, the intersection Uα

E of all open sets
from Bα containing E is open in X . Now, define the relation ≥α⊆ Xα ×Xα

such that E1 ≥α E2 provided E2 ⊆ Uα
E1

(equivalently Uα
E2
⊆ Uα

E1
) for E1,

E2 ∈ Xα. It is obviously a partial order. As one can easily verify, E1 ≥α E2 if
and only if every set from Bα containing E1 contains also E2. Hence, we have
an Alexandroff topology on the set Xα given by ≥α (compare [13, p. 416]).

Lemma 3.1. Let Bα and X be as above. Then, the quotient topology on

Xα is finer than the topology given by ≥α.

Proof. Let UE be the minimal open neighbourhood of E in the topology
given by ≥α. By the definition of ≥α, the set UE consists of all classes that
are contained in Uα

E . So, p
−1
α (UE) = Uα

E and every open set from A-topology
on Xα is open in the quotient topology.

Lemma 3.1 shows that the quotient map pα : X → Xα is continuous if
Xα is considered with the A-topology. Considering Xα as a space, we mean
that the topology is given by ≥α. In particular, it is an A-space. If Bα were
not locally finite, then Lemma 3.1 would not hold. For example, if Bα consists
of all nonempty open subsets of X , then every class is a one point set and
the classes are not comparable with respect to ≥α. So, the A-space Xα is
discrete. In particular, the function pα does not have to be continuous.

Let Bα ⊆ Bβ . By the definitions of ∼α and ∼β, every class E ∈ Xβ

is contained in a unique class F ∈ Xα that will be called the carrier of E
in Xα and denoted by carrα(E). This yields a function fα,β : Xβ → Xα,
E 7→carrα(E). It is easy to see that fα,β ◦ pβ = pα. Since every set from Bα
belongs to Bβ , we see that the function fα,β is continuous by the definition
of ≥α. So, we have an inverse system {Xα, IX , fα,β}. The space X and
the maps pα form a cone over this system. In particular, the inverse limit
X∞ = lim←−Xα is nonempty. The inverse sequence considered in [2] and [17]
can be obtained in the similar fashion. Let K be a locally finite simplicial
complex. Denote by Un the cover of |K| given by open stars of simplices from

K(n) and let Vn =
n
⋃

i=0

Ui. Then, as it is easy to see the classes of ∼Vn
are

geometric interiors of simplices from K(n).
The maps pα give rise to a continuous map p : X → X∞, x 7→

(pα(x))α∈IX . The partial orders on the sets Xα give a partial order ≥ on



ON THE INVERSE LIMITS OF T0-ALEXANDROFF SPACES 213

the set X∞, where A ≥ B provided Aα ≥ Bα for every α ∈ IX . Notice that,
if the inverse limit of A-spaces has two threads that are comparable, then
it cannot be even a T1-space. This is one of the reasons why we focus our
attention on the subspace of all maximal elements.

Let A = (Aα)α∈IX ∈ X∞. For every finite subset {α1, . . . , αn} ⊂ IX
there exists such β ∈ IX that β ≥ αi for every i = 1, . . . , n. By the definition
of maps fα,β , the class Aβ is contained in every Aαi

for i = 1, . . . , n. In other
words, the coordinates Aα of the thread A have the so called finite intersection

property. Obviously, the same property have their closures.
SinceX is locally compact, for every x ∈ X there exists an open set Vx ∋ x

so that the closure V x is compact. Hence, we have an open cover {Vx}x∈X

of X such that every V x is compact. By paracompactness, the space X has
an open cover Bβ which is locally finite and the closure of every member is

compact. The intersection of all Aα is a subset of a compact and closed set
V ⊂ X . Sets Aα ∩ V are closed in V . In view of [3, Theorem 3.1.1], the
intersection FA =

⋂

α∈IX

Aα is nonempty for every (Aα)α∈IX ∈ X∞. Assume

that there exist x, y ∈ FA with x 6= y. Since X is normal, there exist two open
neighbourhoods U1, U2 of x and y respectively with U1 ∩ U2 = ∅. Consider
Bβ ∈ IX such that U1, U2 ∈ Bβ . The class of ∼β containing x is a subset

of U1 and the one containing y is a subset of U2. Hence, Aβ may contain at
most one element of {x, y}. So, the set FA contains a unique point gA. This
allows one to define the function G : X∞ → X , A 7→ gA. This is an analog of
the function G defined in [2] and [17].

Lemma 3.2. If A = (Aα)α∈IX ∈ X∞, then p(gA) ≥ A.

Proof. Assume to the contrary, that it is not true that p(gA) ≥ A.
Equivalently, there exists Bα ∈ IX and a set U ∈ Bα that contains pα(gA) but
does not contain Aα. Hence, Aα ⊂ X \ U . Because X is normal, there exist
open sets V1, V2 ⊂ X such that gA ∈ V1 ⊂ V 1 ⊂ U , Aα ⊂ V2 and V 1∩V 2 = ∅.
So, gA /∈ Aα. This contradiction completes the proof.

So, p(X) is precisely the subspace of all maximal elements of X∞ with
respect to the relation ≥. From Lemma 3.2, it follows that for a thread
A ∈ X∞ the element p(gA) is greater or equal to A. This implies that X∞ has
an additional property: every thread is comparable to exactly one maximal
element of X∞. If p(x) ≥ A, then pα(x) ≥ Aα for every α ∈ IX . In particular,
every open neighbourhood of p(gA) in X∞ contains A. Moreover, if A ≥ B
for A,B ∈ X∞, then p(gA) ≥ A ≥ B by Lemma 3.2. Hence, p(gA) = p(gB) is
the unique maximal point of X∞ that B is comparable to.

Lemma 3.3. The function G : X∞ → X defined above is continuous.

Proof. Let U ⊆ X and A = (Aα)α∈IX ∈ G−1(U). This means that
gA ∈ U . Since X is normal, there exists an open set V ⊂ X with gA ∈
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V ⊂ V ⊂ U . Let C = p(gA). From Lemma 3.2, we have C ≥ A and hence
gC = gA. Now, consider the open cover Bβ = {V,X \ {gA}} ∈ IX . The only
open set from Bβ containing gA is V . Let πβ : X∞ → Xβ be the canonical

projection. Since Cβ ≥β Aβ , it is obvious that A ∈ π−1
β (UCβ

). We show

that the set π−1
β (UCβ

) is an open neighbourhood of A in G−1(U). Indeed,

let D = (Dα)α∈IX ∈ π−1
β (UCβ

). This means that Cβ ≥β Dβ in Xβ and

Uβ
Dβ
⊆ Uβ

Cβ
. By the choice of C and Bβ, we have Cβ = {gA} and Uβ

Cβ
= V .

Therefore, gD ∈ V ⊆ U and the proof is complete.

Let K be a locally finite simplicial complex. In the case of the inverse
sequence considered in [17, Theorem 2.4.20] it was shown that the analogs of
p and G form a homotopy equivalence of |K| and X∞. This result is also true
if we replace the system from [17] by the one defined above.

Theorem 3.4. (Generalization of [17, Theorem 2.4.20]) Let X be a locally

compact, paracompact and Hausdorff space. The maps p : X → X∞ and

G : X∞ → X defined above are homotopy equivalences.

Proof. The proof follows mutatis mutandis the one of [17, Theorem
2.4.20]. Define the relation ∼⊆ X∞ ×X∞ where A ∼ B provided A and B
are comparable with respect to ≥ with the same element of p(X). By Lemma
3.2, A ∼ B if and only if G(A) = G(B). Since for every A ∈ X∞ there exists
a unique maximal element max(A) ∈ p(X) with max(A) ≥ A, the relation
∼ is an equivalence. Obviously, max(A) = pG(A). Let E be an equivalence
class. Define, as in [17] the homotopy hE : E × [0, 1]→ E, where

hE(A, t) =

{

A if t ∈ [0, 1),
pG(A) if t = 1

for (A, t) ∈ E × [0, 1]. Since every open neighbourhood of pG(A) contains
A, this function is continuous. In particular, every equivalence class is con-
tractible. All maps hE give rise to a function F : X∞ × [0, 1] → X∞. We
only need to show that F is continuous. Let U ⊆ X∞ be an open set. Note
that h−1

E (U ∩ E) = (U ∩ E) × [0, 1) if U ∩ E does not contain p(x) for some
x ∈ X and it is E× [0, 1] otherwise. Hence, F−1(U) = (U × [0, 1])\ (V ×{1}),
where V = {A ∈ U : pG(A) /∈ U}. Since p and G are continuous, it means
that V = U \ (pG)−1(U) which is closed in U and the proof is complete.

In fact, the homotopy F constructed in the proof of Theorem 3.4 from
the homotopies hE is a deformation retraction of X∞ onto p(X).

In [17, Proposition 2.4.21] it is shown that for a locally finite simplicial

complexK, the restriction G̃|p(|K|) : p(|K|)→ |K| for the analog G̃ of the map
G, is a homeomorphism. We see that the same is true for the system defined
above. Note that, the map G|p(X) : p(X) → X is bijective. If U ⊆ p(X) is
open, then there exists an open set V ⊆ X∞ with U = V ∩ p(X). But every
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open neighbourhood of a point p(x) for x ∈ X contains every other point
A ≤ p(x). So, G|p(X)(U) = p−1(V ). Therefore, we can state:

Proposition 3.5. (Generalization of [17, Proposition 2.4.41]) Let X be

a locally compact, paracompact and Hausdorff space. Then, the space X is

homeomorphic to the subspace of all maximal points of the inverse limit of

the system {Xα, IX , fα,β} defined above.

In fact, like in [2] and [17] the proofs show that the space p(X) is a strong
deformation retract of X∞.

The proof of Theorem 3.4 shows that if an arbitrary inverse system of
A-spaces {Xα, J, fα,β} with the nonempty limit has the properties:

(P1) every element of lim←−Xα is comparable to exactly one element of the

set max(lim←−Xα) ⊆ lim←−Xα of maximal elements;

(P2) the function max : lim←−Xα → max(lim←−Xα) ⊂ lim←−Xα that maps an
element A of lim←−Xα to the corresponding maximal element is continuous,

then, the set max(lim←−Xα) is a strong deformation retract of the limit.

Unlike the system defined in [2] and [17], the system {Xα, IX , fα,β} is not
a sequence. Moreover, the spaces of this system do not have to be weakly
homotopy equivalent to X .

In [13, p. 310] it is shown that X is a compact metric space if and only
if it is homeomorphic to the inverse limit of an inverse sequence of compact
polyhedra. This is a theorem by H. Freudenthal. One implication can be
stated similarly in the language of A-spaces.

Theorem 3.6. If X is a locally compact and metric space then, it can be

realised as the subspace of all maximal points of the inverse limit of an inverse

sequence of A-spaces that is a strong deformation retract of the inverse limit.

Proof. Let Un be an open cover of X given by the open balls B(x, 1
n
).

Since every metric space is paracompact, there exists a locally finite open
refinment Wn of Un. Every set from Wn has diameter not greater than 2

n
.

Also, there exists an open cover W0 of X which is locally finite and U is

compact for every U ∈ W0. Let Bn =
n
⋃

i=0

Wi. Obviously, we have Bn ∈ IX

for every n ∈ N and Bn ⊆ Bm for m ≥ n. Hence, we have the spaces Xn and
maps pn : X → Xn and fn,m : Xm → Xn for m ≥ n. This gives rise to an
inverse sequence {Xn,N, fn,m}. Since the space X and maps pn form a cone
over that system, we see that lim←−Xn 6= ∅. The space X is locally compact.

So, we can define the function G : lim←−Xn → X that maps A = (An)n∈N

to the unique point gA =
∞
⋂

n=0
An as before. For every point x ∈ X and its

open neighbourhood U ⊆ X , there exists n ∈ N such that there exists an
open set from Bn containing x such that its closure is contained in U . By
similar arguments as in the proof of Lemma 3.3, the function G is continuous.
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Repeating the proofs of Theorem 3.4 and Proposition 3.5, we get the desired
result.

The converse is not true in general. Take an A-space X with more than
one maximal element that is not discrete. Assume that Xn = X for every
n ∈ N and fn,m =idX for m ≥ n. Then, the limit of such inverse sequence is
X which is not even a T1-space. Moreover, the subspace of all maximals may
not be its strong deformation retract since the subspace of all maximal points
is discrete.

4. Simplicial complexes

The aim of this section is to show that a space X can be realised as the
subspace of all maximal points of the inverse limit of an inverse system of
A-spaces also when X is not locally compact. This shows that the class of
spaces that can be realised in this fashion is larger. We use techniques from
[2] and [17].

Let K be a simplicial complex. In the inverse sequence defined in [2]
and [17] every thread of the inverse limit can be identified with a nested
sequence of realisations of simplices from the barycentric subdivisions of |K|.
The function G is defined in such a way that a thread A ∈ lim←−Xn is mapped
to the intersection of realisations of all these simplices which is a one point
set.2 In order to prove continuity of G, one used the property that for every
x ∈ |K| and every open neighbourhood U of x, there exists a sufficiently fine
barycentric subdivision of K that the star of carr(x) is contained in U .

If K is not locally finite, then the space |K| cannot be realised as the
subspace of all maximals of the inverse sequence of A-spaces constructed in
[2] and [17]. It is easy to see that in that case the function G is not continuous.
See [17, p. 35] for more details. Moreover, the space |K| cannot be in that case
even homeomorphic to a subspace of the inverse limit of an inverse sequence
of A-spaces. Indeed, it is known [12, p. 14] that if K is not locally finite, then
|K| is neither locally compact nor first countable. But every A-space X has
a basis at every x ∈ X consisting of the minimal open set Ux. If (xn)n∈N is
an element of the inverse limit of an inverse sequence of A-spaces then, the
sets π−1

n (Uxn
) form a basis at (xn)n∈N.

However, |K| can be realised as the subspace of all maximal elements of
the inverse limit of an inverse system of A-spaces even though it is not locally
compact.

If Kα is a subdivision ofK, then we have an A-spaceXα = χ(Kα)
op. This

is the space constructed in [2] and [17]. Elements of Xα are the simplices of
Kα ordered by the reversed inclusion relation. The set IK of all subdivisions
of K is ordered by the subdivision relation, i.e., Kβ ≥ Kα provided Kβ is

2Originally, it is considered a sequence of points. One from realisation of every simplex
and its limit which is the common point of these realisations.
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a subdivision of Kα. If Kβ is a subdivision of Kα, then, we have a map
fα,β : Xβ → Xα that maps σ ∈ Xβ to its carrier in Kα which we treat
as an element of Xα. It is obviously continuous. So, we have an inverse
system {Xα, IK , fα,β}. In [2] and [17], there were considered only barycentric
subdivisions of K and the system was in fact an inverse sequence. It is easy
to see that the function pα : |K| → Xα which maps x to its carrier in Kα

(treated as an element of Xα) is continuous for every α ∈ IK . These maps
yield a unique continuous map p : X → lim←−Xα and therefore lim←−Xα 6= ∅. By
the construction, every thread of lim←−Xα can be identified with a nested set
of realisations of simplices indexed by the directed set IK . Futhermore, the
intersection of these realisations is a one point set and we can construct the
function G.

Lemma 4.1. Let K be a simplicial complex and x ∈ |K|. Then, there

exists a subdivision K̃ of K which has x as a vertex.

Proof. Let σ ∈ K be the carrier of the point x ∈ |K|. In the construction

of the barycentric subdivision K
′

([15, p. 123]) of the simplicial complex K,
we can replace the barycenter bσ of σ by the point x obtaining a subdivision
K̃ of K. This subdivision is isomorphic to the barycentric subdivision of K.
However, the simplices of K

′

which have bσ as a vertex correspond to the
simplices of K̃ in which bσ is replaced by x.

The result [19, Theorem 35] states in particular that, if x is a vertex of
a simplicial complex K and U ⊆ |K| is an open set containing x, then there
exists a subdivision Kα of K such that every simplex that has x as a vertex
is contained in U . Hence, we can state the following:

Lemma 4.2. Let K be a simplicial complex and U ⊆ |K| an open neigh-

bourhood of a point x ∈ |K|. Then, there exists a subdivision Kα of K having

x as a vertex and with the property that every simplex of Kα that has x as a

vertex is contained in U .

Lemma 4.2 shows that, for every A = (Aα)α∈IK ∈ lim←−Xα and every open

neighbourhood U ⊆ |K| of gA, there exists a subdivision of K such that the
star of carr(gA) is contained in U . Hence, using the same technique as before,
we can prove the continuity of G. As before, mimicking the proofs of Theorem
3.4 and Proposition 3.5, we can state the following:

Theorem 4.3. If K is a simplicial complex, then |K| can be realised as

the subspace of all maximal points of the inverse limit of an inverse system of

A-spaces that is a strong deformation retract of the inverse limit.

Moreover, as it is shown in [2], the functions pα : |K| → Xα are weak
homotopy equivalences. So, the system consists only of spaces that are weakly
homotopy equivalent to |K|.
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Now, we show that Clader and Thibault’s result can be straightforward
generalized to the class of locally-finite-dimensional simplicial complexes pro-
vided the realisation |K| of a simplicial complex K is considered with the met-
ric topology. Recall that a simplicial complex K is locally-finite-dimensional

if for every vertex v ∈ V (K) the star of v is finite dimensional. Consider, the

sequence K(n) of barycentric subdivisions of K. In general, if K̃ is a subdivi-
sion of K, it is not true that |K|m = |K̃|m as topological spaces. However, if

K
′

is the barycentric subdivision, then |K ′ |m = |K|m as topological spaces,
see [10]. We can construct an inverse sequence of A-spaces exactly like in [2]
and [17]. If A = (xn)n∈N is a thread of lim←−Xn = X∞, then like above, we can
construct the unique point

{gA} =
∞
⋂

n=1

|xn|

and the function G : X∞ → |K|m that sends A to gA. Let pn : |K|m → Xn

be the maps as above for n ≥ 0. In order to repeat the construction as before,
we need the following result.

Lemma 4.4. If K is a locally-finite-dimensional simplicial complex, then

the topology τ on the set |K| generated by {Stσ : σ ∈ K(n) for some n ≥ 0}
is the metric topology.

Proof. Let τm be the topology of |K|m. By [7, p. 115], the open stars
are open in the metric topology, so τ ⊆ τm. Now, let B(x, ε) ⊆ |K|m be an
open ball and y ∈ B(x, ε). Let δn =carr(y) in K(n). Since K is locally-finite-
dimensional, the diameters of sets St(δn) ⊆ |K|m approach 0. So, there exists
such n ≥ 0 that St(δn) ⊆ B(x, ε) and the proof follows.

Once again, we have a bijection from the set |K| onto the subspace of
all maximal elements of X∞. Repeating the process as before, we see that G
restricted to the subspace of all maximals is a homeomorphism provided the
topology of the set |K| is generated by the open stars. In view of Lemma 4.4,
this is the metric topology.

Since the space |K| is not locally compact, the class of spaces that can
be realised as the subspace of all maximal points of the inverse limit of an
inverse system (in the sense that this subspace is a strong deformation retract
od the limit) includes also other spaces besides locally compact, paracompact
Hausdorff spaces. It is natural to ask which spaces can be realised in this
fashion. Moreover, is it possible to obtain a homeomorphism of the whole
limit with the spaces considered here? These seem to be interesting problems.

Acknowledgements.

The author gratefully acknowledges the constructive comments on the
paper offered by the anonymous referee. He expresses his sincere gratitude



ON THE INVERSE LIMITS OF T0-ALEXANDROFF SPACES 219

for the referee’s review, which helped to improve the quality of the paper
significantly.

References

[1] J. Barmak, Algebraic topology of finite spaces and applications, Lecture Notes in
Mathematics 2032, Springer, Heidelberg, 2011.

[2] E. Clader, Inverse limits of finite topological spaces, Homology, Homotopy Appl. 11
(2009), 223–227.

[3] R. Engelking, General topology, Heldermann Verlag, Berlin, 1989.
[4] H. Edelsbrunner and J.L. Harer, Computational topology. An introduction, AMS,

Providence, 2010.
[5] S. Eilenberg and N. Steenrod, Foundations of algebraic topology, Princeton University

Press, Princeton, New Jersey, 1952.
[6] J. Flachsmeyer, Zur Spektralentwicklung topologisher Räume, Math. Ann. 144 (1961),
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