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Abstract. We show that there are only finitely many Diophantine
quadruples, that is, sets of four positive integers {a1, a2, a3, a4} such that
aiaj +1 is a square for all 1 ≤ i < j ≤ 4, consisting of Fibonacci numbers.

1. Introduction

A Diophantine k-tuple is a set of k positive integers {a1, . . . , ak} such
that aiaj + 1 is a square for all 1 ≤ i < j ≤ k. Dujella [4] proved that k ≤ 5.
He, Togbé and Ziegler [10] proved that k ≤ 4. There are infinitely many
quadruples. In fact, given any Diophantine triple {a, b, c}, if we set

(1.1) d = a+ b+ c+ 2abc+ 2
√

(ab+ 1)(bc+ 1)(ac+ 1),

then {a, b, c, d} is a Diophantine quadruple. Diophantine quadruples {a, b, c, d}
with a < b < c < d with the property that d is given by formula (1.1) in terms
of a, b, c are called regular. It is conjectured by Arkin, Hoggatt and Strauss
[1], and by Gibbs [8], independently, that all Diophantine quadruples are reg-
ular, but this has not been proved yet.

Let {Fn}n≥0 be the Fibonacci sequence given by F0 = 0, F1 = 1 and
Fn+2 = Fn+1 + Fn for all n ≥ 0. It turns out that {F2n, F2n+2, F2n+4} is a
Diophantine triple. Indeed, this is due to the formulas

F2nF2n+2 + 1 = F 2
2n+1 and F2nF2n+4 + 1 = F 2

2n+2,

2010 Mathematics Subject Classification. 11D72, 11D61, 11B39, 11J87.
Key words and phrases. Diophantine tuples, Fibonacci numbers, Subspace Theorem.
The first author is supported by JSPS KAKENHI Grant Number 16K05079.
The second author is supported by grant CPRR160325161141 from the NRF of South

Africa, an A-rated scientist award from the NRF of South Africa and the grant no. 17-
02804S of the Czech Granting Agency.

221



222 Y. FUJITA AND F. LUCA

which are valid for all positive integers n. Inserting a = F2n, b = F2n+2, c =
F2n+4 into (1.1), we get, after some manipulations with Fibonacci numbers,
that d = 4F2n+1F2n+2F2n+3. Hence, {F2n, F2n+2, F2n+4, 4F2n+1F2n+2F2n+3}
is a regular Diophantine quadruple for all positive integers n. Hoggatt
and Bergum [11] conjectured that if {F2n, F2n+2, F2n+4, d} is a Diophantine
quadruple, then necessarily d = 4F2n+1F2n+2F2n+3. This was proved by Du-
jella in [3]. One may ask whether d = 4F2n+1F2n+2F2n+3 can be a Fibonacci
number, since then one would obtain a Diophantine quadruple of Fibonacci
numbers. This was already proved not to be so by Jones in [12], who showed
that F6n+5 < d < F6n+6 holds for all n ≥ 1.

The following conjecture appears in [9].

Conjecture 1.1. There are no four positive integers a, b, c, d such that
{Fa, Fb, Fc, Fd} is a Diophantine quadruple.

While we do not know how to prove Conjecture 1.1, we prove the next
best thing.

Theorem 1.2. There are only finitely many Diophantine quadruples con-
sisting of Fibonacci numbers.

2. Preliminary results

In this section, we collect some results which will be used in our proof of
Theorem 1.2. We start with some considerations about Fibonacci numbers.
Let (α, β) = ((1 +

√
5)/2, (1 −

√
5)/2) be the two roots of the characteristic

equation of the Fibonacci sequence x2 − x − 1 = 0. Then the Binet formula
for Fn is

(2.1) Fn =
αn − βn

α− β
for all n ≥ 0.

The Fibonacci sequence has a Lucas companion {Ln}n≥0 given by L0 =
2, L1 = 1 and Ln+2 = Ln+1 + Ln for all n ≥ 0. Its Binet formula is

(2.2) Ln = αn + βn for all n ≥ 0.

There are many formulas involving Fibonacci and Lucas numbers. One which
is useful to us is

(2.3) L2
n − 5F 2

n = 4(−1)n for all n ≥ 0.

The following result is proved in [9].

Lemma 2.1. Assume that k ≥ 1, n ≥ 1 are integers and {F2n, F2n+2, Fk}
is a Diophantine triple. Then k = 2n+ 4 or k = 2n− 2 (when n > 1) except
when n = 2, in which case also k = 1 is possible.

We next recall a result of Siegel concerning the finiteness of the number
of solutions of a hyperelliptic equation.
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Lemma 2.2. Let K be any number field and OK the ring of its algebraic
integers. Let f(X) ∈ K[X ] be a non-constant polynomial having at least 3
roots of odd multiplicity. Then the Diophantine equation

y2 = f(x)

has only finitely many solutions (x, y) in OK.

We next need one more fact about Diophantine quadruples. The following
result can be deduced from Theorem 1.5 in [7].

Lemma 2.3. Let {a, b, c, d} be a Diophantine quadruple with a < b < c <
d. If c > 722b4, then the quadruple is regular.

We prove two lemmas needed for the proof of Theorem 1.2.

Lemma 2.4. If k is a fixed nonzero integer, then the Diophantine equation
kFn + 1 = x2 has only finitely many integer solutions (n, x).

Proof. Inserting Fn = (x2 − 1)/k into (2.3) and setting y := Ln, we get

y2 = 5F 2
n + 4(−1)n =

1

k2
(

5x4 − 10x2 + (5 ± 4k2)
)

.

Should the above equation have infinitely many integer solutions (x, y) it
would follow, by Lemma 2.2 (we take K = Q), that one of the polynomials

f±,k(X) = 5X4 − 10X2 + (5± 4k2)

has double roots. However, f±,k(X)′ = 20X(X2 − 1), so the only possible
double roots of f±,k(X) are 0 or ±1. Since f±,k(0) = 5 ± 4k2 6= 0 and
f±,k(±1) = ±4k2 6= 0, it follows that f±,k(X) has in fact only simple roots, a
contradiction.

Remark 2.5. In [13], all polynomials P (X) of degree larger than 1 such
that the Diophantine equation Fn = P (x) has infinitely many integer solutions
(n, x) were classified, so, in particular, we could have used this classification
in the proof of Lemma 2.4. However, we preferred to give a direct proof of
Lemma 2.4 especially since our proof reduces to an immediate verification of
the hypotheses from Siegel’s result stated in Lemma 2.2.

Lemma 2.6. Assume that k is a positive integer such that the Diophantine
equation

(2.4) FnFn+k + 1 = x2

has infinitely many integer solutions (n, x). Then k = 2, 4 and all solutions
have n even.

Proof. Using (2.1) and (2.2), we get

FnFn+k + 1 =
1

5
(αn − βn)(αn+k − βn+k) + 1 =

1

5
(L2n+k − (−1)nLk + 5) .
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Thus, if (n, x) satisfy (2.4), then L2n+k = 5x2 +((−1)nLk − 5). Inserting this
into (2.3) (with n replaced by 2n+ k) and setting y := F2n+k, we get

5y2 = L2
2n+k − 4(−1)k

= 25x4 + 10((−1)nLk − 5)x2 + ((−1)nLk − 5)2 − 4(−1)k.

Assuming that there are infinitely many integer solutions (n, x) to equation
(2.4), it follows, by Lemma 2.2 (again, we take K = Q), that for ζ, η ∈ {±1},
one of the polynomials

gζ,η,k(X) = 25X4 + 10(ζLk − 5)X2 + (ζLk − 5)2 − 4η

has double roots. Now

gζ,η,k(X)′ = X(100X2 + 20(ζLk − 5))

so the only zeros of the derivative of gζ,η,k(X) are 0 and ±
√

(5− ζLk)/5.
Now gζ,η,k(0) = (ζLk−5)2−4η. If this is zero, then η = 1, and ζLk−5 =

±2. We thus get ζLk = 3, 7, showing that ζ = 1 and k ∈ {2, 4}. Thus,
k ∈ {2, 4} and (−1)n = ζ = 1, so n is even.

The other situation gives

gζ,η,k(±
√

(5 − ζLk)/5) = −4η 6= 0.

Hence, this situation does not lead to double roots of gζ,η,k(X). Finally, when
k = 2, 4 it is easy to see that if FnFn+k +1 is a square then n is even. Indeed
for n odd we have in fact

FnFn+2 − 1 = F 2
n+1 and FnFn+4 − 1 = F 2

n+2.

Hence, if also one of FnFn+2 +1 or FnFn+4 +1 is a square, we would get two
squares whose difference is 2, which of course is impossible.

3. Proof of Theorem 1.2

For a contradiction, we assume that there are infinitely many Diophantine
quadruples of Fibonacci numbers. We denote a generic one by {Fa, Fb, Fc, Fd}
with a < b < c < d. Hence, d → ∞ over such quadruples. Since

FaFd + 1 = �

and d → ∞, it follows, by Lemma 2.4, that a → ∞. We next show that
both d − c → ∞ and c − b → ∞. Assume say that c − b = O(1) holds for
infinitely many quadruples. Then there exists a positive integer k such that
c = b+ k holds infinitely often. By Lemma 2.6, it follows that k ∈ {2, 4} and
b is even. If k = 2, then by Lemma 2.1 applied several times, it follows that
(a, b, c, d) = (a, a + 2, a + 4, a + 6), which contradicts the results of Dujella
[3] and Jones [12]. Thus, we must have c = b + 4. Consider the following
equations

FaFb + 1 = x2 and FaFb+4 + 1 = y2
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with some integers x and y. Multiplying the two relations above we get

F 2
aFbFb+4 + Fa(Fb + Fb+4) + 1 = (xy)2.

Since FbFb+4 = F 2
b+2 ± 1 and Fb+4 + Fb = 3Fb+2, we get

(xy)2 = F 2
a (F

2
b+2 ± 1) + 3FaFb+2 + 1

=

(

FaFb+2 +
3

2

)2

−
(

5

4
∓ F 2

a

)

,

so
∓4F 2

a + 5 = (2FaFb+2 + 3)2 − 4(xy)2

= (2FaFb+2 + 3− 2xy)(2FaFb+2 + 3 + 2xy).

The absolute value of the right–hand side is ≥ 2FaFb+2 + 3 + 2xy ≫ αa+b,
(because 2FaFb+2 + 3− 2xy is a nonzero integer), while of the left–hand side
is ≪ α2a. We thus get that

α2a ≫ αa+b,

showing that b−a = O(1). By Lemma 2.6 again, it follows that b−a ∈ {2, 4}
with finitely many exceptions. The case b = a+2 leads, via Lemma 2.1 applied
again several times, to the situation (a, b, c, d) = (a, a+ 2, a+4, a+6), which
we already saw that it is impossible, while the situation b = a + 4 together
with c = b+ 4 = a+ 8, leads to

FaFa+8 + 1 = �,

which, by Lemma 2.6, can have only finitely many solutions a. Thus, c− b →
∞. Notice that d was not used in the above argument (we only worked with
the triple {Fa, Fb, Fc}). Thus, the same argument implies that d− c → ∞ by
working with the triple {Fb, Fc, Fd} instead of the triple {Fa, Fb, Fc}.

Next assume that c ≥ 4b+ 15 infinitely often. Then

Fc ≥ F4b+15 = F16F4b + F15F4b−1 > 722F4b > 722F 4
b ,

so, by Lemma 2.3, it follows that the Diophantine quadruple {Fa, Fb, Fc, Fd}
is regular. Hence,

Fd = Fa + Fb + Fc + 2FaFbFc + 2
√

(FaFb + 1)(FbFc + 1)(FaFc + 1).

Since Fm =
αm

√
5
(1 + o(1)) as m → ∞, and a → ∞, we get

αd

√
5
(1 + o(1)) =

4

53/2
αa+b+c(1 + o(1)),

showing that
∣

∣

∣

∣

αd−a−b−c − 4

5

∣

∣

∣

∣

= o(1), as a → ∞.

Thus, αd−a−b−c = 4/5, which is impossible because 4/5 does not belong to
the multiplicative group generated by α.
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Hence, c ≤ 4b+14 holds with finitely many exceptions. Thus, we arrived
at the scenario where

FbFc + 1 = x2

has infinitely many integer solutions (b, c, x) with b < c ≤ 4b + 14. Now the
Corvaja-Zannier method based on the Subspace Theorem (see [2]) leads to
the conclusion that there exists a line parametrized as

b = r1n+ s1, c = r2n+ s2

for positive integers r1, r2 and integers s1, s2, such that for infinitely many
positive integers n, there exists an integer vn such that

Fr1n+s1Fr2n+s2 + 1 = v2n.

We sketch the details of this deduction in the appendix. See also, for example,
[5, 6] for completely worked out instances of this machinery. The condition
c ≤ 4b+ 14 implies r2 ≤ 4r1. The condition c > b together with the fact that
c− b → ∞, implies that r2 > r1. By writing s1 = r1q + s′1 with q = ⌊s1/r1⌋
and s′1 ∈ {0, 1, . . . , r1 − 1} and making the linear shift n 7→ n + ⌊s1/r1⌋,
we may assume that s1 ∈ {0, 1, . . . , r1 − 1}. Finally, we may assume that
gcd(r1, r2) = 1 (otherwise, we let δ := gcd(r1, r2) and replace n by δn). We
may also assume that both r1n and r2n are even infinitely often (this is the
case when n is even, for example), so βr1n = α−r1n and βr2n = α−r2n. The
other cases can be dealt with by similar arguments. We now use formula (2.1)
and get

Fr1n+s1Fr2n+s2 + 1 =
1

5
(αr1n+s1 − βr1n+s1)(αr2n+s2 − βr2n+s2) + 1

=:
α−n(r1+r2)

5
Pr1,r2,s1,s2(α

n),

where

Pr1,r2,s1,s2(X) = (αs1X2r1 − βs1 )(αs2X2r2 − βs2) + 5Xr1+r2 .

Let K := Q(
√
5). We thus get that

(3.1) Pr1,r2,s1,s2(α
n) =

(

α−n(r1+r2)/2

√
5

)2

v2n,

infinitely often with some integer vn, and the right–hand side above is a square
in OK for infinitely many n. Thus, the Diophantine equation

y2 = Pr1,r2,s1,s2(x)

has infinitely many solutions (x, y) in OK. In particular, Pr1,r2,s1,s2(X) can
have at most two roots of odd multiplicity by Lemma 2.2. In fact, we shall
show that it has no root of odd multiplicity. Indeed, assume that z0 is some
root of odd multiplicity of Pr1,r2,s1,s2(X). Let D be any positive integer.
Infinitely many of our n will be in the same residue class r modulo D. Thus,
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such n can be written under the form n = Dm+ r. We may then replace X
by XDαr and work with Q(X) := Pr1,r2,s1,s2(X

Dαr). Equation

y2 = Q(x)

still has infinitely many solutions (x, y) in OK (just take in (3.1) positive
exponents n which are congruent to r modulo D), yet Q(X) has at least D
roots of odd multiplicity, namely all the roots of XDαr − z0. Since D is
arbitrary (in particular, it can be taken to be any integer larger than 2), we
conclude that this is possible only when Pr1,r2,s1,s2(X) has all its roots of even
multiplicity, so it is associated to the square of a polynomial in OK[X ]. So,
let us write

Pr1,r2,s1,s2(X) = γ(X2r1+2r2 + γ1X
2r2 + γ2X

r1+r2 + γ3X
2r1 + γ4)

for some nonzero coefficients γ, γ1, γ2, γ3, γ4. Since r1 < r2, all the above
monomials are distinct. Write Pr1,r2,s1,s2(X) = γR(X)2 for some monic poly-
nomial R(X) ∈ K[X ] and let us identify some monomials in R(X). Certainly,
R(0) 6= 0. Further, degR(X) = r1 + r2 and the last nonzero monomial in
R(X) is certainly X2r1. Hence, we get

Pr1,r2,s1,s2(X) = γ(Xr1+r2 + · · ·+ δ1X
2r1 + δ0)

2,

for some nonzero coefficients δ0, δ1 which can be computed, up to sign, in
terms of γ, γ3, γ4. Assume first that R(X) does not have other monomials.
Then

γR(X)2 = γ(X2r1+2r2 + 2δ1X
3r1+r2 + δ21X

4r1

+ 2δ0X
r1+r2 + 2δ0δ1X

2r1 + δ20).

The second leading monomial above is X3r1+r2 and matching it with the
second leading monomial in Pr1,r2,s1,s2(X), which is X2r2 , we get r2 = 3r1.
Hence, since gcd(r1, r2) = 1, we get (r1, r2) = (1, 3).

Assume next that R(X) contains monomials of intermediary degrees be-
tween r1 + r2 and 2r1. Let the leading one of them be of degree e. Thus,

R(X) = Xr1+r2 + δXe + · · ·+ δ1X
2r1 + δ0,

with some nonzero coefficient δ. Then the second leading monomial of γR(X)2

isXr1+r2+e and matching that with the second leading monomial appearing in
Pr1,r2,s1,s2(X) which isX2r2 , we get that r1+r2+e = 2r2, therefore e = r2−r1.
The condition e > 2r1 yields r2 > 3r1. Now let us look at X2e. It might
appear with nonzero coefficient in R(X)2, or not. If it does, its degree must
match the degree of one of the monomials of a lower degree in Pr1,r2,s1,s2(X),
which are Xr1+r2 or X2r2 . We thus get 2e = 2r2− 2r1 ∈ {r1+ r2, 2r2}, which
give r2 = 3r1 or r2 = 2r1, respectively, none of which is possible since we just
established that r2 > 3r1. So, X2e cannot appear in R(X)2. Well, that is
only possible if R(X) itself contains with a nonzero coefficient λ the monomial
Xf such that δ2X2e appearing in R(X)2 is eliminated by the cross term
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2λXr1+r2+f of R(X)2. Comparing degrees we get r1+r2+f = 2e = 2r2−2r1,
so f = r2 − 3r1. However, since f ≥ 2r1, we get r2 − 3r1 ≥ 2r1, so r2 ≥ 5r1,
a contradiction since r2 ≤ 4r1. Hence, this case cannot appear.

Thus, the only possibility is (r1, r2) = (1, 3). Since r1 = 1, it follows that
s1 = 0. Thus,

Pr1,r2,s1,s2(X) = P1,3,0,s2(X) = (X2 − 1)(αs2X6 − βs2 ) + 5X4

= α−s2((X2 − 1)(α2s2X6 − (−1)s2) + 5αs2X4).

We thus took

Pζ(X,Y ) = (X2 − 1)(Y 2X6 − ζ) + 5Y X4 for ζ ∈ {±1}.
We computed the derivative of Pζ(X,Y ) with respect to X and computed the
resultant, with respect to the variable X , of this polynomial with Pζ(X,Y ).
We got

Qζ(Y ) := ResX

(

Pζ(X,Y ),
∂Pζ

∂X
(X,Y )

)

.

So, the roots of Qζ(Y ) are exactly the values of Y for which Pζ(X,Y ) has a
double root as a polynomial in X . It turns out when ζ = 1, the only roots
of Q1(Y ) are zero, and the roots of an irreducible polynomial of degree 4, so
such roots are not of the form αs2 for some integer exponent s2. However,
when ζ = −1, we have that

Q−1(Y ) = −256Y 12(Y 2 − 29Y − 1)2(27Y 2 − 527Y − 27)2,

and we recognize that α7 and β7 are roots of Q−1(Y ). The factor 27Y 2 −
527Y −27 has roots which are not algebraic integers, so they cannot be powers
of α of integer exponent. Thus, the only possibilities are s2 ∈ {±7}. However,

P−1(X,α7) = (X2 − β4)2G(X),

where

G(X) = α14X4 − (α13 + α9)X2 − α8

is an irreducible polynomial of degree 4 in K[X ]. Replacing α7 by β7 above
gives the conjugate of P−1(X

7, α7) in K[X ]. Thus, there is no instance in
which Pr1,r2,s1,s2(X) has all its roots of even multiplicity, which finishes the
proof.

Appendix

Here, we prove the following lemma.

Lemma A.1. Assume that there are infinitely many triples of positive
integers (b, c, x) with b < c ≤ 4b+ 14 such that

(A.1) FbFc + 1 = x2.
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Then there exist integers r1 > 0, r2 > 0, s1, s2 such that for infinitely many
positive integers n there is an integer vn with

Fr1n+s1Fr2n+s2 + 1 = v2n.

Proof. Since there are infinitely many values for the triple (b, c, x), we
may assume that the parities of b and c are fixed. We also assume that b is
large. Let ζ = (−1)b, η = (−1)c. We take square roots in (A.1) getting

x =
α(b+c)/2

√
5

Fb,c(1/α),

where

Fb,c(z) =
√

(1− ζz2b)(1 − ηz2c) + 5zb+c.

We expand Fb,c(z) in Taylor series around the origin getting

Fb,c(z) = 1 +
1

2
(−ηz2b − ηz2c + ηζz2b+2c + 5zb+c) + · · ·

+

(

1/2

k

)

(−ζz2b − ηz2c + ηζz2b+2c + 5zb+c)k + · · ·

=
∑

i,j≥0

Ci,jz
ib+jc.

We separate in the above formula the terms with i+ j ≤ 5. We thus write

(A.2)

∣

∣

∣

∣

∣

∣

x− α(b+c)/2

√
5

∑

i+j≤5

Ci,jα
−ib−jc

∣

∣

∣

∣

∣

∣

=
α(b+c)/2

√
5

∣

∣

∣

∣

∣

∣

∑

i+j≥6

Ci,jα
−ib−jc

∣

∣

∣

∣

∣

∣

.

We estimate the right-hand side of (A.2). Note that the Taylor expansion of
Fb,c(z) comes from the Taylor expansion of

√
1 + w =

∑

k≥0

(

1/2

k

)

wk,

with w := −ζz2b − ηz2c + ζηz2b+2c + 5zb+c. The sum of the absolute values
of the coefficients of w (as a polynomial in z) is ≤ 10. It thus follows easily,

using |
(

1/2
k

)

| < 1, that |Ci,j | < 10i+j. Since b < c ≤ 4b + 14, it follows, from
the above remarks, that the size of the right–hand side in (A.2) above is

(A.3) ≪ α5b/2

∣

∣

∣

∣

∣

∣

∑

k≥6

∑

i+j=k

Ci,jα
−ib−jc

∣

∣

∣

∣

∣

∣

≪ α5b/2
∑

k≥6

k2
(

10

αb

)k

≪ α−7b/2.

The above calculation is justified for b large because in this case αb > 10, so
the above series is bounded by the second derivative of the geometric series
in 10/αb. We will apply the subspace theorem with the following data. We
assume b+ c is even, for simplicity. The case when b+ c is odd can be treated
similarly. We take K = Q(

√
5). This is a real quadratic fields with two
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infinite places |•|+ and |•|− given by |y|+ = |σ(y)|1/2 and |y|− = |τ(y)|1/2,
where σ and τ are the two embeddings of K in R given by σ(

√
5) =

√
5 and

τ(
√
5) = −

√
5, respectively. We take S = {+,−} to be the set consisting of

the two infinite places of K. We take N = 22 and define the following 2N
linear forms in N -variables. Observe that there are

(

7
2

)

= 21 pairs (i, j) with
i+ j ≤ 5, namely

(A.4)

(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (1, 0),

(1, 1), (1, 2), (1, 3), (1, 4), (2, 0), (2, 1), (2, 2), (2, 3),

(3, 0), (3, 1), (3, 2), (4, 0), (4, 1), (5, 0).

We take

x = (x0, xi,j : i+ j ≤ 5),

where we label the last 21 variables of x as in (A.4). As for the linear forms,
we take

L0,+(x) = x0 −
∑

i+j≤5

Ci,jxi,j , L0,−(x) = x0, Li,j,±(x) = xi,j , i+ j ≤ 5.

We compute the double product

(A.5) P = |L0,+(x)|+|L0,−(x)|−
∏

i+j≤5

|Li,j,+(x)|+|Li,j,−(x)|−,

when x0 = x and xi,j =
α(b+c)/2

√
5

α−ib−jc for i + j ≤ 5. Since |•|+ leaves α

unchanged while |•|− maps α to β, it follows that
∏

i+j≤5

|Li,j,+(x)|+|Li,j,−(x)|− = 5−21/2 ≪ 1.

Since x ∈ Q, it follows that τ(x) = x, so |L0,−(x)|− = |x|1/2, while since
σ(x) = x and σ(α) = α, it follows that

|L0,+(x)|+ =

∣

∣

∣

∣

∣

∣

x− α(b+c)/2

√
5

∑

i+j≤6

Ci,jα
−ib−jc

∣

∣

∣

∣

∣

∣

1/2

≪ α−7b/4,

by calculations (A.2) and (A.3). Thus, for the product P shown at (A.5)

(A.6) P ≪
√
xα−7b/4 ≪ α(b+c)/4α−7b/4 ≪ α−b/2,

We now compute the height of x. Recall H(x) = H(λx) for every algebraic
number λ, and that if the components of x are algebraic integers, then

|x|+ = max{|xj |+; 1 ≤ j ≤ N}, |x|− = max{|xj |−; 1 ≤ j ≤ N},
and

H(x) = max{1, |x|+} ·max{1, |x|−}.
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For us, the components of
√
5x are algebraic integers, so

(A.7)
|x|+ ≪ x1/2 ≪ α5b/4,

|x|− ≪ α(5c−(b+c)/2)/2 ≪ α(9c−b)/4 ≪ α35b/4,

so

(A.8) H(x) ≪ α10b.

Thus, from (A.6) and (A.8), we get that

(A.9) |L0,+(x)+|L0,−(x)|−
∏

i+j≤5

|Li,j,+(x)|+|Li,j,−(x)|− ≪ H(x)−1/20.

It follows, by the subspace theorem, that there exist only finitely many hyper-
planes in KN containing the solutions x of the above inequality (A.9). That

is, there are finitely many nonzero many vectors c(λ) = (c
(λ)
1 , . . . , c

(λ)
N ) for

λ = 1, . . . ,M , such that any solution x of (A.9) satisfies

(A.10)

N
∑

i=1

c
(λ)
i xi = 0 for some λ ∈ {1, . . . ,M}.

Assume that our x satisfies one of the equations (A.10). We distinguish two
cases.

Case 1. c
(λ)
1 = 0. This means that the unknown x0 = x is not involved

in (A.10). In this case, the only variables involved are xi,j for i + j ≤ 5, so
equation (A.10) is of the form

P (αb, αc) = 0,

where

P (X,Y ) =
∑

i+j≤5

Di,jX
iY j

is not the zero polynomial. This equation is an S-unit equation, where S is
the multiplicative subgroup generated by α in K. As such, by the theorem
on the finiteness of the solutions to nondegenerate S-unit equations, it has
finitely many projective solutions. In particular, if we take (i, j) 6= (i1, j1) such
that Di,j 6= 0 and Di1,j1 6= 0 (which must exist, otherwise P (X,Y ) is just a
monomial, so P (αb, αc) = 0 has no positive integer solution (b, c) whatsoever),
then αib+jc/αi1b+j1c takes only finitely many values. Thus, (i−i1)b+(j−j1)c
takes only finitely many values. Thus, (b, c) is a point on one of finitely many
lines. Since there are infinitely many possibilities for (b, c), we conclude that
there is some line containing infinitely many of them.

Case 2. c
(λ)
1 6= 0. In this case, we can express

(A.11) x0 = −
N
∑

i=2

(c
(λ)
i /c

(λ)
1 )xi,j
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using formula (A.10) and insert this into

(A.12) x2
0 = FbFc + 1 =

1

5
(αb − ζα−b)(αc − ηα−c) + 1.

Now x0 is linear combination of monomials (of positive or negative degrees)
in (X,Y ) = (αb, αc). If the resulting relation is degenerate (thus, if the above
formula holds identically for all b and c), it then follows that

(X2 − ζ)(Y 2 − η) + 5XY

is associated to a square in K[X,Y ]. Since it is monic of degree 2 in both X
and Y , it follows that we must have a relation of the form

(A.13) (X2 − ζ)(Y 2 − η) + 5XY = (XY + · · ·+ δ)2 in K[X,Y ].

In the right–hand side of (A.13), we cannot have non–constant monomials
different from XY , since otherwise upon squaring we would end up with
monomials of degree at least three different than X2Y 2 which do not exist in
the left–hand side of (A.13). However,

(XY + δ)2 = X2Y 2 + 2δXY + δ2

contains neither X2, nor Y 2, which do appear in the left–hand side of (A.13),
a contradiction. Thus, the relation is nondegenerate, meaning that relation
(A.12) with x0 given by (A.11) yields a relation of the form Q(αb, αc) = 0,
with some nonzero polynomial Q(X,Y ) ∈ K[X,Y ]. As in Case 1, the theorem
on the finiteness of nondegenerate solutions of S-unit equations yields the
conclusion that the point (b, c) belongs to finitely many lines.

Hence, there exists a line containing infinitely many points (b, c). In
particular, there are rational numbers (r1, s1, r2, s2) such that for infinitely
many n, the pair

(b, c) = (r1n+ s1, r2n+ s2)

consists a positive integers (b, c) satisfying equation (A.1) for some integer x
(depending on n). It remains to justify that r1, s1, r2, s2 can be assumed to
be integers. Well, let ∆ be common denominator of r1 and r2. Since there are
infinitely many n, infinitely many of them will be in the same residue class r
(mod ∆). Thus, writing such n as ∆m+ r, we get

(b, c) = ((r1∆)m+ (r1r + s1), (r2∆)m+ (r2r + s2)).

Now m, r1∆, r2∆, b, c are all integers so r1r + s1 and r2r + s2 are also
integers. Replacing (r1, r2) by (r1∆, r2∆) and (s1, s2) by (r1r+ s1, r2r + s2),
we may assume that r1, r2, s1, s2 are integers. Thus,

(A.14) Fr1m+s1Fr2m+s2 + 1

is a square for infinitely many m. Clearly, r1 and r2 are positive. This finishes
the proof of the lemma.
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