ON CERTAIN EQUATION RELATED TO DERIVATIONS ON STANDARD OPERATOR ALGEBRAS AND SEMIPRIME RINGS

Irena Kosi-Ulbl
University of Maribor, Slovenia

Abstract

In this paper we prove the following result, which is related to a classical result of Chernoff. Let X be a real or complex Banach space, let $\mathcal{A}(X)$ be a standard operator algebra on X and let $\mathcal{L}(X)$ be an algebra of all bounded linear operators on X. Suppose we have a linear mapping $D: \mathcal{A}(X) \rightarrow \mathcal{L}(X)$ satisfying the relation $D\left(A^{m+n}\right)=D\left(A^{m}\right) A^{n}+A^{m} D\left(A^{n}\right)$ for all $A \in \mathcal{A}(X)$ and some fixed integers $m \geq 1, n \geq 1$. In this case there exists $B \in \mathcal{L}(X)$, such that $D(A)=A B-B A$ holds for all $A \in \mathcal{F}(X)$, where $\mathcal{F}(X)$ denotes the ideal of all finite rank operators in $\mathcal{L}(X)$. Besides, $D\left(A^{m}\right)=A^{m} B-B A^{m}$ is fulfilled for all $A \in \mathcal{A}(X)$.

Throughout, R will represent an associative ring with center $Z(R)$. Given an integer $n>1$, a ring R is said to be n-torsion free, if $n x=0, x \in R$ implies $x=0$. Recall that a ring R is prime if for $a, b \in R, a R b=(0)$ implies that either $a=0$ or $b=0$, and is semiprime in case $a R a=(0)$ implies $a=0$. Let A be an algebra over the real or complex field and let B be a subalgebra of A. A linear mapping $D: B \rightarrow A$ is called a linear derivation in case $D(x y)=D(x) y+x D(y)$ holds for all pairs $x, y \in B$. In case we have a ring R an additive mapping $D: R \rightarrow R$ is called a derivation if $D(x y)=D(x) y+x D(y)$ holds for all pairs $x, y \in R$ and is called a Jordan derivation in case $D\left(x^{2}\right)=D(x) x+x D(x)$ is fulfilled for all $x \in R$. A derivation D is inner in case there exists $a \in R$, such that $D(x)=a x-x a$ holds for all $x \in R$. Every derivation is a Jordan derivation. The converse is in general not true. A classical result of Herstein ([5]) asserts that any Jordan derivation on a 2 -torsion free prime ring is a derivation. A brief proof

[^0]of Herstein theorem can be found in [1]. Cusack ([4]) generalized Herstein theorem to 2 -torsion free semiprime rings (see also [2] for an alternative proof). Let X be a real or complex Banach space and let $\mathcal{L}(X)$ and $\mathcal{F}(X)$ denote the algebra of all bounded linear operators on X and the ideal of all finite rank operators in $\mathcal{L}(X)$, respectively. An algebra $\mathcal{A}(X) \subset \mathcal{L}(X)$ is said to be standard in case $\mathcal{F}(X) \subset \mathcal{A}(X)$. Let us point out that any standard algebra is prime, which is a consequence of Hahn-Banach theorem.

Let us start with the following result proved by Chernoff ([3]) (see also $[6,7])$.

Theorem A. Let X be a real or complex Banach space and let $\mathcal{A}(X)$ be a standard operator algebra. Let $D: \mathcal{A}(X) \rightarrow \mathcal{L}(X)$ be a linear derivation. In this case D is of the form $D(A)=A B-B A$ for all $A \in \mathcal{A}(X)$ and some $B \in \mathcal{L}(X)$.

It is our aim in this paper to prove the following result which is related to the result mentioned above.

Theorem 1. Let X be a real or complex Banach space and let $\mathcal{A}(X)$ be a standard operator algebra on X. Suppose we have a linear mapping $D: \mathcal{A}(X) \rightarrow \mathcal{L}(X)$ satisfying the relation

$$
D\left(A^{m+n}\right)=D\left(A^{m}\right) A^{n}+A^{m} D\left(A^{n}\right)
$$

for all $A \in \mathcal{A}(X)$ and some fixed integers $m \geq 1, n \geq 1$. In this case there exists $B \in \mathcal{L}(X)$, such that the following statements are fulfilled
(i) $D(A)=A B-B A$ for all $A \in \mathcal{F}(X)$,
(ii) $D\left(A^{m}\right)=A^{m} B-B A^{m}$ for all $A \in \mathcal{A}(X)$.

In the proof of the result above we shall use Herstein theorem and Theorem A.

Proof. We have the relation

$$
\begin{equation*}
D\left(A^{m+n}\right)=D\left(A^{m}\right) A^{n}+A^{m} D\left(A^{n}\right) \tag{1}
\end{equation*}
$$

Let A be from $\mathcal{F}(X)$ and let $P \in \mathcal{F}(X)$ be a projection with $A P=P A=A$. From the above relation one obtains

$$
D(P)=D(P) P+P D(P)
$$

Right multiplication of the above relation by P gives

$$
\begin{equation*}
P D(P) P=0 \tag{2}
\end{equation*}
$$

Setting $A+\alpha P$ for $A, \alpha \in \mathcal{F}$, in the relation (1) we obtain

$$
\begin{aligned}
& \sum_{i=0}^{m+n}\binom{m+n}{i} D\left(A^{m+n-i}(\alpha P)^{i}\right) \\
&= D\left(\sum_{i=0}^{m}\binom{m}{i} A^{m-i}(\alpha P)^{i}\right)\left(\sum_{i=0}^{n}\binom{n}{i} A^{n-i}(\alpha P)^{i}\right) \\
&+\left(\sum_{i=0}^{m}\binom{m}{i} A^{m-i}(\alpha P)^{i}\right) D\left(\sum_{i=0}^{n}\binom{n}{i} A^{n-i}(\alpha P)^{i}\right) .
\end{aligned}
$$

Collecting all expressions with coefficient α^{m+n-2} and all expressions with coefficient α^{m+n-1} from the above relation gives

$$
\begin{gathered}
\binom{m+n}{m+n-2} D\left(A^{2}\right)-\binom{m}{m-2}\binom{n}{n} D\left(A^{2}\right) P-\binom{m}{m-1}\binom{n}{n-1} D(A) A \\
\quad-\binom{m}{m}\binom{n}{n-2} D(P) A^{2}-\binom{m}{m-2}\binom{n}{n} A^{2} D(P) \\
\quad-\binom{m}{m-1}\binom{n}{n-1} A D(A)-\binom{m}{m}\binom{n}{n-2} P D\left(A^{2}\right)=0,
\end{gathered}
$$

and

$$
\begin{gathered}
\binom{m+n}{m+n-1} D(A)-\binom{m}{m-1}\binom{n}{n} D(A) P-\binom{m}{m}\binom{n}{n-1} D(P) A \\
-\binom{m}{m-1}\binom{n}{n} A D(P)-\binom{m}{m}\binom{n}{n-1} P D(A)=0
\end{gathered}
$$

respectively. The above equations reduce into

$$
\begin{align*}
& (m+n)(m+n-1) D\left(A^{2}\right)=m(m-1) D\left(A^{2}\right) P+n(n-1) P D\left(A^{2}\right) \\
& +2 m n(D(A) A+A D(A))+m(m-1) A^{2} D(P)+n(n-1) D(P) A^{2} \tag{3}
\end{align*}
$$

and

$$
\begin{equation*}
(m+n) D(A)=m D(A) P+n D(P) A+m A D(P)+n P D(A) \tag{4}
\end{equation*}
$$

respectively. Applying the relation (2) and the fact that $A P=P A=A$, we have

$$
\begin{equation*}
P D(P) A=(P D(P) P) A=0 . \tag{5}
\end{equation*}
$$

Similarly one obtains that

$$
\begin{equation*}
A D(P) P=0 \tag{6}
\end{equation*}
$$

Right multiplication of the relation (4) by P and using (6) we obtain

$$
\begin{equation*}
D(A) P=D(P) A+P D(A) P \tag{7}
\end{equation*}
$$

Similarly one obtains using (5)

$$
\begin{equation*}
P D(A)=A D(P)+P D(A) P \tag{8}
\end{equation*}
$$

Subtracting the relation (8) from the relation (7) we obtain

$$
\begin{equation*}
D(A) P-P D(A)-D(P) A+A D(P)=0 \tag{9}
\end{equation*}
$$

Using the relation (9) in the relation (4) we obtain

$$
\begin{equation*}
D(A)=D(P) A+P D(A)=D(A) P+A D(P) \tag{10}
\end{equation*}
$$

From the above relation one obtains

$$
\begin{equation*}
D\left(A^{2}\right)=D(P) A^{2}+P D\left(A^{2}\right)=D\left(A^{2}\right) P+A^{2} D(P) \tag{11}
\end{equation*}
$$

Using the above relation in the relation (3) we obtain after some calculation

$$
\begin{equation*}
D\left(A^{2}\right)=D(A) A+A D(A) \tag{12}
\end{equation*}
$$

for any $A \in \mathcal{F}(X)$. From the relation (4) one can conclude that $D(A) \in \mathcal{F}(X)$ for any $A \in \mathcal{F}(X)$. It means that D is a mapping which maps $\mathcal{F}(X)$ into itself. According to the relation (12) we have therefore a Jordan derivation on $\mathcal{F}(X)$. As we have mentioned at the beginning of the paper any standard algebra is prime, which is a consequence of Hahn-Banach theorem. Since $\mathcal{F}(X)$ is prime all the assumptions of Herstein theorem are fulfilled and one can conclude that D is a derivation. Applying Theorem A one can conclude that D is of the form

$$
\begin{equation*}
D(A)=A B-B A \tag{13}
\end{equation*}
$$

for all $A \in \mathcal{F}(X)$ and some $B \in \mathcal{L}(X)$. This proves the statement (i) of the theorem. It remains to prove the statement (ii). Let us introduce $D_{1}: \mathcal{A}(X) \rightarrow \mathcal{L}(X)$ by $D_{1}(A)=A B-B A$ and consider $D_{0}=D-D_{1}$. The mapping D_{0} is, obviously, linear and satisfies the relation (1). Besides D_{0} vanishes on $\mathcal{F}(X)$. Let $A \in \mathcal{A}(X)$, let $P \in \mathcal{F}(X)$, be a one-dimensional projection and $S=A+P A P-(A P+P A)$. Since, obviously, $S-A \in \mathcal{F}(X)$, we have $D_{0}(S)=D_{0}(A)$. Besides $S P=P S=0$. We have therefore the relation

$$
\begin{equation*}
D_{0}\left(S^{m+n}\right)=D_{0}\left(S^{m}\right) S^{n}+S^{m} D_{0}\left(S^{n}\right) \tag{14}
\end{equation*}
$$

Applying the relation (14) and the fact that $S P=P S=0, D_{0}(P)=0$ we obtain

$$
\begin{aligned}
& D_{0}\left(S^{m}\right) S^{n}+S^{m} D_{0}\left(S^{n}\right)=D_{0}\left(S^{m+n}\right)=D_{0}\left(S^{m+n}+P\right) \\
& \quad=D_{0}\left((S+P)^{m+n}\right)=D_{0}\left((S+P)^{m}\right)(S+P)^{n}+(S+P)^{m} D_{0}\left((S+P)^{n}\right) \\
& \quad=D_{0}\left(\left(S^{m}+P\right)\left(S^{n}+P\right)+\left(S^{m}+P\right) D_{0}\left(S^{n}+P\right)\right. \\
& \quad=D_{0}\left(S^{m}\right) S^{n}+D_{0}\left(S^{m}\right) P+S^{m} D_{0}\left(S^{n}\right)+P D_{0}\left(S^{n}\right)
\end{aligned}
$$

We have therefore

$$
\begin{equation*}
D_{0}\left(A^{m}\right) P+P D_{0}\left(A^{n}\right)=0 \tag{15}
\end{equation*}
$$

Putting $2 A$ for A in the above relation one obtains

$$
\begin{equation*}
2^{m-n} D_{0}\left(A^{m}\right) P+P D_{0}\left(A^{n}\right)=0 \tag{16}
\end{equation*}
$$

Combining the relations (15) and (16) we arrive at

$$
D_{0}\left(A^{m}\right) P=0
$$

Since P is an arbitrary one-dimensional projection, it follows from the above relation that $D_{0}\left(A^{m}\right)=0$ for any $A \in \mathcal{A}(X)$. Thus we have

$$
0=D_{0}\left(A^{m}\right)=D\left(A^{m}\right)-D_{1}\left(A^{m}\right),
$$

which means that

$$
D\left(A^{m}\right)=D_{1}\left(A^{m}\right)=A^{m} B-B A^{m}
$$

for all $A \in \mathcal{A}(X)$. The proof of the theorem is therefore complete.
We proceed with the following conjecture.
COnJecture 2. Let R be a semiprime ring with suitable torsion restrictions and let $D: R \rightarrow R$ be an additive mapping satisfying the relation

$$
D\left(x^{m+n}\right)=D\left(x^{m}\right) x^{n}+x^{m} D\left(x^{n}\right)
$$

for all $x \in R$ and some fixed integers $m \geq 1, n \geq 1$. In this case D is a derivation.

We are going to prove the above conjecture in case a ring has the identity element.

ThEOREM 3. Let $m \geq 1, n \geq 1$ be some fixed integers and let R be a $2, m$ and n-torsion free semiprime ring with the identity element. Suppose we have an additive mapping $D: R \rightarrow R$ satisfying the relation

$$
D\left(x^{m+n}\right)=D\left(x^{m}\right) x^{n}+x^{m} D\left(x^{n}\right)
$$

for all $x \in R$. In this case D is a derivation.
Proof. We have the relation

$$
\begin{equation*}
D\left(x^{m+n}\right)=D\left(x^{m}\right) x^{n}+x^{m} D\left(x^{n}\right), \quad x \in R . \tag{17}
\end{equation*}
$$

From the above relation it follows immediately that $D(e)=0$, where e stands for the identity element. With the same approach as in the proof of Theorem 1 we obtain from the relation (17)

$$
\begin{aligned}
& \binom{m+n}{m+n-2} D\left(x^{2}\right)=\binom{m}{m-2}\binom{n}{n} D\left(x^{2}\right)+\binom{m}{m-1}\binom{n}{n-1} D(x) x \\
& +\binom{m}{m-1}\binom{n}{n-1} x D(x)+\binom{m}{m}\binom{n}{n-2} D\left(x^{2}\right), \quad x \in R
\end{aligned}
$$

From the above relation we obtain after some calculation

$$
\begin{equation*}
D\left(x^{2}\right)=D(x) x+x D(x), \quad x \in R . \tag{18}
\end{equation*}
$$

In the procedure mentioned above we used the fact that R is $2, m$ and n-torsion free. The relation (18) means that D is a Jordan derivation. According to Cusack's generalization of Herstein theorem D is a derivation. The proof of the theorem is complete.

References

[1] M. Brešar and J. Vukman, Jordan derivations on prime rings, Bull. Austral. Math. Soc. 37 (1988), 321-322.
[2] M. Brešar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1988), 1003-1006.
[3] P. R. Chernoff, Representations, automorphisms, and derivations of some operator algebras, J. Functional Analysis 12 (1973), 275-289.
[4] J. M. Cusack, Jordan derivations on rings, Proc. Amer. Math. Soc. 53 (1975), 321-324.
[5] I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104-1110.
[6] N. Širovnik and J. Vukman, On functional equation related to derivations and bicircular projections, Oper. Matrices 8 (2014), 849-860.
[7] J. Vukman, On automorphisms and derivations of operator algebras, Glas. Mat. Ser. III 19(39) (1984), 135-138.
I. Kosi-Ulbl

Faculty of Mechanical Engineering
University of Maribor
Smetanova 17, 2000 Maribor
Slovenia
E-mail: irena.kosi@um.si
Received: 23.11.2016.
Revised: 15.3.2017.

[^0]: 2010 Mathematics Subject Classification. 16N60, 39B05, 46K15.
 Key words and phrases. Prime ring, semiprime ring, Banach space, standard operator algebra, derivation, Jordan derivation.

