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Abstract. In this paper we examine the relationships between cu-
bic structures, totally symmetric medial quasigroups, and commutative
groups. We prove that the existence of a cubic structure on the given set
is equivalent to the existence of a totally symmetric medial quasigroup on
this set, and it is equivalent to the existence of a commutative group on
this set. We give also some interesting geometric examples of cubic struc-
tures. By means of these examples, each theorem that can be proved for an
abstract cubic structure has a number of geometric consequences. In the
final part of the paper, we prove also some simple properties of abstract
cubic structures.

By studying different curves of the third and fourth order and some other
similar geometric problems one often finds an abstract structure (see [1–3,10,
11]). For this reason, we consider that it is useful to study these structures,
which will be called cubic structures. In this paper we mention a number of
geometric models of this structures. Cubic structures could be also very useful
for studying some types of configurations of points and lines (see [4–7]).

1. Cubic structures, TSM-quasigroups and commutative groups

Let Q be a nonempty set, whose elements are called points, and let [ ] ⊆
Q3 be a ternary relation onQ. Such a relation and the ordered pair (Q, [ ]) will
be called a cubic relation and a cubic structure, respectively, if the following
properties are satisfied:

C1. For any two points a, b ∈ Q there is a unique point c ∈ Q such that
[a, b, c], i.e., (a, b, c) ∈ [ ].
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C2. The relation [ ] is totally symmetric, i.e., [a, b, c] implies [a, c, b], [b, a, c],
[b, c, a], [c, a, b] and [c, b, a].

C3. [a, b, c], [d, e, f ], [g, h, i], [a, d, g] and [b, e, h] imply [c, f, i], which can be
clearly written in the form of the following table

a b c

d e f

g h i

In property C2, it is enough to require that [a, b, c] implies e.g. [b, a, c]
and [c, b, a].

Let Q be a nonempty set and · a binary operation on Q. The ordered pair
(Q, ·) is a quasigroup if for each a, b ∈ Q there exist unique elements x and y

such that ax = b and ya = b. The quasigroup (Q, ·) is medial (in the older
literature it was also termed entropic, alternative, bisymmetric, Abelian) if
the following identity is valid

(1.1) ab · cd = ac · bd,

and totally symmetric if it satisfies the identities

ab · b = a,(1.2)

a · ab = b,(1.3)

where e.g. ab · cd is a shorter notation for (ab)(cd). A totally symmetric
quasigroup is commutative, i.e., the identity

(1.4) ab = ba

holds, because we get

ab
(1.3)
= (ba)(ba · a) · b

(1.2)
= (ba · b)b

(1.2)
= ba.

A totally symmetric medial quasigroup will be called a TSM-quasigroup
for short. According to (1.1) and (1.4), it follows that a TSM-quasigroup
satisfies the identity ab · cd = ef · gh, where (e, f, g, h) is any permutation of
the set {a, b, c, d}.

Theorem 1.1. If the ternary relation [ ] and the binary operation · on
the set Q are connected by the equivalence

(1.5) [a, b, c] ⇔ ab = c,

then (Q, [ ]) is a cubic structure if and only if (Q, ·) is a TSM–quasigroup.
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Proof. Let (Q, [ ]) be a cubic structure and let a, b ∈ Q be any elements.
If ab = c, then (1.5) implies [a, b, c]. By C2, we get [c, b, a] and [a, c, b], and,
according to (1.5), this gives cb = a and ac = b, i.e., ab ·b = a, a ·ab = b, so we
get the identities (1.2) and (1.3). According to C1 and C2, for each a, b ∈ Q

there are unique elements x, y ∈ Q such that [a, x, b] and [y, a, b], i.e., owing
to (1.5), such that ax = b and ya = b. Let a, b, c, d ∈ Q be any elements and
let

(1.6) ab = e, cd = f, ac = g, bd = h, gh = i.

Based on (1.5), we get that [a, b, e], [c, d, f ], [a, c, g], [b, d, h], and [g, h, i], and
from the table

a b e

c d f

g h i

we acquire [e, f, i], and by (1.5), the equality ef = i. So, because of (1.6), we
obtain

ab · cd = ef = i = gh = ac · bd,
showing that (Q, ·) is a TSM–quasigroup.

Conversely, assume that (Q, ·) is a TSM–quasigroup. Then the property
C1 follows from the fact that · is a binary operation. For the proof of property
C2 it is enough to show that [a, b, c] implies [b, a, c] and [c, b, a]. Based upon
(1.5), this means that it is necessary to prove that ab = c implies ba = c and
cb = a, but this follows from the identities (1.4) and (1.2). For the proof of
property C3, owing to (1.5), it is necessary to prove that ab = c, de = f ,
gh = i, ad = g, and be = h imply cf = i. However, because of (1.1), we have

cf = ab · de = ad · be = gh = i.

In [1], it is proved that a TSM-quasigroup (Q, ·) can be obtained from a
commutative group (Q,+) by defining

(1.7) ab = k − a− b,

where k ∈ Q is a fixed element, while the commutative group (Q,+) can be
obtained from a TSM-quasigroup by defining a + b = ab · o, where o ∈ Q

is a fixed element, which becomes the neutral element of this group. So,
each TSM-quasigroup can be obtained from a commutative group. There is
a connection between the elements k and o, which is given by the relation
k = oo.

The equivalence (1.5) and definition (1.7) imply the equivalence

(1.8) [a, b, c] ⇔ a+ b+ c = k,

where k ∈ Q is a fixed element. These results immediately imply the following
theorem.
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Theorem 1.2. Let [ ] be a ternary relation on the set Q. (Q, [ ]) is a cubic
structure if and only if there is a commutative group (Q,+) and an element
k ∈ Q such that the equivalency (1.8) holds.

Let us mention that in [11], a medial quasigroup (Q, ·) is studied as a C-
structure in which, instead of the total symmetry property, a weaker property
of semi-symmetry given by identities ab · a = b and a · ba = b are satisfied,
and with no commutative property.

2. Examples of cubic structures

There is a number of geometrical examples of cubic structures. We shall
mention some of them.

Example 2.1. Let Q be the set of all nonsingular points of the planar
cubic curve Γ, and for three given points a, b, c ∈ Q let the statement ab = c

mean that the points a, b, and c lie on the same line, while in the case when
two of these points coincide, we take that this line touches the cubic curve Γ
at this point taken twice, and if the considered line is tangent to the curve Γ
at its inflection point a, then we take that aa = a. In [1], it is proved that
(Q, ·) is a TSM-quasigroup. It is a natural consequence of the well-known fact
(see, e.g., [10, pp. 89–94]) that in the set Q, point addition can be defined such
that (Q,+) is a commutative group and then collinearity of three points from
the set Q is equivalent to the equality a + b + c = k, where k ∈ Q is a fixed
point. If we define the ternary relation [ ] such that [a, b, c] means that the
points a, b, c ∈ Q are collinear (with the above convention about the touching
line and curve), then Theorem 1.2 implies that (Q, [ ]) is a cubic structure.

By duality of this example we get one more example, in which there is a
curve of the third class with the concurrency of triples of the tangents to this
curve.

Example 2.2. Let Γ be a given conic in the Pappian projective plane,
U, V 6∈ Γ two given points on a given straight line p and W ∈ Γ \ p a given
point. Let Ω2 be the two-parametric family of all conics which contain the
points U, V , and W . In [8], it is proved that there is a commutative group
(Γ \ p,+) such that three points A,B,C ∈ Γ \ p lie on a curve from the family
Ω2 if and only if the equality A+B+C = K holds, where K ∈ Γ\p is a fixed
point. Because of Theorem 1.2, it follows that (Γ \ p, [ ]) is a cubic structure
if [A,B,C] means that the points A,B,C ∈ Γ \ p lie on a curve belonging to
the family Ω2.

Example 2.3. Let Γ be a rational circular cubic in the (real or complex)
plane and Ω3 the three-parametric family of all circles not containing the
singular point O of Γ, or let Γ be a rational bicircular quartic and Ω3 the
three-parametric family of all circles and straight lines not containing the
(proper) double point O of Γ. In [9], it is proved that there is a commutative
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group (Γ \ {O},+) such that four points A,B,C,D ∈ Γ \ {O} lie on a curve
from the family Ω3 if and only if the equality A + B + C + D = K holds,
where K ∈ Γ \ {O} is a fixed point.

Now, let D ∈ Γ \ {O} be a fixed point and let Ω2 be the two-parametric
family of all circles (resp. all circles and straight lines) from the family Ω3

which contain the point D. If [A,B,C] means that the points A,B,C ∈ Γ\{O}
lie on a curve from the family Ω2, then (Γ\{O}, [ ]) is again a cubic structure.

Examples 2.2 and 2.3 cover many interesting models of different circular
cubics or bicircular quartics, and concyclity or collinearity of points on these
curves.

Prior to giving some more interesting examples of cubic structure, let us
prove a few (mostly well-known) lemmas.

Lemma 2.4. Let Q be the set of points of the rectangular hyperbola Γ
with the equation xy = 1. The points A,B,C,D ∈ Q form an orthocentric
quadruple of points (i.e., each of these points is the orthocenter of the triangle
formed by the remaining points) if and only if abcd = −1, where a, b, c, and d

are the abscissas of the points A, B, C, and D.

Proof. Let

A =

(

a,
1

a

)

, B =

(

b,
1

b

)

, C =

(

c,
1

c

)

be any three points on the hyperbola Γ. The height from the vertex A of the
triangle ABC has the equation

y −
1

a
= bc(x− a)

and it meets again the hyperbola Γ at the point D =
(

d, 1
d

)

satisfying

1

d
−

1

a
= bc(d− a),

which implies abcd = −1. The symmetry in a, b, and c of this equality implies
that D is the orthocenter of the triangle ABC, and because of the symmetry
in a, b, c, and d, we get the statement of the lemma.

Lemma 2.5. Let Q be the set of points of the parabola Γ with the para-
metric equation

(2.1) x = t, y = t2.

Normal lines to the parabola Γ at the points A,B,C ∈ Q have a common point
if and only if a + b + c = 0, where a, b, and c are the values of parameter t

associated with points A, B, and C.



252 V. VOLENEC, Z. KOLAR-BEGOVIĆ AND R. KOLAR-ŠUPER

Proof. The equation of the normal line to the parabola (2.1) at the point
with parameter t is x+ 2ty − (2t3 + t) = 0. Normal lines at the points A, B,

and C have a common point (p, q) if and only if a, b, and c are the solutions
in t of the equation 2t3− (2q+1)t−p = 0, i.e., if and only if a+ b+ c = 0.

Lemma 2.6. Let Q be the set of points of the deltoid (i.e., a hypocycloid
with three cusps) Γ with parametric equations

(2.2) x = 2 cos t+ cos 2t, y = 2 sin t− sin 2t.

Tangent lines to the curve Γ at points A,B,C ∈ Q have a common point if
and only if

(2.3) a+ b+ c ≡ 0 (mod 2π),

where a, b, and c are values of the parameter t associated with the points A, B,

and C.

Proof. If x′ = dx
dt
, y′ = dy

dt
, then the slope of tangent line to the deltoid

(2.2) at the point with parameter t is given by

y′

x′
=

2 cos t− 2 cos 2t

−2 sin t− 2 sin 2t
= − tan

t

2
.

Equation of the tangent line can be written as

x sin
t

2
+ y cos

t

2
− sin

3t

2
= 0.

If we set u = tan t
2 , then the equation of this tangent line becomes

(2.4) (u2 + 1)(ux+ y) + u(u2 − 3) = 0.

Let u1, u2, and u3 be the values of parameter u associated with the points
A,B, and C, i.e., let u1 = tan a

2 , u2 = tan b
2 , and u3 = tan c

2 . Then

(2.5) tan
a+ b+ c

2
=

s1 − s3

1− s2
,

where s1, s2, and s3 are the elementary symmetric functions of u1, u2, and u3.
Tangent lines at A,B, and C have a common point (p, q) if and only if the
parameters u1, u2, and u3 are the solutions to the equation

(p+ 1)u3 + qu2 + (p− 3)u+ q = 0,

which follows from (2.4) with x = p, y = q. This is a cubic equation and
therefore from each point of the plane there are three tangent lines to the
deltoid Γ. The coefficients at u2 and u0 are equal, so we get s1 = s3 and (2.5)
implies tan a+b+c

2 = 0, which proves (2.3).
Conversely, let (2.3) hold and let the normal lines to the deltoid Γ at A

and B meet at the point P . If C′ is the foot of the third normal line from
the point P to the deltoid Γ and if c′ is the value of parameter of the point
C′ on this deltoid, then, according to the previous proof, we also get that
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tan a+b+c′

2 = 0. These two facts imply c′ = c, i.e. C′ = C, which means that
the normal lines at A, B, and C have a common point.

Lemma 2.7. Let Q be the set of points of the deltoid Γ with parametric
equations (2.2). Normal lines to the curve Γ at points A,B,C ∈ Q have a
common point if and only if

(2.6) a+ b+ c ≡ π (mod 2π),

where a, b, and c are the values of parameter t associated with the points A, B,

and C.

Proof. Based on the initial part of the proof of Lemma 2.6, the slope
of the normal line to the deltoid (2.2) at the point with parameter t equals
cot t

2 . Therefore, the equation of this normal line can be written as

x cos
t

2
− y sin

t

2
− 3 cos

3t

2
= 0.

If we put u = tan t
2 again, then the equation of this normal line becomes

(u2 + 1)(x − uy) + 3(3u2 − 1) = 0. If the normal lines at the points A, B,

and C to the curve Γ have a common point (p, q), then the values u1, u2,
and u3 of the parameter u associated with these points are the solutions to
the equation qu3 − (p+ 9)u2 + qu− (p− 3) = 0, and in addition, the equality
(2.5) also holds. The coefficients at u3 and u are equal, and therefore s2 = 1,
and from (2.5) we get

a+ b+ c

2
≡

π

2
(mod π),

i.e., the statement (2.6).
The converse statement is proved analogously as in Lemma 2.6.

Example 2.8. Let Q be the set of points of the rectangular hyperbola
Γ with the equation xy = 1 (each rectangular hyperbola can be presented in
this way) and define a ternary relation [ ] on Q such that [A,B,C] holds if
and only if ABC is a triangle with orthocenter D, where D ∈ Q is a fixed
point. Based upon Lemma 2.4 and Theorem 1.2, we get that (Q, [ ]) is a
cubic structure. It is necessary to define what is meant to be the orthocenter
of a triangle when some of the vertices coincide, but we will leave this to the
reader.

Example 2.9. Let Q be the set of points of the parabola Γ with para-
metric equations (2.1) and let the points A,B,C ∈ Q satisfy [A,B,C] if and
only if the normal lines to the parabola Γ at A, B, and C have a common
point. Then by Lemma 2.5 and Theorem 1.2, the ordered pair (Q, [ ]) is a
cubic structure.
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Example 2.10. Each deltoid Γ could be (up to similarity) presented by
the parametric equations (2.2). Let Q be the set of points of this deltoid and
let [A,B,C] hold if and only if the tangent lines to the deltoid Γ at A, B,

and C have a common point. Then, according to Lemma 2.6 and Theorem
1.2, (Q, [ ]) is a cubic structure.

Example 2.11. LetQ be the set of points of the deltoid Γ with parametric
equations (2.2) and let [A,B,C] hold if and only if the normal lines to the
deltoid Γ at A, B, and C have a common point. Then (Q, [ ]) is a cubic
structure due to Lemma 2.7 and Theorem 1.2.

Because of the previous examples, each theorem which could be proved
in an abstract cubic structure has a number of geometric consequences. Some
of them are well-known, but there are some new ones as well. [1] presents a
case of a model given in Example 2.1.

3. Simple properties of abstract cubic structures

Let (Q, [ ]) be any cubic structure. Elements of the set Q will be called
points, and the triples of the form [a, b, c], for a, b, c ∈ Q, will be called lines,
although in concrete examples ’points’ can be lines and ’lines’ can be points
or circles, or something else. The same geometrical names, i.e., triangle,
quadrangle, complete quadrangle, etc. will be used in the same way.

According to Theorem 1.1, the proofs of various theorems can be done di-
rectly in the cubic structure itself or in the associated TSM-quasigroup (Q, ·).
We will illustrate this by proving three simple theorems. The reader can easily
conclude which geometrical consequences follow from these theorems in cases
of specific models given in the aforementioned examples.

Theorem 3.1. Let {a1, a2, a3, a4} be a complete quadrangle and let for
each i, j ∈ {1, 2, 3}, i < j, the point bij be such that [ai, aj , bij ]. Then there is
a point c such that [b12, b34, c], [b13, b24, c], and [b14, b23, c].

Proof. According to C1, there is a point c such that [b12, b34, c], and the
remaining two statements follow from C3 based on the following tables:

a1 a3 b13
a2 a4 b24
b12 b34 c

a1 a4 b14
a2 a3 b23
b12 b34 c

Theorem 3.2. If [a, c, e] and [b, d, f ], then [a, x1, x2], [b, x2, x3], [c, x3, x4],
[d, x4, x5], and [e, x5, x6] imply [f, x6, x1].

Proof. According to C1, there is a point y such that [x3, x6, y]. Now,
from the tables
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x4 x5 d

x3 x6 y

c e a

b d f

x3 y x6

x2 a x1

it follows that [d, y, a], and then [f, x6, x1]. In addition to property C3, in
these tables we also used several times the property C2.

Theorem 3.3. Let [a1, a2, a3] and [b1, b2, b3], and for each i, j ∈ {1, 2, 3}
let [ai, bj, cij ]. Then [c11, c22, c33], and also for each i ∈ {1, 2, 3}, j, k ∈
{1, 2, 3} \ {i}, j < k, one has [cii, cjk, ckj ] also holds.

Proof. Because of Theorem 1.1, we get the assumptions a1a2 =
a3, b1b2 = b3 and aibj = cij for each i, j ∈ {1, 2, 3}. Therefore, we get

c11c22 = a1b1 · a2b2
(1.1)
= a1a2 · b1b2 = a3b3 = c33,

ciicjk = aibi · ajbk
(1.1)
= aiaj · bibk = akbj = ckj .
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