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ABSTRACT. In this paper an intrinsic definition of strong shape for
paracompact topological spaces is presented. At first a coherent proximate
net f : X — Y is defined, indexed by finite subsets of normal coverings
of YT and then there is a homotopy between two coherent proximate nets
defined. A definition of composition of classes of homotopies between two
coherent proximate nets f: X — Y and g : Y — Z is given. Then it is
proved that for any other choice of corresponding coverings, a function is
obtained that is in the same class with the previously defined composition.
The strong shape category is obtained, with paracompacta as objects, and
the homotopy classes of coherent proximate nets as morphisms.

1. INTRODUCTION

The shape theory has shown to be more appropriate tool than homotopy
theory when study of spaces with bad local behavior is involved ([2,6-8,
10]). The strong shape theory is a strengthening of shape theory ([3,6]).
The first definition of strong shape for compact metric spaces is given in [9]
by embedding metric compacta in Hilbert cube. In [6, 8] strong shape is
described for topological spaces approximating the space by inverse system of
polyhedra (ANRs). Both approaches follow the corresponding approaches in
shape theory. For equivalence of different approaches for metric compacta we
refer to [6].
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The intrinsic approach to shape does not use any approximation of spaces.
The intrinsic definition of strong shape for compact metric spaces is presented
in [11].

The definition of strong shape in [11] is based on the notion of strong
proximate sequence.

The sequence of pairs (fp, fn,n+1) of functions f, : X — Y and fp nt1 ¢
X x I — Y, is a strong proximate sequence from X to Y, if there exists a
cofinal sequence of finite coverings, V1 > Va > --- of Y, such that for each
natural number n, f, : X — Y, is a V,-continuous function and fy, 41 :
X x I — Y is a homotopy connecting V,,-continuous functions f, : X — Y
and frp41: X X1 =Y.

We say that (fy, fnnt+1) is a strong proximate sequence over (V,,).

If (fn, fnne1) and (f),, fr,n41) are strong proximate sequences from X
to Y, than there exists a cofinal sequence of finite coverings (V,,) such that
(fns fans1) and (fy,, f}, ,11) are strong proximate sequences over (V).

In compact metric space, the existence of cofinal sequence of coverings
Vi &= Vs > ---, allows to define strong shape theory using only homotopies of
second order.

In more general case of paracompact spaces, homotopies of all orders must
be considered. In [13] the construction for (strongly) paracompact spaces is
described. We form all finite sets of coverings of Y, a = {Vo,V1,...,Vn},
having a maximal element (i.e. a covering that refines all other coverings of
that finite set, and is not refined by any other covering of that finite set). The
maximal element is denoted by max a.

Finite sets of coverings with a maximal element are ordered by inclusion,
and this ordering is cofinite, i.e. each a has only finite number of predeces-
sors. This fact allows composition of coherent proximate nets to be defined,
although such definition is technically rather complex. In this way category of
strong shape is obtained for paracompact spaces. In [1] it is shown that strong
shape category of metric compacta is a subcategory of the last category.

2. COHERENT PROXIMATE NETS

Let A" C R", A" = {(t1,ta,...,tn)|1 > 11 >ty > ... > t, > 0} be the
non standard n-simplex.

It is important to note that by a function f : X — Y we do not necessarily
mean continuous function.

Let Y be a paracompact space. We form all finite sets of coverings of Y,
a = {Vo,V1,...,Vn}, having a maximal element (a covering that refines all
other coverings of that finite set, and is not refined by any other covering of
that finite set). The maximal element is denoted by maxa. If a C b, then
max a > maxb.

We define an ordering ”<” by a < b if a C b.
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DEFINITION 2.1. A coherent proximate net f : X — Y consists of func-
tions B
f=1{fua= (ao,ai,...,an),a0 < - <an}
such that each f, : X X A™ =Y is st™ max ag-continuous and is st” ' max ag-
continuous on X x OA™, and the following coherence condition is satisfied:

fal...an(xth;---vtn)vA tl =1
fQ(I,tl,tQ,...,tn) = faomdima"(l',tl,...,ti,...,tn), ti :tiJrl
fao»»»anfl(matlw--atnfl)a ty =0

The coherent proximate net will be shortly denoted by f = (f,) . Next
we explain the definition in special cases n = 0 and n = 1. If n = 0, for each
ag, there exists fq, : X = Y, so that f,, is maxag- continuous. If n =1, for
each ap, there exists f,, : X — Y, so that f,, is maxag- continuous and for
every ag, a1, there exists fuoq, : Al X X — Y, such that f,,4, is st(maxag)-
continuous and f, is maxag- continuous on OA! x X, and also

faoal (O,IL') = fao(x)v faOal(]"m) - fal (l‘)

DEFINITION 2.2. Coherent proximate nets f,g : X — Y are homotopic
(notation: f ~ g), if there erists a coherent prozimate net H = (H,), such
that Hy : X x A" x I = Y is st" ' maxag- continuous, H, is st maxag-
continuous on X x O(A™ x I), and the following conditions are satisfied:

HQ(IE,LO) = fg(xai);
HQ(I,L 1) = g&(xat)'

The relation f & g is an equivalence relation. This is shown in [13].

3. COMPOSITION OF COHERENT PROXIMATE NETS - EXISTENCE AND
UNIQUENESS

The following two Theorems are needed for the definition of composition
of coherent proximate nets. Theorem 3.2 is proved in [9] for the case k = 1.

THEOREM 3.1. If f : ©x — Y is W-continuous, then idx f : K x X — K X
Y is K x W-continuous, where K is compact and K xW = {K xW|W € W}.

PRrROOF. f: X — Y is W-continuous, and therefore it follows Vx € X, 3U-
neighborhood of x and 3W € W, so that f(U) C W.

As usually id x f is defined by id x f(k,z) = (k, f(z)). Hence, for (k,z) €
K x X, there exists U, U being a neighborhood of z, and there exists K xW &
K x W, sothatid x f(K xU) C K x W. O

THEOREM 3.2. Let W be a covering of Z and G : A*¥ xY — Z be a
stk (W)-continuous function and stt=*(W)- continuous on OA* x Y. Then
there exists V, a covering of Y, such that for each function f : X — 'Y that is
V-continuous, G(id x f) : Ak x X — Z is sth(W)-continuous, and G(id x f)
is stk (W) - continuous on OA* x X.
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PROOF. Let y € Y be a fixed point. For each s € A¥\GAF there exists
Js € AF\OAF, a neighborhood of s, and a neighborhood Vi of y, so that
G(Js x Vi#) € Wy, for some element W € st*(W). For each s € A, there
exists J; C N, a neighborhood of s, and a neighborhood Vi of y, so that
G(Js x ViF) € Wy, for some element Wy € stk=1(W).

Then {Js|s € AF} is an open covering of A*. There exists a finite sub-
covering Js, , Js,, . - - Jép

LetJSyfv n. V* Then G(Js, xV)CW , for 5, € Ak \ OAF,
and G(Js, xV,) C W‘Z ,fors; € 0AF. V= {V,|y € Y} is a covering of Y. Let
V € V. Then the following holds: G(Js, x V) C W*%, for s; € A*\ OA*, and
G(Js, x Vyy) C W fors; € OAF. T, xVl]i=1,...p,veV is a covering of AFxY.
Iff:X—-Yisa V continuous functlon then there exists a covering U of
X, so that f(0) < V. Now, if we define H : A* x X — Z by:

H(t,xz) = G(L, f(z)),
then H is a st®(W)- continuous function and H is st*~1(W)- continuous on
OAF x X. |

We will now define a partitioning of the simplex
A" = {(t1,ta, ... t)|[1 >t > ... > t, >0},
by defining the sets K,,,0 < m < n in the following way:

1
Koy ={(t1,...,tn)[tm > 5 > b1t

Let B be the denotation of the finite sets of coverings of Y with a maximal
element and C' be the denotation of the finite sets of coverings of Z with
a maximal element. Let f = (fy) : X — Y and g = (g9.) : ¥ — Z be
coherent proximate nets. In order to proceed and deﬁne the composition
h=(he): X = Z of f and ¢, an induction by the height of the element ¢ € C
is performed. B -

DEFINITION 3.3. Let ¢ € C,h(c) =0 be an ordered cofinite set. Then the
height of a is defined as follows:

h(a) = max{n|ap < a1 <--- < a,_1 < a}.

A strictly increasing function g : C' — B is constructed as follows:

Case 0. Let ¢ € C, h(c) = 1. We choose an element g(c), such that
g(stmaxb) < maxec. Let g(c) = b. Now h. : X — Z may be de-
fined by he = gefy(c)- Then h. is max c-continuous.

Case 1. Let ¢ € C, h(c) = 1. We define g(c), choosing b € B, so that the
following conditions hold:

1. g(stmaxd) C maxc;
2. g(cg) < b, for all possible choices of ¢, ¢y < ¢;
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3. Geoe(id X fp) is st max c-continuous and ge,.(id X fp) is maxc-
continuous on OA! x X.
Let g(c) = b. The functions h. and h,,. are defined as follows:

he = gcfg(c)-
Then h. is max c- continuous. The function hc,. : A' x X — Z is defined by:

_ gCOC(2t - 17 fb(x))a te KO
hcoc(tvx) - { gcofbob(2t;$); t c Kl
Theorem 3.1 provides that g, foop 1S st max co- continuous, and Theorem 2.2
and the condition 3 provide that g.,.(id X f3) is st maxco- continuous and
Jeoc(id X fp) is maxco- continuous on OA! x X. Then heoe 18 st max co- con-
tinuous and h.,. is max co- continuous on A x X. On Figure 1 below there
is a given review of the mapping h,e.

&, S bob e Sy

K 1

FIGURE 1

Case n — 1 (inductive assumption). We assume that for each ¢ having a
height h(c) <n—1,g(c) = b is defined, so that the following conditions hold:
1) g(stmaxb) < maxc;
2) g(eo) < gler) < -+ < glep—2) < g(c) = b, for all possible choices of
indices Cp < c1 < --- < ¢p_a < ¢
3) The following mappings are defined: h¢, hcye, Regeres - - - 3 Preger...cn - aes
0 < i <n—2, such that heye,. cic : AT x X — Z is st max co-
continuous and Aeye, . ¢;c 1S $t° max co- continuous on QAL x X
On Figure 2 below there is a given review of the mapping hcye e, and the
conditions 1-3 below hold.

1. g(stmaxb) < maxc;
2. g(cg) < b, for all possible choices of ¢g, ¢y < ¢;
3. Geoe(id X fp) is st max ¢- continuous and ge,c(id X fp) is max c- contin-
uous on OA! x X,
Case n. Let ¢ € C, h(c) = n. Herein it is important to mention that there
exists a linear homeomorphism between the sets K; and A? x A"~ mapping
vertices to vertices. We choose b, so that:

1. g(st maxb) < maxc;
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e, f}»‘ﬁ,/,
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FIGURE 2

2. g(c') < b, for all possible choices of ¢/, ¢/ < ¢;

3. Gegooer (1 X for 1 b,) " AF x A"k x X — 7 is st* max c- continuous,
for k = 1,2,...n and for maxb, ge,...c, (id X fu,,,..b,) is st" ! maxc-
continuous on IAF x APF x X.

Let g(¢) = b. Because of the inductive assumption, the following holds:
glco) < gler) < -+ < glep—1) < gle) =bforeach ¢pg < ¢; < -+ < cp2 <
cn—1 < ¢, and the following mappings: hc, hege, Pegeres - -+ > Reger..cn_2c are
defined. We define the function hcye,. ., e : A" X X — Z by:
hc[)cl...cn,lc(L $) =

gmfg(cocl...cn,lc)(Qtla-~~a2tna1’)a t; < 1%

Geg...c; (Qt - ]-a R} 2ti - 17 fg(cic7,+1...cn,1c)(QtiJrla R 2tna Z)); t; Z by Z ti+1-

gc()cl,..cn,lc(2t1 - ]-7 SRR 2t; — ]-7 fg(c)(x))a tn > %

Theorem 3.1, Theorem 3.2 and the condition 3 provide that hcyey...c, ;¢ 1S
5™ max co- continuous and heye,...c,_qc 1S st ! max co- continuous on OA™ x
X. We check that hege,...c,,_,c is well defined. As in previous cases, g(cg) =

bo,g(c1) =b1,...,9(cn-1) = bp_1,9(c) =b. Let t; = %

1
Geo foobr b _16(2 - 2 2o, ..., 2tn, ) = Geo froby..bn_1b(1,2t2, ..., 2ty )

= Geo Soobi..bn_16(2t2, . .., 2t T).
1
Jeoer (27 55 foobrnbuap (22, 260, 2)) = Geoer (s for. b 1b (22, -, 20, 1))

= Geo (for..b,_10(2t2; ..., 2tn, 7))
= Geo (for..b,_10(2t2, ..., 2tn, 7).
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Let t; =41 = % t; = t;+1 implicates the following:
Gegoci(2t1 — 1,2t — 1, ..., 2t — 1, fobiy. b i6(2tig1, ..o, 2t )
= Gegcia (21 = 1,2t = 1, ..., 2t = 1, fopiirbp10(2tig1, ..., 2ty @),
whereas t; = % implicates:

Geo...c; (2t1 - 17 2t2 - 1, ey Qti - 1, fbib7,+1...bn,1b(2ti+1; ey Ztn,x))

= Geg.ci(2t1 — 1,2t5 — 1, .,2% =1, foibisr . bn1b(2tis ., 2t @)
= Gegoes(2t1 — 1,200 — 1,0, forbirbn_yb(2big1s -, 2tn, )
= Gegocis (21 — 1,2t = 1,0, 2t 1 — 1, foy b 10(2tig1, - o, 20, @)).
Let t, = 1.
Geoocnre(2t1 — 1,260 — 1,..., 2, — 1)

1
= gc@...cnflc(2t1 - 17 2t2 - 17 ceey 25 - 1) fb(x))7
gco...cn,lc(Qtl - 1) 2t2 - 1) ey 0) fb(x))
= gCO---Cn—1(2t1 — 17 2t2 — 17 ey 2tn—1 — 17 fb(I))

Yeg...c; (2t1 - 17 2t2 - 17 ceey Qti - ]-a fbibi+1mbnflb(2ti+1a sy 2t’mx))

1
- gCO»»»Cnfl(2t1 - 17 2tg — ]-a EEEE) 2ty — ]-a fbn71b(2 ! 5733))
= gc0...cn,1(2t1 —1,2t - 1,...,2t, — 1, fbnqb(lvx))
= Geg..cn_,(2t1 — 1,2to — 1,...,2t,, — 1, fp(x)).

Therefore it is obtained that the function is well defined. Consequently it is
obtained that the composition of the coherent proximate nets f = (f) : X —
Y and g = (g) : Y — Z is a coherent proximate net h = (h.) : Y — Z . Let
this composition be denoted by fog: X =Y.

4. COMPOSITION OF HOMOTOPY CLASSES OF COHERENT PROXIMATE NETS

We define a composition of homotopy classes of coherent proximate nets
by [(9:)][(fs)] = [(9efg(e))]- In order for this definition to be valid, it is neces-
sary to be proved that it does not depend on the choice of strictly increasing
function g : C'— B. It is enough to show that for another choice of a strictly
increasing function ¢’ : C' — B, such that it satisfies the same required con-
ditions 1 - 3 from the definition of composition in 2, the corresponding co-
herent proximate net A’ = (h.) : X — Z is in the same homotopy class with
h=(h):X —Z. In fact, as the way ¢ : C — B, and (he) : X — Z,
and ¢ : C — B, (h.) : X — Z are obtained, similarly we may obtain
another strictly increasing function ¢” : C — B, with additional condition
g"(c) > g(c),¢'(c) for all ¢ € C, and a coherent proximate net (k) : X — Z.
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Now, by induction, a homotopy H = (H.) : X x I — Z, connecting (h.) and
(), is constructed.

“Case 0. Ifc e C,h(c) = 1,H. : I x X — Z, is defined by H.(t,z) =
9efog(ery(t, ). This homotopy connects he = gefy(e) and h” ¢ = ge fy(er)-

Case 1. Let ¢ € C, h(c) = 1. The homotopy H, : I x X — Z is defined by
H.(t,x) = gefog(er)(t, z). The following step is to show that he,. is homotopic
to h”coe. Therefore, Hy,. : A' x I x X — Z is defined in the following way
(Figure 3):

‘(",‘n-/t"hncv 8oy -f_x”(u

7T

i
1
1
1
1
i
o f H

Sy gley)gm(eye) & 1 _

. 2 4 1 Hu_g(nf( )
H. =g/, i :
< IR (¢y) L, ! o /
J : Seped gle)g"(e)
,
i}
,gl‘,f:(«‘w”tu :gl f( )g'te)
.
/ '
’ i 1
] »\vf\“ (e )
'
i
/ 1
’ 1
/. !
7 ! {
g‘,“fgu. ) ] gLUL.fL'((]
2
hw
FIGURE 3

9eo fo(co)g” (coc) (5, 2t, T), 0<t<i
HCOC(tasax) = gC()fg(coc)g”(C)(572t,$), % S t S 5
Jeoe(2t =1, fo(erg () (5, @), 3 St <1

H.,c is well defined on the edges, and it is shown as follows: - If £ = 5, then

s T) = Geo foobo b7 (8,8, ) = geo foob (5, T).

(NN

Geo foobomt7 (5,2

On the other hand,

s
Geo foobe (2 - 3 ) = Geo foobv? (8,5, ) = Geo foop (5, T).
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1
If t = 3, then

1
Geo fooby (2 - 3 5,2) = Geo frobt (1,8, 2) = geo for (8, T).
On the other hand,

% — 1, for (5,2)) = geoe (0, foor (5,2)) = geo for (5, ).

The following also holds: If s = 0, then

9000(2 :

Geo frobe v (0,2, ), t=0
Heo(t,0,2) = Jeo Joovo? (2,0, ), 0<t< %
Jeoe(2t =1, forr (0,2)), 3 <t <1
gCofbob[)”b” (0,07x)7 t = 0
g (0. 0<t<)
gCOC(2t_1afbb”( ax))a % <t< 1
gcofbob[)" (O;I), t: O
=9 Geo fron(2t, 1), 0<t<i
chc(2t - ]., fb(l‘))’ % <t< 1
gcofbo(m)a t=0
=19 Yeofoob(2t, T), 0<t<i
gCOC(2t - ]-a fb(x))a % <t<1
oo foon(2t, ), o<t<l
{ gcoc(Qt — ]_’ fb(l')), % <t< 1~ hcoc(t,ﬂf).
If s =1, then
gcofbobo”b”(172tax); 0<t< 1
Heoolt,1,2) = geo foowe (28, 1, 2), ;= %
eoe(2t = 1, forr (1,%)), § <t <1
gcofbobo”b”(172tax); 0<t< %
=1 Geo oo (1,1, 2), t=1
Gerel2t — 1, fur(1,2)), L<t<1
Geo frobom? (1,28, 2), 0<t< %
=19 Geo oo (1,2), t=1
gCOC(Qt - ]-a fb” (l‘)), % <t § 1
Geo frob? (21, T), 0<t<]
=9 Geofv (@), t=1
eoe(2t = 1, fir (x)), 3 <t <1
= chbe”b” (2t’ I’), 0 S t< % Y A
- { @ 1, fir(a)), b=t = eelt2)

Hence it is proved that H,,. is a homotopy between hc,. and h” ..
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Case n. The homotopy Hegey...on_1c : A" X I x X — Z is defined in the
following way: We have defined the partitioning of the non-standard simplex
A" = {(t1,ta,...,ty)|1 > t1 > ta... > t, > 0} by the sets K;,0 < i <n
where K; = {(t1,t2,...,t,)|t;i > % > ti+1}. Now we need a partitioning of
the sets, and therefore we define the sets for each, in the following way:

K ={(t1, ... tiy sty )| (b1 ooty s) € Ky x T

1 1
sothath,igmgnfj,g <tm < §,Vl,nfj<l§n,0§tl§§}.
Now Hepey.oon_qe : A" X I x X — Z is defined on K; x I, Vi =0,1,...,n, by:

HCOCIH‘Cnflc(tlﬂ oo
= gcoclu‘ci (2t1 - 1, ey 2t1 - 1, fg(cia---acn—j)g”(Cnfjcn,]q,l...c)
(2tit1, .- 2ty 1))

s lns S,LL‘)

-y S, 2tn—j+17 ..

for (t1,...,tn,8) € KZJ Next we show that Heoe,...c,_,c is well defined. In fact,
we need to observe several cases, and for each we will show that Heye,..c,, e
is well defined:

1. For (t1,...,tn,s,2) € Kij_1 ﬂKij,j =1,...,n — i, we will show that
the definition of Heye,. e, ¢ 1S unique.

2. For (t1,...,tn,s,2) € K1771 N Kijv]' =1,...,n — i, we will show that
the definition of Heye,. e, ¢ 1S unique.

3. We will show that the definition of Heye,...c,,_,c On the edges of A™ x I
coincides with the corresponding homotopies on A” ™1 x I, i.e., with
Hcocl...c}...cn,lc;i = 17 cee, N

1. Let (t1,...,tn,8,2) € Kf;lﬂKg, iet; = % Because of (t1,...,tn, s, )
€ K] ;andt; = % , we obtain the following:

Hey. o(t1,...,8,x)
= Gogoon (2t =1, 2 — 1,
Soitebn b yanm ot (2t 8, 2t g1, ., 2t T))
= Qoo (2t — 1, 2 — 1,
Soi 1 b b a7 (2 % ey 8, 2ty 2y, 1))
= Gogon (2t =1, 2 — 1,
Soicrebn 7 bnyinm o (Lo 8,2t g, 2y, @)
= Geoer (2t — 1, 2 — 1,
Sostebon b yin” b (2tig1s o 8, 2t g1, 2, T)).



INTRINSIC STRONG SHAPE FOR PARACOMPACTA

On the other hand, because of (t1,...,tn,s,2) € Kz-j and t; = %, we

obtain:

Hco...c(th .o .757x)
1
= gco,,,ci(Qtl — ]_, .. _72 . 5 _ 1’

fbiu‘bnf‘j”bnf_r#l”‘ub” (2ti+1a cey 8 2, 2y, l‘))

= Geg..ci, (261 —1,...,0,

fbiu‘bn—j”bn—j+1”‘ub” (2ti+1, ceey S, 2tn7j+1 ey Qtn, SL'))

= JGco...ci—1 (2t1 — 17 ceey Qti_l — 17

Joiobn_ by (2tign, 8, 2t 1, 2L, T)

by which we show case 1. _
2. Let (t1,...,tn,s,2) € Kff1 UK/, ie th_jp1 =
(t1,... tn,s,2) € Kff1 and t,,_j11 = 5, we obtain:

Hgomc(tl, .. .tn, S,l‘)
= gco‘“ci(Qtl - 1, ey QtrL - ]_,

s
2

3. Because of

S
qu,.~~bn—j+1bn—j+1”...b” (Qti-i-lv 2 9’ 8, 2tn—jy2,. .., 2, )
ZCQ...Ci(Qtl —1,...,2@— 1,
qu,...brn,fj+1bn7]‘+1”...b” (21}1‘_’_1, .5 8,8, Qtn_j+2, ey Qtn, I))

= Gegcr (2t — 1,2t — 1,

fbi»»»bn—jbn—j+1”u‘b” (2ti+1, ey 2tn,j, S, Qtn,]urg ceey Qtn, SL'))

On the other hand, because of (t1,...,tn,s,2) € Kz-j and t,_j41 = 3,

we obtain:

Hco...c(tla DR tna S, I)
= gco...cq, (2t1 — 1, ey 2t1 — 17

S
fbimbnfj+1bnfj+1”mb” (2ti+1a BRI 37 S, 2tn7j+27 SERE) 2tna :L'))

= gco,,,ci (2t1 - ]., ey 2t1 - ]_7
2s

fbi...bn_jbn_j”,bw,_j+1,...b’7 (2tl+1) ey S, 2

= gco,,,ci (2t1 - ]., ey 2t1 - ]_7

72tn—j+27 ceey 2tn; I))

fbi___bnijbniwrl”._.b” (2ti+17 ey 2tn—j7 S, 2tn—j+2 ey Qtn, x))

by which case 2 is completed.
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3. The edges of A™ x I, because of the definition of A", are of a type:

00 = {(Lta, . tns8)|(Litas ... 1) € A7),
8{1 {(1 to,...,t S)|(t1,t2,...,tn)EAn,tl:tlJrl},l:]....,n*].,
Oy ={(t1,...,tn-1,0,t8)|(t1,t2,...,tn_1,0) € A" }.

On 0y there are the sets Ki,Ks,...,K,. On 0" there are the
sets Ko,...,K;—1, Kiy1,...,K,. On 0] there are the sets Ky, K,
., Kyn—1. For 9f, we obtain:

Hey o o(t1, .. tn,s,x)

:gcg,,,ci(Q' ]. - 1,,2t1 - ]_,

0---

Sosebnsbne " bn e (2t 1, oy 8, 2y, 2y, 1))
= gege (1,2t — 1,

Soiibnsbn s bngn” o (21, o 8, 2t i1, 2, @)
= Geg..c; (2ta — 1,...,2t; — 1,

fbi...b7L—jb7,,7j,7b,,L7j+1”,”b” (2tig1,.--,8, 2p—_jy1-..,2t,, x))

- Hcl...c(t27 cee 7tn7 5,$),

for (ta,...,tn,s) GKij,Vizl,...,n

For 0", there are two cases, either | < ¢ or [ > 4 in the general formula of
Heoey...cn_qc- It is impossible that [ = ¢, because on the edge 9 there is no
set K;. For | < i, we obtain:

Hey o o(t1y .. tn,s,x)
= Gegoes (2t1 — 1,2t — 1,281 — 1,...2t; — 1,
Sovbnbney ot (2tig1, ooy 8, 20—y, -, 2t T))
= Gegoo; (201 —1,...,2t; —1,2t; — 1,
Soibnsbn ™ bngia” o (i1, o5 8, 2t i1, 2y, @)
= Geg.tr.c; (2ta —1,...,2t; — 1,
Soibnsbn 7 bnyinm o (2t -y 8, 2t i1y, 2y, @)

= HC()Cl...@L---Cn—lc(tlv e ,tH_l,tH_Q, . ,ti, e ,tn, 5,$),

for (tl,...,fl+1,tl+2,...,ti,...,tn,s) € Kz-j,i = 1,...,ZA,...,n. For | > 1,
there are also two cases possible: either both ¢; and ¢;11 are before s, or both
t; and t;41 are after s. We will show the case when both ¢; and ¢;4; are before
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s, and the other can be obtained similarly:

HCOCIH‘CvalC(t17 .- ~tna S, 1')
= chWCi (2t1 — ]., ey 2t1 — ].,
Joiobn_ by b7 Qbigrs o 20,200,008, 2t i, 2y, )
= gco...c,,(2t1 —1,...,2t; —1,2t; — 1,
fbi---bn—jbn—j”,bn—j+1”7~~~b”
(Qti+1, ey Qtl, Qtl, ceey S, 2tn_j+1, ey 2tn,x))
= chWCi (2t1 — ]., ey 2t1 — ].,
fbiu‘l;l»»»bnfjbnfj”bnfj«klﬂu‘b”
(2ti+1, ey Qtl, 2t1+2, ceey S, 2tn,j+1, ey 2tn,l‘))
= HCOC1~~~éL---Cw,—1C(t17 e ,ti, e 7£l+17 e ,tn, 5,$),
for (t1,... .t .. tig1s. .- tn,s) GKij,i: 1,...,0,...,n. For ay, we obtain:
Hc()cl...cn_lc(tl; DR tnv S, $)
= chMCi(2t1 — ]., ceey 2151 — ].,

fbi»»»bnfjbnfj”»»»b” (QtiJrlv sy S, Qtla 2tnfj+1a cee ,0, l‘))
= Jcg...c; (2t1 - 17 ceey 2tl - 1)

Soicbnsbn by b (2ligrs -5 8, 2ty -, 0,3))
= gco‘“ci (2t1 - 1, ey QtrL - ]_,
fbi”'b"*jb"*j”bnfj+1”mb” (QtiJrlv o8 2y, .-, 0, l‘))

= Hc()cl...cn_l(tlv s 7t’i7 s 7tn—15 S, I),

(t1y.estiyenytn_1,8) € Kf,z =0,...,n — 1. Showing case 3 is in fact show-
ing the coherence condition for He.¢,...¢, ,c- We have also shown that the
homotopy Heyey...c,_1c is well defined. Next we show that He.e,. ., ,c cOD-
nects hegey..en_1c a0d h” ey e, 1t For s = 0, by the definition of the sets

Kg, it follows that for each n — j <1 < n,t; = 0, and therefore we obtain:
HCOCI»»»C'ILflc(tlﬂ oo tna Oa 1')
= gco...c,,(Qtl - 17 ceey 2tl - 1)
qu,...bn_jbn_j’7bn_j+1...b” (2ti+1; ey S, 2tl7 2tn—j+17 0) sy 0) I))
=Geg..c; (261 —1,...,2t; — 1,

fbi»»»bnfj (QtiJrla sy S, 2tnfjJrla :E))a

for (t1,...,tn,0) € Kg, which corresponds to the definition of hAcyey. ., qe-
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\ 4

1 K, _,-“'F/' K,

FIGURE 4

For s = 1, by the definition of the sets Kg, it follows that Vm,i < m <
n—7j,tm = %, and therefore we obtain:

HCOCI»»»Cnflc(tlﬂ .. -tna 17 l‘)
= gco‘“ci (2t1 - 1, ey 2t1 - 17

1
fbi~~~bn7jbn*j”bnfj+1~~~b” (2 : 57 ttty 2 o 2tn_j+17 ttty I))

2
= gco...cq, (2t1 - 17 ey 2tl - 17
fbi...bn,jbn,j”bn,j+1b” (15 ceey 17 S, 2tn—j+1; Qtna I))a
= chMCi (2t1 — ]., ceey 2151 — ].,
fbn—i”»»»bn—j+1”u‘b” (Qtn,]qu, B 2tna Z))a
for (t1,...,tn,1) € Kg, which corresponds to the definition of h”cyey. ., e

Next we observe the example when n = 2, in order to illustrate the above.
hegere and heye,.” were previously defined in the following way (Figure 2):

Geo foobib(2t1, 2t2, ), t1 < % ((t1,t2) € Ko)
thC1C(t17t27x) = Jeoer (2t1 - 1afb1b(2t27x))7 ty > ? Z tQ((tlth) € Kl) P
Geoere(2t1, 2t2, fr(x)), ta <5 ((t1,t2) € K3)
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Geo foo b7 (281, 2t2, ), t < % ((t1,t2) € Ko)
R coere(ti b2, ®) = Q4 Geoger (281 — 1, foror (2t2,2)) t1 > 7 > ta((t1,t2) € Ky)
gcoclc(Qtla 2t2; fb” (l‘)), ty < b) ((t17t2) € KQ)

The homotopy Heye,e @ A% x I x X — Z, which connects heye, and
R’ coerc, 1s defined on K; x I, for each i = 0,1, 2, by:

Hcoclc(tthvsvx)
- gco...c7, (2t1 - 1; sy 2t’L - 17 qu,...bgfij,j”...b” (2ti+1) S, 2t2—j+1) 2t27 x))?

for (t1,ta,s) € Kij,j =0,...,2 —i. More specifically, H.,c, is defined as
follows, for each K; x I,©=20,1,2: - For Ky x I:

gcofboblbb” (2t1,2t2,5,$), (tl,tg,s) S Kg
Hepeyo(ti,t2,5,2) = < Geo foobiby2e? (2t1, 8, 2ta, ), (t1,t2,s) € K¢ .
Geo foobobr7b” (8,281, 2ta, ), (t1,t2,s) € K¢
- For K x I:
0
Holtotassa) = { oo Gob B P8, i €KL
- For K1 x I:

HCOClc(tlatQa S, :L') = gcoclc(2t17 2t2 - ]-7 fbb”(sa SL')), (tlatQa S) € Kg

On Figure 4 we see the way A% x I divides itself into three prisms Ky x I,
K x I, and K3 xI. On Figures 5, 6 and 7 below we can see the corresponding
partitioning of K; x I into K/,i = 0,1,2. -K x I divides into three parts,
K3, K} and KZ: - Ky x I divides into two parts, K{ and K{: - Ko x I does
not divide and the one part is K3:

A\ 4

FIGURE 5
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“te---1_""-

v

[\,f\

FIGURE 6

FIGURE 7

Hence it is shown that (h.) and (h”.) are homotopic. In an analogue
way we prove that (h.) and (h”.) are homotopic. The relation of homotopy
of coherent nets is an equivalence relation, therefore (h.) = (gcfg()) and
(h"¢) = (gefq (c)) and are in the same homotopy class. Now we may define a
composition of homotopy classes of coherent proximate nets by

[(g)][(f2)] = [(geLo(e))],
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and this definition does not depend on the choice of strictly increasing function
g:C — B.

5. THE CATEGORY OF STRONG SHAPE

THEOREM 5.1. If f: X - Y, g:Y = Z, h: Z - W = (Wy,wq, D) are
prozimate coherent nets, then the prozimate coherent nets h(gf) and (hg)f
are homotopic.

PROOF. Suppose f = (fp),9 = (9c), and h = (hq). In order to obtain an
explicit formula for the proximate coherent net h(gf), we define a decompo-
sition of A™ into subpolyhedra Kj,, for any pair of integers I,m such that
0<l<m<n, Kim={(ti,to,....ta)[ti > & > tig1,tm > 3 > tmy1}. By
applying the composition formula twice, for (¢1,...,t,) € K; ., we have

(h(gf))a(t, )
= hdomdl(Qtl — 1, ceey 2tl — ]-agh(dl...dm) (4l+1 — 1, ceey 4tm — 1,
fgh(dm...dk)(éltm-l-lv o 74tka I)))
Similarly, to obtain an explicit formula for the proximate coherent net (hg)f,
we define a decomposition of A™ into subpolyhedra Q. ,, for any pair of inte-
gers [,m such that 0 <1 <m <mn, Qum = {(t1,....tn)|[t1 > % > tip1, bt >
% > tmt1}. Then, for (t1,...,tk) € Qim we have

(h(gf))a(t, )
= hdo---dz (4t1 —3,...,4t; — 3agh(d1...dm)(4l+1 —-—m,..., 4, — 2,
Jan(dm...dw) 2tmi1, - - -, 2ty x))).

We define a partition of A™ x I into subpolyhedra M, ,,, for any pair of integers
[,m such that 0 <1 <m <n,

2+s 1+s
My = {(t1, -+ tn, )t > I >y, tm 2 5 > b1}

We define a homotopy H : I x X — W which connects h(gf) and (hg)f.
This map will be given by the function fgh : D — A and by the maps
Hg: A" X I x X¢gp(a,) — Wa, defined in the following way:
Hy(t,s,x)
4t —2—s 4t — 2 —s
_ hdomdl( 1 l

2—s 77 2—s5 7

Gh(dy...dp)Alip1 — 2, .. 4ty — 2, fgh(dm...dn)(thH,...2tn,x)))-

We mention that Kj,,, x 0= {(t1,...,tn,0)|(t1,...,tn,0) € M; n} and then,
for (t1,...,tn) € Kim, it is easily checked that Hy(t,0,z) = (h(gf))5(t, 2).
Also, Qum X 1= {(t1, ..., tn, 1)|(t1, ..., tn, 1) € My} and for (t1,...,t,) €
Qm, Ha(t,1,2) = (h(gf))a(t,z). To complete the proof we will check the
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well defining and the coherence conditions of the map H é. To check that the

definition is well, suppose that (t1,...,tn,$) € Mim N M1 m, Le., t; = 2%.

For these points H C’j is defined in two ways. If we compute the formula for
t=(t1,...,tn,8) € My, and ¢, = 215, then we have:

Hy(t,s,x)
_n 41 — 2 — s 4t;_1—2—s
= Ndy...dj—1 2 _ 5 Yooy 2_ s ’

At 41 4t,
Ghdy.dm) g1 =1 =5, 4ty — 1 =5, fon(dn,...dn)( T+s 1% Safﬂ)) .
The same expression is obtained if we compute the formula for (¢1,...,t,,s) €
My_1m and t; = 2%5. Similarly, we can check that the definition is

well for (¢1,...,tn,s) € Mjm N Mjm—1, and the other cases can be de-
duced to one of these two cases. To check the coherence conditions of
the homotopy Hg, suppose that (t1,...,tn,s) € Mi_1,, and t, = O.

Then fgh(dmmdn)(%,...,%, x), and it follows that for ¢, = 0,Hy =
Hi,..d,_,(t1,. .. tn—1,2). The case when ¢t; = 0 is treated similarly. If

ti = ti+1, and ¢ <[, then

Hgy(t,s, )
4t1—2—8 4ti_1—2—84ti+1—2—8 4tl_1—2—8
= hq,...d; sy ey,
: 2—s 2—s 2—s 2—s
4t 4t,
Gh(ds.dm)(Atip1 — L =8, 4t — 1 =8, fon(dpm...dn)( 1 _:S SEE] +Safﬂ))>

= Hdg...(ii..,dn(tl’ e 7ti; e ;tn; S,I).

The cases | < i < m and m < ¢ < n are treated similarly. O

THEOREM 5.2. If proximate coherent nets f, f' : X — Y are homotopic,
and coherent maps g,q9' : Y — Z are level homotopic, then the coherent maps
gf, g f' : X =Y are level homotopic.

ProOOF. Let f, f' : X — Y be homotopic by a homotopy F: I x X - Y
given by a strictly increasing function ¢ : B — A. Then the proximate
coherent nets gf, gf’ : X — Z are homotopic by the homotopy gF : IXX — Z
given by a strictly increasing function fg : C — A. Let g,9' : Y — Z be
homotopic by a homotopy G : I x Y — Z given by the strictly increasing
function g : C — B. Then the proximate coherent nets gf’',¢'f' : Z — Z
are homotopic by the homotopy G(1 x f') : I x X — Z given by strictly
increasing function fg : C — A. It follows that the proximate coherent nets
gf.g'f': X — Z are homotopic. O
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THEOREM 5.3. The proximate coherent nets f and flx are homotopic;
f and 1y f are homotopic.

ProOOF. We will prove that f and 1y are homotopic, and the other state-
ment is treated in the similar way. First we define a partition of A™ x [ into
subpolyhedra L;,l = 0,1,...,n, by Ly = {(t1, ..., tn,s)|t1 = 5+ 1 > t;;1}.
We define a homotopy F : I x X — Y. This map will be given by the func-
tion f : B — A and by the maps F, : A" X I x X,y — Y, defined for
(t,s) € Ly by Fy(t,s,z) = fblmbn(f—fg, cee 123-5793) We mention that K; x 0 =
{(t1...,tn,0)|(t1...,tn,0) € L;} and then, for t = (t1...,t,) € K;, we have
Fy(t,0,2) = (1y (¢, ). Also, {(t1,...,tn, D|(t1,...,¢n) € A"} = Lo and
Fy(t,1,2) = fp(t,z). Category of strong shape is obtained. The objects are
paracompact topological spaces, and the morphisms are the classes of the co-
herent proximate nets. For the isomorphic objects in this category we say
they have the same strong shape. O
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