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Abstract. An analog of the Davis-Gut law for a sequence of inde-

pendent and identically distributed Banach space valued random elements
is obtained, which extends the result of Li and Rosalsky (A supplement to
the Davis-Gut law. J. Math. Anal. Appl. 330 (2007), 1488–1493).

1. Introduction

Let {X,Xn, n ≥ 1} be a sequence of independent and identically dis-
tributed random variables. The following theorem, which is related to the
classical Hartman-Wintner law of the iterated logarithm (see, Hartman and
Wintner, [6]), is well known. As usual we let log t = logemax{e, t} for t ≥ 0.

Theorem 1.1. The following three statements are equivalent:

EX = 0 and EX2 = 1,(1.1)
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(1.3)

This result is referred to as the Davis-Gut law. The implication
“(1.1)⇒(1.2)” was formulated by Davis ([3]) with an invalid proof which was
corrected by Li et al. ([11]). The implication “(1.2)⇒(1.1)” was obtained
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by Gut ([5]). The equivalence between (1.1) and (1.3) was established by Li
([9]). Necessary and sufficient conditions for (1.3) in a Banach space setting
were obtained by Li ([9]). For moving average processes, the implications
“(1.1)⇒(1.2)” and “(1.1)⇒(1.3)” were obtained by Chen and Wang ([1]).

Li and Rosalsky ([10]) provided the following supplement to the Davis-
Gut law. When h(t) ≡ 1, it yields the equivalence between (1.1) and (1.2).

Theorem 1.2. Let h(·) be a positive nondecreasing function on (0,∞)

such that
∫∞

1
(th(t))−1dt = ∞. Write Ψ(t) =

∫ t

1
(sh(s))−1ds, t ≥ 1. Then

(1.1) and

(1.4)
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are equivalent.

Recently, Liu et al. ([12]) extended Theorem 1.2 to moving average pro-
cesses which then extends the work of Chen and Wang ([1]) by establishing
the implication “(1.2) ⇒ (1.1)” for moving average processes.

In this paper, we will extend Theorem 1.2 for a sequence of independent
and identically distributed Banach space valued random elements.

2. Preliminaries and Lemmas

Let B be a real separable Banach space with norm ‖ ·‖ and let B∗ denote
the topological dual space of B. We let B∗

1 denote the unit ball of B∗. Let
(Ω,F , P ) be a probability space. A random element X taking values in B is
defined as an F -measurable function from (Ω,F) into B equipped with the
Borel sigma-algebra; we call it a B-valued random element for short. The
expected value or mean of a B-valued random element X is defined to be the
Bochner integral and is denoted by EX .

Lemma 2.1. Let {kn, n ≥ 1} be a sequence of positive integers and
{Xnk, 1 ≤ k ≤ kn, n ≥ 1} an array of rowwise independent B-valued random
elements. Suppose that there exists δ > 0 such that ‖Xnk‖ ≤ δ a.s. for all

1 ≤ k ≤ kn, n ≥ 1. If
∑kn

k=1 Xnk → 0 in probability, then E‖∑kn

k=1 Xnk‖ → 0
as n → ∞.

Proof. Let {X ′
nk, 1 ≤ k ≤ kn, n ≥ 1} be an independent copy of

{Xnk, 1 ≤ k ≤ kn, n ≥ 1}. Then by Lemma 2.2 in Chen and Wang ([2]),
it suffices to show that

(2.1) E

∥

∥

∥

∥

∥

kn
∑

k=1

(Xnk −X ′
nk)

∥

∥

∥

∥

∥

→ 0 as n → ∞.
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It is easy to show that

kn
∑

k=1

(Xnk −X ′
nk) → 0 in probability

and ‖Xnk − X ′
nk‖ ≤ 2δ. Therefore by Lemma 2.1 in Hu et al. ([7]), (2.1)

holds and the proof is completed.

Lemma 2.2. Let 0 < bn ↑ ∞, and {X,Xn, n ≥ 1} a sequence of indepen-
dent and identically distributed B-valued random elements. If b−1

n

∑n
k=1 Xk →

0 in probability, then E‖b−1
n

∑n
k=1 XkI(‖Xk‖ ≤ bn)‖ → 0 as n → ∞.

Proof. Let {X,X ′
n, n ≥ 1} be an independent copy of {X,Xn, n ≥ 1}.

Then

(2.2) b−1
n

n
∑

k=1

(Xk −X ′
k) → 0 in probability.

By Lévy’s inequality (see display (2.7) in Ledoux and Talagrand [8, p. 47]),
for every t > 0,

P{ max
1≤k≤n

‖Xk −X ′
k‖ > t} ≤ 2P{‖

n
∑

k=1

(Xk −X ′
k)‖ > t},

which by (2.2) ensures that

(2.3) P{ max
1≤k≤n

‖Xk −X ′
k‖ > bn/2} → 0 as n → ∞.

By Lemma 2.6 of Ledoux and Talagrand [8, p. 51],

nP{‖X −X ′‖ > bn/2} =

n
∑

k=1

P{‖Xk −X ′
k‖ > bn/2}

≤ 2P{ max
1≤k≤n

‖Xk −X ′
k‖ > bn/2}

(2.4)

when n is sufficiently large. By display (6.1) in Ledoux and Talagrand [8, p.
150],

(2.5) P{‖X‖ > bn} ≤ 2P{‖X −X ′‖ > bn/2}
when n is sufficiently large. Therefore by (2.3), (2.4), and (2.5),

(2.6) nP{‖X‖ > bn} → 0 as n → ∞.

Note that for any ε > 0
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Then by (2.6) and b−1
n

∑n
k=1 Xk → 0 in probability, it follows that

b−1
n

n
∑

k=1

XkI(‖Xk‖ ≤ bn) → 0

in probability. The conclusion then follows from Lemma 2.1.

The following lemma is due to Einmahl and Li ([4]).

Lemma 2.3. Let Z1, . . . , Zn be independent B-valued random elements
with mean zero such that for some s > 2, E‖Zk‖s < ∞, 1 ≤ k ≤ n. Then we
have for 0 < η ≤ 1, δ > 0, and t > 0,
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∥
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}

≤ exp

{

− t2

(2 + δ)Λ2
n

}

+ C
n
∑

k=1

E‖Zk‖s/ts,

where Λ2
n = sup{∑n

k=1 Ef2(Zk) : f ∈ B∗
1} and C is a positive constant

depending on η, δ and s.

Lemma 2.4. Let h(t) and Ψ(t) be as in Theorem 1.2. Suppose that X is
a B-valued random element with

(2.7)
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√
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Then for any s > 2,
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√
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Proof. Set b0 = 0 and bn =
√

n logΨ(n), n ≥ 1. Note that Ψ(n) ↑ and

therefore bn/
√
n ↑. Then bk/bn ≤

√

k/n whenever 1 ≤ k ≤ n. Hence,
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≤
∞
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∞
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∞
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1
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where C = (s/2− 1)−1. The proof is completed.

Lemma 2.5. Let h(n),Ψ(n) be as in Theorem 1.2. Then for any B-valued
random element X, (2.7) is equivalent to

(2.8)

∞
∑

n=1

1

h(n)
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√

n logΨ(n)} < ∞

for some M > 0.

Proof. It suffices to prove that (2.7) implies (2.8) for all 0 < M < 1.

Set bn =
√

n logΨ(n), n ≥ 1. Note that Ψ(n) ↑ and therefore bn/
√
n ↑. Then

bn ≤ 2−1/2b2n for n ≥ 1. Hence,
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Then by mathematical induction, for any integer k ≥ 1,

∞
∑

n=1

1

h(n)
P{‖X‖ > 2−k/2bn} < ∞.

The proof is completed.

3. The Main Result and its Proof

We now state and prove the main result.

Theorem 3.1. Let h(t) and Ψ(t) be as in Theorem 1.2. Let {X,Xn, n ≥
1} be a sequence of independent and identically distributed B-valued random
elements. Suppose that

(
√

n logΨ(n))−1

n
∑

k=1

Xk → 0 in probability.

(i) Suppose that (2.7) holds and

(3.1) EX = 0, Ef2(X) < ∞ ∀ f ∈ B∗.
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(3.2)
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where σ2 = sup{Ef2(X) : f ∈ B∗
1}.

(ii) Conversely, suppose that
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holds for some M > 0. Then (2.7) and (3.1) hold.

Proof. Set an =
√

2σ2n logΨ(n), bn =
√

n logΨ(n), n ≥ 1 and

Xnk = XkI(‖Xk‖ ≤ bn), Znk = Xnk − EXnk, 1 ≤ k ≤ n, n ≥ 1.

(i) Suppose that (2.7) and (3.1) hold. We first prove that
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Hence, by (2.7), to prove (3.4), it suffices to prove that

(3.5)
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By Lemma 2.2,
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Then to prove (3.5), it suffices to prove that
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By Lemma 2.3, for some s > 2 and any δ > 0
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∥
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∥

∥

∥
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∥
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∥

∥

+ (1 + ε)an

}

≤ exp

{

− (1 + ε)2a2n
(2 + δ)Λ2

n

}

+
C

bsn

n
∑

k=1

E‖Znk‖s,
(3.7)

where Λ2
n = sup{∑n

k=1 Ef2(Znk) : f ∈ B∗
1}. Note that for all f ∈ B∗

1 ,

Ef2(Znk) = Ef2(Xnk)− (Ef(Xnk))
2 ≤ Ef2(Xnk)

≤ Ef2(X), 1 ≤ k ≤ n, n ≥ 1.

Therefore Λ2
n ≤ nσ2, n ≥ 1. Choose δ > 0 small enough so that t = 2(1 +

ε)2/(2 + δ) > 1. Then

∞
∑

n=1

1

nh(n)
exp

{

− (1 + ε)2a2n
(2 + δ)Λn

}

≤
∞
∑

n=1

1

nh(n)
exp

{

− (1 + ε)2a2n
(2 + δ)Λn

}

≤
∞
∑

n=1

1

nh(n)
exp{−t logΨ(n)}

≤
∞
∑

n=1

1

nh(n)
· 1

(Ψ(n))t
< ∞,

(3.8)
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since
∫∞

1
dx/[xh(x)Ψt(x)] < ∞. By the Cr-inequality, Hölder’s inequality,

and Lemma 2.4,

∞
∑

n=1

1

nh(n)
· 1

bsn

n
∑

k=1

E‖Znk‖s

≤
∞
∑

n=1

1

h(n)
· 1

(n logΨ(n))s/2
· E‖X‖sI(‖X‖ ≤

√

n logΨ(n)) < ∞.

(3.9)

By (3.7), (3.8), and (3.9), (3.6) holds and hence (3.4) holds as was argued
above.

Now we prove that

(3.10)

∞
∑

n=1

1

nh(n)
P

{
∥

∥

∥

∥

∥

n
∑

k=1

Xk

∥

∥

∥

∥

∥

> (1 + ε)an

}

= ∞ ∀ ε < 0.

For any f ∈ B∗, by (3.1), Ef(X) = 0 and Ef2(X) < ∞. Then by the
implication “(1.1) ⇒ (1.4)” in Theorem 1.2, for all ε < 0

(3.11)

∞
∑

n=1

1

nh(n)
P

{∣

∣

∣

∣

∣

n
∑

k=1

f(Xk)

∣

∣

∣

∣

∣

> (1 + ε)
√

2Ef2(X)n logΨ(n)

}

= ∞.

Note that for any f ∈ B∗
1 , |

∑n
k=1 f(Xk)| ≤ ‖∑n

k=1 Xk‖ and so it follows from
(3.11) that for all f ∈ B∗

1 , for all ε < 0

(3.12)

∞
∑

n=1

1

nh(n)
P

{
∥

∥

∥

∥

∥

n
∑

k=1

Xk

∥

∥

∥

∥

∥

> (1 + ε)
√

2Ef2(X)n logΨ(n)

}

= ∞.

Hence (3.10) holds by (3.12) and σ2 = sup{Ef2(X) : f ∈ B∗
1}. Combining

(3.4) and (3.10) yields (3.2).
(ii) Assume that (3.3) holds for some M > 0. Then for any f ∈ B∗

1 ,

∞
∑

n=1

1

nh(n)
P

{
∣

∣

∣

∣

∣

n
∑

k=1

f(Xk)

∣

∣

∣

∣

∣

> Mbn

}

< ∞.

Then by the implication “(2.3) ⇒ (2.4)” of Li and Rosalsky ([10]), it follows
that Ef(X) = 0 and Ef2(X) < ∞. Hence (3.1) holds.

Let {X ′, X ′
n, n ≥ 1} be an independent copy of {X,Xn, n ≥ 1}. Then by

the same argument as in the proof of Lemma 2.2,

nP{‖X‖ > 4Mbn} ≤ 8P

{∥

∥

∥

∥

∥

n
∑

k=1

(Xk −X ′
k)

∥

∥

∥

∥

∥

> 2Mbn

}

≤ 16P

{∥

∥

∥

∥

∥

n
∑

k=1

Xk

∥

∥

∥

∥

∥

> Mbn

}

,
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which by (3.3) ensures that
∞
∑

n=1

1

h(n)
P{‖X‖ > 4Mbn} < ∞

and so (2.7) holds by Lemma 2.5. The proof is completed.

Remark 3.2. A sufficient condition for (2.7) is E‖X‖2 < ∞. Indeed,
∞
∑

n=1

1

h(n)
P{‖X‖ >

√

n logΨ(n)} ≤ 1

h(1)

∞
∑

n=1

P{‖X‖ >
√
n}

≤ 1

h(1)
E‖X‖2 < ∞.

Remark 3.3. Some examples of moment conditions which are equivalent
to (2.7) for various choices of h(·) will now be given.

Case (i). Set h(t) = (log log t)b where b ≥ 0. Then logΨ(t) ∼ log log t as
t → ∞ and (2.7) is equivalent to E‖X‖2/(log log ‖X‖)b+1 < ∞.

Case (ii). Set h(t) = (log t)r where 0 ≤ r < 1. Then logΨ(t) ∼ (r −
1) log log t as t → ∞ and (2.7) is equivalent to E‖X‖2/[(log ‖X‖)r log log ‖X‖]
< ∞.

Case (iii). Set h(t) = log t. Then logΨ(t) ∼ log log log t as t → ∞ and
(2.7) is equivalent to E‖X‖2/[(log ‖X‖) log log log ‖X‖] < ∞.

Case (iv). In Case (i), take b = 0, or in Case (ii), take r = 0. Then (2.7)
is equivalent to E‖X‖2/ log log ‖X‖ < ∞.
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