GLASNIK MATEMATICKI
Vol. 52(72)(2017), 377 — 410

LOCAL ASYMPTOTIC MIXED NORMALITY OF
APPROXIMATE MAXIMUM LIKELITHOOD
ESTIMATOR OF DRIFT PARAMETERS IN DIFFUSION
MODEL

SNJEZANA LUBURA STRUNJAK AND MILJENKO HUZAK

University of Zagreb, Croatia

ABSTRACT. We assume that the diffusion X satisfies a stochastic
differential equation of the form: dX; = u(Xg,0)dt + oov(X¢)dWy, with
unknown drift parameter # and known diffusion coefficient parameter og.
We prove that approximate maximum likelihood estimator of drift param-
eter 6, obtained from discrete observations (Xin,,,0 <4< n) along fixed
time interval [0, 7], and when A,, = % tends to zero, is locally asymptotic
mixed normal, with covariance matrix which depends on MLE f obtained
from continuous observations (X¢,0 < t < T') along fixed time interval
[0,T], and on path (X:,0 <t <T).

1. INTRODUCTION

Let W = (Wy,t > 0) be a one-dimensional standard Brownian motion
defined on filtered probability space (2, F, (Ft)i>0,P). We suppose that fil-
tration (Fy)¢>o0 is the smallest one such that satisfies the usual conditions and
to which W is adapted. Let X = (X;,t > 0) be a one-dimensional diffusion
which satisfies It6’s stochastic differential equation (SDE) of the form (for
details see [19])

(11) dXt = ‘LL(Xt, Q)dt + O'()I/(Xt)th, X() = Xy, t Z 0,
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where v and u are real functions and xg is a given deterministic initial value
of X. For example, if both functions v and (-, ) are locally Lipschitz, then
diffusion given by (1.1) has strong solution, see [20, Theorem V.12.1].

Let 6y and og be true values of drift parameter and diffusion coefficient
parameter respectively. We assume that o9 > 0 is known. Let 7' > 0 be a
fixed real number and 0 =: tg < t;1 < --- < t, :=7T, n € N be a deterministic
subdivision of segment [0, T] such that t; = iA,,i =0,...,n, A, = % Given
a discrete observation (Xy,,0 < ¢ < n) of the trajectory (X;,¢ € [0,T7]), the
problem is to estimate the unknown drift parameter 6 of X. We assume that
0 belongs to the parameter space © which is a relatively compact, open and
convex set in Euclidean space R?.

The maximum likelihood estimator (MLE) of drift parameters based on
continuous observation (X, ¢t € [0,T]) has good properties, such as consis-
tency and asymptotic efficiency when T goes to infinity in case of ergodic
diffusions (see [3,16]). The same holds for MLE based on discrete observa-
tions (see [4]) but in most cases it can not be explicitly calculated. Hence,
other methods of estimations have to be considered. In this paper we use
method based on a Gaussian approximation of the transition density (see
[14]) to construct contrast function used for getting approximate maximum
likelihood estimator (AMLE) of drift parameters based on discrete observa-
tions. We consider the simplest case based on approximation of diffusion X by
a solution to difference equation obtained from (1.1) by Euler approximation
of Riemann and It6 integrals (see [9,15]). In such a way obtained AMLE is
consistent and asymptotically normal in case of ergodic diffusions when nA,
goes to infinity (T — +o00) such that nA3 goes to zero (see [6]). In case when
T is fixed and A,, goes to zero it was proved that measurable AMLE exists,
and it converges to MLE based on continuous observations over [0,T] with
rate v/A,, in probability (see [15] for linear case, and [10] for general case).

The existence, measurability and some asymptotic properties of the
AMLE are proved in [15], under assumption that observations can be taken
only up to some maximal observational time 7', when A,, tends to zero and
under the assumption that the diffusion satisfies a linear SDE with completely
determined and constant diffusion coefficient function. The similar results are
proved in [10] in more general case (without assumption on linearity of SDE).

In this paper we prove that the difference between AMLE and MLE
based on continuous observations over fixed observational time interval [0, T7,
normed with \/A,, is asymptotically mixed normal when A,, goes to zero, and
that covariance matrix of the limit random vector depends on MLE and the
continuous trajectory. This result can be applied for estimations of AMLE’s
standard errors, and hence asymptotic confidence intervals for drift parame-
ters in ergodic diffusions case, which include a correction due to discretization,
for example, in a sense of Example 6.3 from Sect. 6.
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The paper is organized in the following way. In the next section we
introduce notation and definitions we need. The main results are presented
in Sect. 4, followed by proofs in Sect. 5. In the last section we will present
simulation study throughout two examples.

2. PRELIMINARIES

We denote by (-,-) the scalar product in the d-dimensional Euclidean
space R? and by || - || the induced norm. The drift parameter space © C R¢
is relatively compact, which means that its closure CI(©) is a compact set
in R, We will denote by E an open interval such that £ C R. We will
say that U is relatively compact in E if U C F and CI(U) is compact set
in E. If (,0) — f(z,0) is a real function then we will denote by D}’ f
the m-th partial derivatives with respect to 6 of the function f, m € N,
provided that they exist. If 6 — f(6) is a real-valued function defined on an
open subset of R?, then we will denote by D f(8), D?f(0) its first and second
derivatives with respect to 0, provided that they exist. Let K be a relatively
compact set in RY. We say that a partial derivative Dy f of a real function
f:ExCI(K) — R exists on E x CI(K) if there exists an open set UX C R%,
such that E x Cl(K) C E x UX | and an extension f of f, defined on E x UK,
such that Dy* f exists.

For fixed T > 0 let (Q, Fr, (Fi)o<i<7,P) be a given filtered probability
space. Let (Q, Fr,F = (Fi)o<t<r, P) be an extension of (Q, Fr, (Fi)o<i<T,P)
(for details see [11]). The extension is called very good if all martingales on the
space (Q, Fr, (Ft)o<i<T, P) are also martingales on (Q, Fr,F= (ﬁt)ogth, P).
Let A be some Polish space. In our case A will be the Skorokhod space
A = D([0,7),R%) or d-dimensional Euclidean space A = RY. Let (Z,) be
a sequence of A-valued random vectors, all defined on (Q, Fr, (F¢)o<i<t, P),
and let Z be an A-valued random vector defined on the extension (Q, Fr,F =
(F)o<i<T,P). We will say that (Z,) converges stably in law to Z, and write

Z, 2 7, if
lim E[Y f(Z,)] = E[Y f(2)],

n—oo

for all bounded continuous functions f: A — R and all bounded random
variable Y on (Q, Fr, (Ft)o<i<7,P). This kind of convergence is introduced by
Rényi (see [18]) and studied by Aldous and Eagleson (see [1]). Nice properties
of this kind of convergence can also be found in [12,11].

We will say that an R%valued random vector Y has mized normal dis-
tribution with Fpr-measurable random covariance matrix C = (Cjk)jykzl ,,,,, ds
and we write Y ~ MN(0,C) if
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(see [1]). If Y ~ MN(0,C), then Y has the same distribution as v/CZ,
where v/C is square symmetric root of C' and Z ~ N (0, I) is standard normal
random vector independent of Fp. An R%valued process (Yi)o<t<r is centered
Gaussian process if for all 0 < s; < s9 < -+ < s < T random matrix
(Ys,, .-, Ys,) € R¥* has multivariate normal distribution and E[Y;] = 0, t €
[0,7].

For n € N, let t; := iA,,7 = 0,...,n be an equidistant subdivision of
segment [0,7], A, = L. Let A% := max{j: t; < t} and F,; = Fy,,i =
0,...,n, n € N. For proving local mixed normality of the AMLE we use the
following theorem, which is a version of [11, Theorem 3-2], but with notation
adjusted for our article.

THEOREM 2.1. Let W be a one-dimensional Brownian motion on (Q, Fr,
F = (F)o<t<,P), and let X be Fi,-measurable square integrable R%-valued
random vectors. Let C = (C*) be continuous adapted process defined on
(Q,Fr, F = (Fo<i<r,P) such that Cy is positive semidefinite symmetric
d x d matriz for all t € [0,T]. Assume that next conditions hold:

AL,
. P
(2.1) sup || > B[ Fniall =0,
o<t<T =
AL,
Z(E[X?’jX?ﬂfn,i—l] — B[ | F it JED | Faima]) > CFF,
i=1
(2.2) Ve [0,T),jk=1,....d,

AL

23) Y _ENI (Wi, — W )[Faia] 20, Ve [0,T],
=1
" P

24) D BN I selFaioa] =0, Ve>0,
i=1
Al

25) D ENXI(Ne, = Nep_ )| Faica] 20, VEe[0,7),
i=1

where N is bounded Fi-martingale orthogonal to W.
Then we have

Al
Yxr 2y  onD(0,T],RY),
=1

where Y is a continuous process defined on a very good filtered extension
(Q, F,F = (F)o<i<t,P) of (Q, Fr,F = (Fi)o<t<T,P) and which, condition-
ally on o-field Fr, is centered Gaussian R*-valued process with independent
increments satisfying E[Y/YF|Fr] = €% t €0, T,k =1,....d.
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Let (y,,n € N) be a sequence of positive numbers and let Y = (V,,,n € N)
be a sequence of random vectors defined on some probability space. We will
say that Y is of order Op(7,), n € N, and we will write Y,, = Op(v,), if

(5—”, n € N) is bounded in probability, which means that

. T —1 o
Agrfoo hrrlnIP{'yn [Yn] > A} =0.

We will denote L*(P)-norm by | - [|1 := E[| - || and L?(P)-norm by || - ||z :=
E[(-)?].

3. ESTIMATION METHOD

Let us now introduce our AMLE of d-dimensional parameter 6 € ©. Let
X be a strong solution of SDE (1.1) for true parameter value 6y € © and
given Brownian motion W. If we discretize the SDE over interval [t;_1,t;] by
using the Euler discretization scheme, we get stochastic difference equation of
the form:

(31) Ztiizti—l = /’L(Zti—lﬂ9)(ti7ti*1)+aoy(zti—l)(Wtiiwti—1)7 Zy = Zo,

for 1 < i < n. If it exists, the solution of (3.1) is a discrete-time process
Z = (Zty, Zty, .., Zy,) which is an approximation of X on [0,7]. The log
likelihood function, shortly LLF, of the process Z, up to the constant not
depending on the parameter 6 is

2

2

i=1

(3.2) ™ 1n(02) 1 Z (zi — 2zim1 — wzi—1,0) (8 — ti1)) .

n(o,
0 o2 (zim1)(ti — ti1)

The contrast function is obtained from (3.2) by substituting vector (zo, ..., 25 )
with the discrete observations (X;,, X4, ,..., X, ) of the process X and ne-
glecting the part which does not depend on parameter 6:

(3.3) Ln(0) = Z": ((Xti = Xo J(Xe1,0) 1 pA(Xe,,0)(t - ti1)>

i=1 U§V2(Xti71) 2 0-81/2(th,71)

Here we assumed that v # 0 on the state space of X. A point of global
maximum 6, of the function (3.3), if it exists, is an estimator of the parameter
# which we call approximate maximum likelihood estimator, shortly AMLE.
Further in the text, if it is written point of maximum, it means point of global
maximum.

4. MAIN RESULTS

We assume that drift parameter space © is a relatively compact, open
and convex set in R?, d > 1, and state space E is an open interval in R.
Let the following assumptions be satisfied:
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(A1) For all § € O, there exists strong solution X of SDE (1.1) on time
interval [0, +00). This solution X has continuous paths with values in
E and if X' is any other solution of SDE (1.1), with the same Brownian
motion W, then the law of X’ is identical to the law of X.

(A2) For all § € Cl(©), function u(-,0): E — R is continuously differ-

entiable on E. Functions (z,0) — p(z,0), (x,0) — #:;Gju(x, 0),
2

(2,0) = Zu(z,0), (2,0) = Zu(z,0), (,0) — a%ia%%u(x,@) are
continuous on E x CIl(0), for all i, = 1,...,d. Function z — v(x) is
two-times continuously differentiable on E, and v(x) > 0 for all z € E.

(A3) For all m < d + 3, there exist partial derivatives Dy'u(z,0) and
%D’gzu(x, ) on ExCI(0). Furthermore, functions (z, 8) — Dy u(z, 9),
(x,0) — %D;’Lu(x, 0), m < d+ 3, are continuous on E x Cl(©).

Let

T T 2

be a continuous-time log-likelihood function, shortly LLF (see [5]).

(A4) Forallw € Q, LLF 0 — L7 (6) = L1 (w, 6) has a unique point of global
maximum 6(w) € ©, and D?Lr(f) < 0 which means that Hessian
D?L7(0) is a negatively definite matrix.

For example, the general growth diffusion process (see [8]) satisfies assump-
tions (A1-3) obviously, and (A4) on an event which probability tends to unity.
Generally, these assumptions (and in the same sense) satisfies any ergodic
diffusion such that (H1B-5B) from [10] hold. More precisely, these diffusions
have a property that a.s. there exists a time 7 > 0 such that for all times
T > 7, (A4) holds. Diffusions that satisfy (A4) with certainty are those that
satisfy (A1-3) and have drift functions that are linear combinations of linearly
independent functions defined on state space with coefficients equal to drift
parameters such that the values of (vector) parameters are in © = R? (see
[3]). For such diffusions we will say briefly that are linear in drift parameters.
To prove that the main results of this paper hold for diffusions linear in drift
parameters we do not need the assumption of relatively compactness of drift
parameter space (see Remark 5.5).

For each 6 € © let ¥(0) be d x d random matrix which jk component is
defined by

ds.

syt = L /T i 2 K 0) 0 5 (X 0)

2/ Yor vA(Xs) O v2(Xs)
Under conditions (A1)-(A4) in [10] is proved that there exists a sequence
(0n,n € N) C O of Fpr-measurable random vectors such that the following
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hold:
(4.2) limP{DL,(6,) =0} =1,

(4.3) b, 5 0,n — oo,
if (A, € N) is any other sequence of random vectors which

(4.4) satisfies (4.2) and (4.3), then limP{d, = 6,} =1,

—0||,n € N) is bounded in probability.

1 A
4.5 ——||0n
@ (ol
(4.2)-(4.5) are consequences of

(4.6)  sup||D"Ln(0) — D"Ly(0)|| = Op(v/An), neNr=1,2,
6cO

and so called the general theorem on approximate maximum likelihood esti-
mation (see [9]). In the proof of this theorem 6, is constructed to be a point
of global maximum of L,, in © on an event with probability tending to unity,
and hence we can take 6,, = én on this event. It is sufficient to assume that
(0, n € N) satisfies (4.2)-(4.5), and all of our results are stated for that kind
of sequence.

THEOREM 4.1. Assume that (A1)-(A4) hold. Assume that (0,,n € N)
satisfies (4.2)-(4.5). Then
1
VA,
For real symmetric d x d matrix C let us denote by Ax(C) its k-th in
order eigenvalue in the ordered sequence of eigenvalues A\;(C) < A (C) <
-+ < Ag(C). Let us additionally assume:
(A5) For all w € Q, matrix E(wA,é(w)) is regular. There exists a constant
Az > 0 such that A\ (X(w,0(w)) > Ay, for all w € Q.
For n € N let us define random matrix ¥,,(0) by defining its jk- component
in the following way:

(6, — 0) 2 MN(0, (D*Ly(6)) "' S(8) (D2 Ly (6)) ).

j - 1 80:“’(th 59) 69k/j/(Xt - 59)
Jjk _ -4 i J i—1 i—1
En(e) Z 21/ (th,—l)aﬁ'«( V2(Xt.;,1) )658( V2(Xt.;,1) )Am

where 06, := %,j =1,...,d. It is obvious, from the definition, that %,,(8)’*

can be considered as a discretization of %(6)7*.

COROLLARY 4.2. Assume that (A1)-(A5) hold. Assume that (0,,n € N)
satisfies (4.2)-(4.5). Then

( zn(en)) - D?L,,(0,) !

VA,

- A st
(971 - 9)1{27,,(@”) is regular matriz} = N(O7 I)
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REMARK 4.3. In the case when the subdivision of the segment [0, 7] is
not equidistant, all of the results will still hold under the assumptions that
lim, A,, = 0 and lim,,_,o max;—1,.. » h’g—A" =0, where h; :=t; —t;_1,1 =
1,...,n, A, := maxi<;<n hy, and by replacing 3, (6) with >, (#) such that

- , "1 0;u(Xt,_,,0) 00 u( Xy, ,,0)

k 4 i—1 i—1
En(e)j = E 51/ (Xtifl)&c( ;/2( . ) )81( 1/2( . ) )hz
=1 i—1 7—1

5. PROOFS

We will prove Theorem 4.1 in number of steps. Some of the lemmas will
be proved in Appendix.

Let 6 be a continuous-time MLE, and 6,, be an AMLE which satisfies
(4.2)-(4.5). Using mean value theorem for the function DL, which is, due to
(A2), continuously differentiable on O, for all w € £, we get

DL,(0) = DL, (0) + 4,0 - 0),

for all 0 € ©, where A; , := fol D2L, (6 4+ v(0 — 0))dv, and integration is by
components. If we put 6 = 0,,, then on the event {DL,,(6,) = 0} we have
0= DLy (0,) = DL () + A; 5 (6 — 0),
where A; ; = fol D2L,, (0 +v(0, — 0))dv. Since DLy () = 0, we can write
Agg (6 —0) = —DLy(6) = DL7(6) — DL, (0)

which implies

) 1
v
on the event {DL,(0,) = 0}.

First, in Theorem 5.3 we will prove that the right hand side of equation
(5.1) converges stably in law, for fixed parameter § € ©, and then in Theorem

5.4 we will prove the same result but for MLE 0. After that we will prove
Theorem 4.1.

Let 8 € © be fixed, arbitrary parameter value. Let us denote X; :=
Xt,,1=0,...,n,and 96; := a%j,j =1,...,d. Define functions

00;u(x,0)
gj(x) = gj(x,0) = %’3 =1,...,d,

—_

(5.1) A (6n — 0) = (DL7(6) — DL, (6)),

VA,

and denote by g’ and g7 its first and second derivative with respect to z.
Define functions

(o) = (e g) o (2, 0)00;0(2,6)
f]( ) f]( 79) 1/2(1') ’

and denote by f7 and f}' its first and second derivative with respect to .

i=1,...,d,
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. o? ron
i 17 5ok gz v V" are bounded.

(A6) Functions p, v, %,gj,g;,g;’,fj,
REMARK 5.1. The assumption (A6) is only here for technical reasons.
First, we will prove our results under assumption (A6), and then we will

prove our results without that assumption.

LEMMA 5.2. Assume that (A1)-(A4), (A6) hold. Then, for arbitrary fized
6 € © we have
1

VA,

(DL1(0) — DLn(0)) = Zn(6)

i=1Jt;_y

7ol R L ’
>ict ftil,l v(Xs) 'fti—l 9o (X)) V(X)) AWy dW

Sy [ v(Xa) [ g (Xu)v(X) AWV
+ :

where Z,(0) 5 0,n — +oo.
PROOF. For details see the Appendix. O

THEOREM b5.3. Assume that (A1)-(A4) hold. Then, for arbitrary fized
parameter § € © we have

(5.2) \/LA_n(DLT(e) ~DL,(0) £ v (0),
where Y () ~ MN(0,%(0)).
PROOF. First, let us assume that (A6) holds.
Let us denote
R{(@) = gé(Xt)’/(Xt) = g;»(Xt, O)v(Xt),
hence

T
¥(0)F = 5/ V(X )RIO)RY(O)ds,  jk=1,....d
0

Let us define continuous adapted process C' = (C’tj k)ogth by

) 1 [t )
=3 / (XORIORSO)ds,  jk=1,....d,te[0,T)
0

and define F;,-measurable random vectors xI',¢ =1,...,n by
! 2 w(X) [ RL(O)AW,dW,
n : 1 o o
Xi = : = A :
VA v ,
X fio v(Xs) [) | RE(O)dW,dW

We will prove that for C' and ;' Theorem 2.1 holds. Random vectors xj
are square integrable due to (A6). Because of its definition, C; is symmetric
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positive semidefinite random matrix, for all ¢ € [0,T]. Using notation F,, ; :=
Fi,i=1,...,n, we have

EX/7|Friia]) =0, Vi=1,....d,Vi=1,...,n

hence (2.1) is trivially satisfied.
Let € > 0. Then, there exists constant kg > 0, such that

H ZE HX’L || 1{||X ||>€}|-Fnz 1 Hl Z Z < kQA T
=1 =

=1

hence (2.4) is satisfied. The last inequality and existence of kg follows in a way
similar to the proof of the existence of constant ko (see the proof of Lemma
5.2 in Appendix).

Let N = (Ny)o<i<r be any bounded F;-martingal orthogonal to W. Since
(Ft)o<t<t is generated by Brownian motion W, it follows from martingale
representation theorem (see [13, Theorem II1.4.33]) that any F;- martingale
can be represented as the sum of constant term and a stochastic integral with
respect to W. Since Vy is bounded F;-martingale orthogonal to W, it follows
that N is equal to constant, so (2.5) is satisfied.

Let us recall that 6y is the true value of (vector) drift parameter. For
j=1,...,d, we have

ZE[X?J (Wtz - Wti—l)"rnai_l]

Afl ti s
_ \/1A_ZE[/:&- V(XS)/t_ R (0)AW,,ds| Fp i 1]
A;’ ti s
\/1A_n Z:E[/tm1(/tm(1’/l(Xu)ﬂ(Xu790) + %I/"(X Yoar?(Xy))du)-

(2

(5.3) - ( SRg(e)quds)m,i_I]

ti—1

(5.4) \/_Aij@ /j 1 /:I(X Yoor(Xa)dW,) /11;:5 VAW ds)| Foi1]-

If v = ¢ > 0 is a constant function, then (2.3) is trivially satisfied, because

t
A’IL

=B v [ ROawdsiF ]

A7, t;
c i
:\/T E E/ / R'7 deS|fnfL 1]
=1
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So, let us assume that v is not a constant function. There exist constants
klO; k‘n such that

Ait t; s
H\/% ;E[/til(/til(V/(Xu)M(Xm o) + %V"(Xu)agzﬁ(Xu))du)-

: (/ RI(0)dW,)ds|Fri1]lli < krovV/ALT,

ti—1
and

Ay, t; 5 s i
W%_ﬂ;uz[ [ vxdeacesaw ([ Ri@dwdsF.)

ti—1 Jti—1 ti—1

At
1 n ti s .
~ =3 Bl / / V(X ) oor(Xu) R (6)duds| Frg1]|
ni_q ti—1 Jti—1
< kuvAT,

so (5.3) converges in L'-norm to zero and (5.4) converges almost surely to zero,
hence (2.3) is satisfied. For example, for proving the existence of constant k1o
let us define M := supy< <7 | [y R%(0)dW,|. We have

t
A‘H.

IEH\/% Z;E[/t (/t (' (Xu)(Xu,00) + %””(Xu)ff%VQ(Xu))du)'

. (/s R (6)dW,,)ds| Fy.i—1]l]

ti—1

<

1

ti—1 Jtioa

A:m ti s
SB[ ([ X 0) + 52 (X (X))

: (/ R],(6)dW.,,)ds]
ti—1

Al

consty

<

SN/ Z/ 7’ (s — ti_1)E[M]ds < constar/A,TE[M].

From Doob’s inequality we conclude that E[M] < +o0, and we define k1o :=
constsE[M].
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It is only left to prove that (2.2) is satisfied. Let 1 < j < k < d. Then

Al
> BN X Fica] = B | P JEIXG | Fsi-1])
i=1
1 Afl ti S
65)  —a D E[ R [ IEORLOW.F]
i1 ti—1 ti—a
1St s
- (i,k) pJ .
(5.6) + A ZE[/MV (XS)/tHJu R2(0)dW,ds| Fpi1]
" t
1 n i S .
(5.7) Y / VA(X,) [ RLO)RE)duds| Foia],
" i=1 ti-1 ti—1
where J{") = ft 0)dW,. If v is constant function, then (5.5) and

(5.6) are equal to zero, and the proof that (5.7) converges in probability to
C’tjk,Vt € [0, 7] would stay the same as in the rest of the proof. So, let us
assume that v is not a constant function. It can be shown that there exist
constants k12, k13, such that

At
1 n ti S .
I3 D B[ ) [ I RO AW, il < b/ B (T + V),
T oi=1 ti—1

ti—1

At
1 n ti S ) )
I SB[ A [ I ROl Pl < s/ BT+ V)
=1 ti—1

ti—1

so (5.5) and (5.6) converge in probability to zero. It is left to prove that (5.7)
converges in probability to C} ¥ There exists constant k14 such that

At
1 n ti s )
—N'E 2(x, 7 (9)RE nyi-1] =
w93 [/t“w ) /t”Ru<e>Ru<e>duds|f, N

At
1 n ti s )

=+ (E[ / (X)) / RI(0)RE(0)duds|F, ;1)
n ti_1 ti—1

=1 i

(5.8) - /t i V*(X,) / ) RI(0)RE (0)duds)

(5.9) Z X, /t RI(0)R" (0)duds,
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and

t
n

||AinZ(E[/t VQ(XS)/# Ri(e)Rﬁ(@)dudslfn,i—l]

i=1 i
ti S )

- / V2(X,) / RI(0)RE (6)duds)||2 < kia/A VT,
ti—1 ti—1

hence (5.8) converges in probability to zero.
We will show that (5.9) converges in probability to CY " Let

[(u, 5)(w) := (V*(Xs) RL(0) Ry (9)) (w)

be a function defined on [0, 7] x [0, T] x Q. For fixed w € Q function I(u, s)(w)
is bounded, continuous function on [0, 7| x [0, T'], which means that there exist
uf(w), s¥(w) € [ti—1,t;] such that u}(w) < sf(w) and

t;
/ / usduds——l(l, s7), ie{l,...,n}.
ti—1 Jti1

Hence,
1 Aft t; S
A—Z / A (X,) / RI(0)RF (0)duds — CI*
no—1Jti- ti—1
YN e
(5.10) =3 St - 3 [ PEORORE O
0

(5.11) Z% ug, s7) = 1w, ug)).

Continuity of integrand function assures that there exist some t*(w) € [tae , ],
such that 1 ffAt V2 (X,)RI(O)RE(0)ds = & (t—t 40 )02 (X~ )R- () RE (8), there-

fore for (5.10) we have

n n 1 t
> St - 5 [ AXIRORO)s -
= 2 2 Jo
SN 1
=D A Xu) R (ORG (0) + 5 (8 — tag v (Xe ) BL () RE (0)
i=1

t t
-5 [ FEORORO - 5 [ AXORIOR ) S o,
0 tut

n
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hence (5.10) converges in probability to zero. For (5.11) there exists constant
k15 such that we have

N An A
S 1)~ )] = | S (P (o) (X ) B ()RS (6)
=1 =1

A? A
S k15 Z 7n|1/2(X5:) - 1/2(Xu;*) .
=1
Let € > 0. For fixed w € Q the function t — 1?(X;(w)) is continuous on [0, 77,
so it is uniformly continuous. It means that

(36 > 0)(Vs,t € [0,T])(|s — t] < ) = [V*(Xs(w)) — V(X (w))]| < e

We omitted writing w, because it is fixed. lim, o, A, = 0, so there exists
no € N such that for all n > ng holds A,, < é. Then, for all n > ng we have

t
A‘VL

SLMLA(X,) — 12 (Xur)

< T
€—
2

— 2 )

i=1
which means that (5.11) converges almost surely to zero 0, so it converges in
probability to zero.

Therefore, conditions of Theorem 2.1 are satisfied provided that (A6)
holds. If we denote by 77 projection function 77 : D([0, T],RY) — R?, defined
by mr((Xs,s € [0,T])) := Xp, then by [2, Theorem 12.5] projection 7p is
continuous function. Notice that

At
A (DLr(6) — DLL(0) = mr (3 Xt € 0.70)) + Z(6)
\/Fn n 7 Y n Y
hence by definition and properties of stable convergence in law, our theorem
holds under assumption (A6).

In general case (i.e. without assumption (A6)), let (Ey, M € N) be a
sequence of open and relatively compact subsets of FE such that zg € Fj,
Cl(Ewxm) C Epm41,YM € N and US5_; Ey = E. For that sequence and the
solution (X¢,t > 0) of our SDE (1.1) define for M € N

Ty :=1inf{t > 0: X; € Ef,},

i=1

where inf () = +oo. Since X exists on [0,00) and it is continuous process,
(Thvi, M € N) is an increasing sequence of stopping times such that Ths 1
+ooa.s., when M — +oo. Let (®p, M € N) be a sequence of C*(E)-
functions such that ®); = 1 on CI(E)), and ®,, = 0 on Cl(Ep41)°. Let
us define the functions pps(x,0) := ®pr(z)u(x, ), (x,0) € E x © and let vy
be continuous functions on E such that va(xz) = v(z) for x € CI(Ey) and
vy (z) = const for & € E\CI(Ep41) (for example, vas can be defined as
vpm(x) = @p(z)v(w) + (1 — @ar(x))enr, where ey := mingecoi(g,,,,) v(2))-
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The functions us, v are bounded and satisfy assumptions (A2) and (A3).
Let, for a fixed M € N, the process XM = (XM,0 <t < T) be a unique
strong solution of the SDE (see [17])

dXM = pp (XM, 00)dt + oovar(XM)aWw,, XM = xg,20 € E.

Moreover, for almost all w € Q and all ¢ € [0,Th(w)], it holds X;(w) =
(XM);(w). Let Y(6) be a random vector such that Y (0) = 1/%(0)Z, where Z
is standard normal random vector independent of Fpr. Let Yjs be a random
vector such that Yy, (0) = /2 (0)Z, where X/(0) is a random matrix 3(6)
from first part of this proof which we apply on process X and functions
vpr and ppy. Let F(DLT m(0) — DL, p(0)) be the left hand side of (5.2)

for the process XM and the functions vy, and ptar- Then, from first part of
the proof —— (DLT m(0) — DL, p(6)) 2 Y (0). With notation Z, pr(0) :=
\/%"(DLTJV[( ) — DL, n(6)) we can write Z,, ar(0) 2L ¥)1(6). Let us denote

by Z,(0) := ﬁ(DLT(H) — DL,(#)). We want to show that Z,(0) =1 Y (6),
for fixed 6 € ©.

Let f: R? — R be bounded continuous function, and let U be bounded
Fr-measurable random variable. Let B, H > 0 be constants such that |f| < H
and |U| < B. Now, we have:

[E[f(Zn(0))U] = E[f(Y(0))U]]
< |E[f(Znm(0) Uiz, >1y] — E[f(Yar(0 NULry, syl +2BHP(Tyr < T).

Ulyr,>7y is bounded, Fr-measurable random variable, and Z, a(0) =
Y (0), hence

lim|E[f(Z,(0))U] — E[f(Y(0))U]| < 2BHP(Ty < T),

and by letting M — oo we have

lim|E[f(Z,,(6))U] — E[f(Y (0))U]] = 0,
which implies

lim [E[f(Z.(6))U] = E[f (Y (8))U]| = 0,
that proves our statement. a

THEOREM 5.4. Assume that (A1)-(A4) hold. Then
1

(DL7(0) — DL, (0)) 2 Y (6),

5

where Y (6) ~ MN(0,%(6)).
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REMARK 5.5. From the proofs of Lemma 5.2 and Theorem 5.3 the follow-
ing holds. If X is a diffusion linear in drift parameters then the statement of
Lemma 5.2 holds directly with 6 replaced with 6. In that case the double-Itd
integral term from the lemma does not depend on 6. Hence the statement of
Theorem 5.4 can be proved directly by following the proof of Theorem 5.3 and
so without need for the additional assumption about relatively compactness
of ©. Consequently Y () does not depend on 6.

PRrROOF. Let Z,(0) = Z,(w,0) := \/%R(DLT(M,H) — DL, (w,6)). Since
6 is Fr- measurable random vector, see [9, Lema 4.1.], and the functions
(w,0) = Zy, = Zp(w,0) are Fr @ B(O)-measurable (see the beginning of the
proof of [9, Lemma 4.2.]), for each n, then w — Z,(0) = Z,(w,0(w)) are
Fr-measurable functions. We want to prove that

Zn(0) 2 Y (6).

First, let us assume that all of the functions which appear in the proof are
bounded. Let t € R? be arbitrary, fixed, vector, and let U be bounded Fr-
measurable random variable. Let B > 0 be a constant such that |U| < B.
For each n € N, let us define the functions F,, in the following way:

Fo(w,0) := cos({t, Zn(w,0))) + isin({t, Zn(w, 0))) — e~ % Ztj=r tits 2@

For all w € Q, the functions 0 — F,(0) = F,(w,0) are continuously differ-
entiable on ©, and hence there exist nonnegative random variable G,, and
constant R > 0 (not depending on n) such that E[G,,] < R and

(5.12) |Fn(91) — Fn(92)| < Gn||91 — 92”, Vn € N,V91,92 € 0.

Namely, since the rationals from © N Q¢ are dense in © and for i = 1,...,d,
|08, F,,(0)| are continuous on compact C1(0©),

d d
G, = sup 00, F,(0) = sup 00, F, (0
oup D0 O) = s 33 I00EO)

is bounded and measurable, i.e. random variable.
By [1, Proposition 1] it is enough to prove that
lim |E[F,, (§)U]] = 0.
n

Let € > 0 be arbitrary, fixed real number. Define 0 := 555. For all § € ©,
let K(0,5) be a open ball in R? with center 6 and radius §. Since CI(©) is
compact set and © C CI(0) C yce K (0, 6), there exist finite number of balls

K(6;,6),l =1,..., N such that © C U, K(6;,6) and 6, € ©,l = 1,...,N.
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Let us define a finite partition {K1,..., Ky} of © in the following way:
K1 = K(Gl,d) ne
K2 = K(Gg,é)ﬂ@ﬂKf

Ky = K(@N,(S)ﬂ@ﬂKfﬂKgﬂ---ﬂKﬁ,il.
This partition does not depend on subdivision of the segment [0,7]. Since

N
1= 1{96@} =20 1{g€Kl}, we have

N
ELE O] = | S EIE0)UL e, )| =

= | ZE[(Fn(é) - Fn(el))Ul{éeKl}] + ZE[Fn(Ql)Ul{éeKl}“

=1 =1
N
(513) < | EI(Fu(8) — Fa(O))ULe sl + |ZE Ul eyl

Events {{0 € K },...,{f € Ky}} make complete system of events for ©. On
the event {f € K;} holds ||§ — 6;]] < J, so from (5.12) it follows

N N
> EIFa () ~ Fa(00)U1 ey )| < S ENFa () — Fu (01U o]

=1
N N
< BY E[Gnllf = 011 5er,y] <BSY E[Gnl gey)]
=1 =1

= BOE[G,] < BR6= %

Since 6 is Fr - measurable random vector, it implies that U1 {0eK,} is bounded,

Fr-measurable random variable, I = 1,..., N. Theorem 5.3 and [1, Proposi-
tion 1] implies

=0, I=1,...,N,

liTILn E[Fn(el)Ul{éeKz}]

which yields

hm|ZE (00U e ey ]l =

Let ng = no(e) € N be natural number such that for all n > ng

€
|ZE {eem}“ 9°
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For (5.13) we have

N N
E[F.(0)U]] < | E[(Fa(0) = Fa(0)) ULyl +1 D S EIFL (00U ey
1=1 1=1
<S48 vn>
=9 9 =€, n = no,
so the theorem holds for bounded functions. In the general case, let us define
stopping times T as in the proof ofATheorem 5.3. Let 0 be a solution of
the equation DLy ar(6) = 0. Since 6 is a unique solution of DLp(6) = 0,
and DLy = DLy on {Th > T} x ©, it implies that 65 and 6 coincide
on {T > T}. In the first part of the proof we proved ﬁ(DLT,M(éM) -
DLy (6a1)) 2 Yar(Oar), shortly Zp a(Oa) 2 Yar(nr). Let f: R4 — R

be bounded continuous function and let H > 0 be a real number such that
|f(z)| < H,Vz € R,

[E[f(Zn(0))U] — E[f(Y (0))U]|
< |E[f(Zn,M(éM))U1{TM>T}] - IF:[f(Y*IV[(éfw))(]]'{TM>T}]|
+ 2BHP(Ty <T).
Since Ul{TM>T} is bounded, Fpr-measurable random variable and Zn,M(éM)
2 Yar(Oar), we have
Tm[E[f(Z,(6))U) ~ E[f (Y (6)U]] < 2BHP(T; < T),

and by letting M — oo, we get

mlE[f (Z.(6))U] — E[f(Y (6))U]] = 0,
which implies
lim [E[f (2, (6))U] ~ ELf(Y (9))U]| = 0.
0

LEMMA 5.6. Assume that (A1)-(A4) hold. Assume that (0,,,n € N) sat-
isfies (4.2)-(4.5). Then
1 o A\ st A
Ay, <=0, —0) £ Y (0),

where Y (0) ~ MN(0,%(6)).

PROOF. First, let v~! be a bounded function and let y, v and all of the
functions which appear in the proof be bounded. Since (4.2) holds, it implies
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P P A A
that 1{DL"(9’"):0} — 1 and 1{DL"(9’");£0} — 0. For Aé7§7l\/%n(0n — 9) holds

1 .
1 . .
= \/A_n(DLT(é’) —DLn(0)1ipL, 6,)=0}

1 _ ~
+ A4, T(Hn —0)1(pL, 3,)20}-

n

Theorem 5.4 and [12, (2.2.5)] imply

1 A A o o
(= (PLr(0) = DLu(0): Lpr, 0,1=0)) = (Y (), 1)
hence from [1, Theorem 1] follows that
1 A A o
7= (PL2(9) = DLa(B)1 (1, 3.)=0) 2Y(0).

It holds

1 - N 1 _ R
1455, —\/A—n(on =) pL, @203l < ||Aé,gn|\—\/A—n||9n =011 {pL, (8,20}

P i A .
LpL,(8,)203 — 0 and sequences [[Aj; | and \/%RHG,I — 0|| are bounded in

probability, so we can conclude that A, én\/;A_(é" - é)l{DLn(én):,éO} 5 0,

hence by [11, (2.2)] this theorem holds for bounded functions. For general
case, we define a sequence of stopping times T (as in the proof of Theorem
5.4). Let éM be defined in the same way as in Theorem 5.4. Let én,M
be a sequence which satisfies (4.2)-(4.5) for the functions pas, vy and the
process XM, Since (4.4) holds, we have lim, P(0,, ps = 0,|Tn > T) = 1.
Let f be bounded real function, and U be a bounded random variable. Let
B, H > 0 be a constants such that |[U| < B and |f| < H. Then, with definition

Apy 5.0 = fol D?%Ly, 01 (01 + v(02 — 01))dv, we have

1 = N .

ELf (43,5, — (0 — 6)U) - EF (Y (O]

1 _ ~
< |E[f(Aé,én,M\/T(9n ULy >1y Y46, 2=,

—E[f(Yar(0n))U Ly, >1y]| + 2BHP(Tay < T)
+ BHP(0 01 # 00, Tas > T),

and the proof is over once we let first n — 400, and then M — +4oc0. O
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LEMMA 5.7. Assume that (A1)-(A4) hold. Assume that (0,,,n € N) sat-
isfies (4.2)-(4.5). Then

1
(5.14) / D2Lr(8) — DL (6 + v(By — 0))dv 5 0.
0
Proor. It is sufficient to prove that sup,c 1 |D2Lr(0) — D2Lr(0 +
v(0, — 0))]| 5 0. We will prove that sup,¢po 1) F(0,,v) 5 0, for the functions
F(8,0) = F(w,6,0) := | D*Lr(w,0(w)) — D*Lr(w,0(w) + (8 — 6(w)))]|
For details see the Appendix. O

LEMMA 5.8. Assume that (A1)-(A4) hold. Assume that (0,,n € N) sat-
isfies (4.2)-(4.5). Then

R R
5.15 D*Lr (0 6, — 0) = MN(0,%(h)).
(5.15) 7(0) /_An( ) (0,%(6))
PROOF. We will prove that the sequence D2Ly(6)—= (6, — 0) can be

VA,
written as the sum of the sequence which converges in probability to zero and

the sequence which converges stably in law to M N(0,%(0)). For details see
the Appendix. O

LEMMA 5.9. Assume that (A1)-(A4) hold. Assume that (0,,n € N) sat-
isfies (4.2)-(4.5). Then

D2L,(6,) \/1A_n(é" —0) 2L v (d),
ProoF.
D2Ln(9n)\/%_n(9n —0)
= (D*L0(0) = D*Li(6,)) <=0, ~ )
+ (D2Lo(0,) — D2Lo(0)) \/1A_n(9_” —0)+ DLy (d) \/1A_n(_” — ).

(4.6) implies
D2L,(0,) — D*Ly(0,) 5 0,

and since the sequence ﬁ(én —0) is bounded in probability, it follows that

(D?L,(0,) — D*L1(6,))

From Lemma 5.7, when v = 1, we get

D2Ly(0,) — D*Ly(6) 5 0,
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hence
(DXL (0,) — DXL (0))—e (6, — 8) 55 0
T\Un T \/A_n n .
Lemma 5.8 and [11, (2.2)] imply the conclusion. O

LEMMA 5.10. Assume that (A1)-(A5) hold. Assume that (0,,,n € N)
satisfies (4.2)-(4.5). Then

-1
- I
(V=0) 02,66, - 6) 2% N0
PrOOF. This Lemma is consequence of Lemma 5.9 and [1, Theorem 1].

O

LEMMA 5.11. Assume that (A1)-(A4) hold. Assume that (0,,n € N)
satisfies (4.2)-(4.5). Then
S (0) & 2(0).

ProOF. We will prove that each component %,,(6,,)’% can be written as
the sum of sequence which converges in probability to zero and the random
variable Y(6)7%. For details see the Appendix. O

LEMMA 5.12. Assume that (A1)-(A5) hold. Assume that (0,,,n € N)
satisfies (4.2)-(4.5). Then

lim P(X,(0,) is reqular matriz) = 1.
n—oo

PROOF. For details see the Appendix. O
5.1. Proofs of Theorem 4.1 and Corollary 4.2.

PROOF OF THEOREM 4.1. Since D2Ly(f) is regular symmetric matrix,
there exists (D2Lp(A))~!, and it is symmetric matrix. Since D2Lp(f) is
Fr-measurable random matrix, and multiplication with inverse is continuous
mapping, [1, Theorem 1] and Lemma 5.8 imply

e .
\/T_n(en —0) 2 (D*Lr(0))*MN(0,2(6)),
where (D2Lp(0))"*MN(0,%(0)) ~ MN(0,(D?>Lp(0))"'2(0)(D2Lyp(6))1).

O

PRrROOF OF COROLLARY 4.2. Using continuous mapping theorem, from
Lemma 5.11 and Lemma 5.12 it follows that

—1 —1
—_ ]:P ~
< E’ﬂ (971)> 1{Z,L(§n) is regular matrix} - < 2(9)) ) n — 0.
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_ -1 _ _ ~
For ( X (G’ﬂ)) D2L’ﬂ (971) \/1A_(9n79)1{2n(§w) is regular matrix} one may write

—1
— _ 1 _ o
( zn (en)) D2Ln(9n) \/A—(en - 9)1{Zn(9n) is regular matrix}

-1
= (( En( n)) 1{En(§n) is regular matrix}

—1
A _ 1 _ A
- (V=0) )D%&%uﬁ4%—m
1 1
2(0)) D*Ln(0n)——=(0, — 0).
+(Ve0) D60
Since D2Ln(§n)\/%"(§n —#),n € N converges stably in law (Lemma 5.9), it

also converges in distribution, which implies that this sequence is bounded in
probability. Hence, it follows that

-1
<( En(en)) 1{Z,L(§n) is regular matrix}

—1
" 1
(z@)>D%mm 6. —0) 50,
and Lemma 5.10 and [11, (2.2)] yields the result. O

6. SIMULATIONS
ExaAMPLE 6.1. SDE
dXt = G,Xtdt + th, X() = 0,

is given, where a € R is unknown parameter, and process is observed over fixed
time interval [0,T]. For n € N, define h = % and equidistant subdivision of
[0,T) with ¢; = ih, i = 1,...,n. Then MLE, based on the continuous-time
sample (X¢)¢ejo,7], @ is given by (see [16])

. X2 -T

= —F—.
2 [, XZdt

Let (X1,...,Xn) := (Xg,...,Xs,) be discrete random sample from the
model. For the simulation study, fOTX Zdt will be approximated by hY ;X2 ,,
hence a will be estimated by the formula

X2-T

1 0= ——7———.
(6 ) ¢ 2h Z?:l X’L'Qfl
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If we define the functions u(z,a) = ax,v(x) = 1, and ¢ = 1, then using (3.3)

we get
n

Ln(a) =) ((XZ- — X 1)Xi1a— —X2 ha >
i=1
from which we calculate AMLE a,,, which is given by formula
D 310 P (YD cy
D NP ¢

Therefore, all of the assumptions of Corollary 4.2 are satisfied, and we have

(6.2) ZXL (@, —a) 2 N(0,1).

Let —za be $-quantile of standard normal distribution. We simulated M
reahzatlons of discrete random sample (Xy,, ..., X: ) with parameter a = 2
over equidistant points t; = iA,,, where n = 2’“, T =1and A, = % Then
we calculated how many times values of the variable

(6.3) ——ZXL g —

are in the interval [~za,za] and we present that number as a percentage.
Results are presented in Tables 1, 2 and 3. Simulations showed (see Tables 1, 2

TABLE 1. M=100, a = 0.05

k|2 4 6 8 10 12 14 16
% | 051 0.55 0.82 0.84 0.90 0.97 0.95 0.96

TABLE 2. M=100, o = 0.01

k|2 4 6 8 10 12 14 16
% {052 0.72 0.83 091 095 098 1 0097

TABLE 3. M=1000, o = 0.05

k|2 4 6 8 10 12 14 16
% | 0.541 0.670 0.825 0.918 0.976 0.989 0.987 0.988

and 3) that increasing the number n causes increase in percentage of values of
variable (6.3) which are in the interval [~z4, 24 ], in the sense that percentage
becomes value near (1 — «) - 100%, what was expected.
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EXAMPLE 6.2. Gompertz model is given by SDE
dXt = (a — btht)Xtdt + O'QXtth, XO = 1,

where a,b € R are unknown parameters, and o2 = 0.84. Process is observed
over time-interval [0, T]. In this example, we define the functions pu(x,a,b) =
(a — blnz)z and v(z) = 2. MLE a,b of the parameters a,b are calculated
using [3, Equation 20] and given by

TfT In X dX, — fOT XLdXs . fOT In X,ds

L)oo X :
= T T
(Jy nXds)? =T [y (InX,)2ds
b [ InXds + [, -dX,
(6.4) i— o X

If (Xq,...,X,) = (X4,,...,Xs,) is discrete random sample from the model,
then using (3.3) we get

- (X,L —Xi_l)(a—blnXi_l) 1 (a—blnXi_1)2h
Ly(a,b) = - =
(@.0)=2 ( 0.84X;_; 2 0.84

i=1
Ly, is quadratic function of a and b, which means that there exists a point of
maximum of that function. Hence, AMLE a,, and b,, of the parameters a and
b can be calculated using formulas

Xi—Xi X=X
3 >ici penranll YiminXi —n3, o InXig

" Ty (InXiq)? —h(32, In X51)? 7
7 Xi—Xi
bph 3 I Xy + 300, St

T .

In this case MLE given by (6.4) can not be calculated exactly, so we will use
formulas (6.5) as their good approximation. For that purpose we used different
(much larger) number of points for calculating MLE then for AMLE. In this
way obtained estimate of MLE is not equal to estimate of AMLE. If we define
the functions p(z,a,b) = a — blnz, v(z) = z, then all of the assumptions of
Corollary 4.2 are satisfied, and we have

|| (\/Enm)_l DAL B0) =0~ O 2 3.

where 6 = (a,b), and matrices %,,(6,,) and D?L,,(f,,) are given by formulas
T T-h3iInXi ]

0\ — 2 2
En(tn) = l T-AY" InX;—1 T-2o37" InX;i1+h>37 (InX;—1)2
2 2

(6.5) ay, =

B 1 -T hzn, h’lX‘—l
9 _ L i=1 z
DL () = od [ RY P InX; 1 —hY . (InX; 1) } '
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We simulated M realizations of discrete random sample (Xi,,..., X, ) with
parameters a = 9.72, b = 3.7, over equidistant points t; = iA,,, where n = 2%,
T =1and A, = % We simulated in the way that n’ = 2! > 2% and we
use all of these points to estimate MLE 6 by using (6.5). Then we take sub-
sample of length n = 2* and calculate AMLE 6,, by (6.5). Then, we calculate
percentage of values

_ _ 1 _ ~ — _ 1 _ ~

Zn 9n 71D2Ln 9n T A 9n -0 ’ Z’r 9n 71D2Ln 9n T A 9n -0
((y/Zn(6n)) ()\/A_n( ): (\/ Zn(02)) ()\/A_n( )
which are in the interval [0, x?_,], where x?__, is (1 — a)-quantile of x? dis-
tribution with 2 degrees of freedom. Results are presented in Tables 4, 5, 6, 7
and 8.  Simulations showed (see Tables 6, 7, 8) that increase in number k

TABLE 4. M=100, «=0.025

o~

4 5 6 8 10 10 10 10 12 13
k|2 2 2 2 2 4 6 8 6 6
% {026 0.26 0.17 029 0.28 0.65 093 0.99 0.9 09
13 13 14 14 14 14 15 15 15 16 16
k|7 8 7 8 9 10 9 10 11 8 10
% {096 0.97 091 093 0.98 0.99 098 0.98 0.97 0.98 0.94

o~

TABLE 5. M=100, «=0.05

[ |4 5 6 8 10 10 10 10 12 13 13
k|2 2 2 2 2 4 6 3 6 6 7

% {021 023 0.14 022 0.25 0.53 090 0.99 0.84 0.88 0.93
[ |13 14 14 14 14 15 15 15 16 16 16
kE |8 7 8 9 10 9 10 11 8 10 12
% {090 091 0.92 096 0.98 0.95 098 0.95 0.94 0.93 0.94

TABLE 6. M=100, =0.05, [=12

k|4 ) 6 7 8 9 10 11
% |0.66 0.75 0.83 092 094 094 095 1

TABLE 7. M=100, =0.05, (=14

k|4 5 6 7 8 9 10 11 12 13
% |0.67 0.75 0.85 085 0.95 0.94 096 099 1 1
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TABLE 8. M=100, «=0.05, [=16

k|4 5 6 7 8 9

% |0.60 0.67 0.86 0.85 0.94 0.97
k |10 11 12 13 14 15
% (094 094 0.94 095 0.98 0.99

causes increase of percentage, in the sense that percentage, for large enough
k, is value close to 1 — «, for given a, what we expected.

EXAMPLE 6.3. Let us conAsider ergodic recurrent diffusion X which satis-
fies SDE (1.1). Let ényT and 07 be AMLE and MLE of drift parameters over
interval [0,T]. Let us assume that

1imT_>+oo éT = 90 a.s., 1imT_>+oo %DQLT(QAT) = _MO a.s.,
\/T(@T —0) = N(O,MO_I), T — 400, and limp_ 4 %E(dT) =Yy a.s.
for some d x d positive definite matrices My and Y. Since the difference
VT (0,1 — o) can be written in the form

VT (0,1 — 0) = \/AnTM + VT (07 — bp),

’ VA,
for large enough T and n one can say that the difference v/T' (On.7 — o)
asymptotically behaves as /A, (4 D>Ly(0r)) " (£%(07))2 Zr + (Mg )2 Z.
But if T is large enough, then we can say that the difference \/T(ényT —6o)
asymptotically behaves as \/A_n(—MO)_l(EO)%ZT + (Mgl)%Z, where Zr is
standard normal random vector independent of Fr, and Z is standard normal
random vector. For example, if we look at the variance at one dimensional
case

Var(y/Bu (DL (b)) ™ (:2(0r)* Zr + VT (B — ap))

= Var(\/A_n(%DQLT(éT))—l(%z(éT))%ZT) + Var(VT (61 — ap)),

then for simulation study we can use this variance to explain standard error
and to get asymptotic confidence intervals for true parameter value. This is
only the hint how to use the result presented in this paper in future simulation
study in the case of ergodic diffusions.
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APPENDIX

PROOF OF LEMMA 5.2. For the j-th component of \/%(DLT(H) -
DL,(6)), j=1,...,d, using It&’s formula, we get

1
DLyp(0) — DL,(0));
\/A_n( T( ) ( ))J
1 - [MXs,00) [
Al — S5 e " O 2 Xu
(A1) T2 M g G K
t; 1 o2
(A.2) \/_Z / / (-, 00)+ 1/ 20 V?)(Xy)du)ds
I & (X, 0 °
) = [ g aw s
no;—1vti-1 i—1
L
(A.4) _\/TZ t U_O( t FiX)V(X)dW,)ds
no;—1J%t-1 i—1
1 < [fiw(X, s od
w9 o= [ [t 0+ A K awa,
n =1/ ti-1 i—1
1 n ti S
A6 + (X / (X)) (X)) dWy, ) dW .
(A.6) \/A_n;ti,l( )(tH G (Xu)v(Xu)dWo)
If we define Z,, ;(0) :=(A.1)+(A.2)+(A.3)+(A.4)+(A.5), then
Zn1(0)
Zn(0) =
Zn,a(0)
If, for some j =1,...,d, g; is a constant function, then we define Z, ;(9) as

Zn,i(0) == (A.2) + (A.4). If, for some j =1,...,d, f; is a constant function,
then we define Z, ;(0) as Z, ;(0) := (A.1) + (A.3) + (A.5) + (A.6). So, the
conclusion and the proof of this Lemma stay the same in those special cases.
It is sufficient to prove that each component Z, ;(0),j = 1,...,d, of the vector
Z,(0) converges in probability to zero. Using (A6) it is easy to prove that
there exists constant k1 > 0, such that

|¢_Z/ Xweo /t (g;(Xu)u(Xu,eo)+%g§’(Xu)03V2(Xu))dU)ds

i—1

n t; s
w2 U%( | B0+ L1 o (s
no=1 Yti-1 i—1

§ kl V AnTa
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so we conclude that (A.1) + (A.2) converges in probability to zero.
Let us denote with p/ and p” first and second derivative of the function
x +— p(x,0p) with respect to z. For (A.3), we have

1SN Y (X600, [,
KZ/ —(/ XKW, )ds

=1

(A.7) / / 1 Xi- 1’90 95(Xu)V(Xu)dW,ds
jA_§ " /< (001, 00) + i (- B0)of) (X, )

(A.8) . (/: 1 Uiog;-(Xu)l/(Xu)qu)ds

(A.9) Z / | / [ 0000 - g0 (X)W

(A.10) i/t /t /t (5) (XA - (1 00 (X)Wl

(A11)  + n / (X, 00)v*(Xa) g, (X )duds,

21 ti—1

where (A.9)-(

.11) we get by applying 1t6’s formula for
S S
w (X, 00)v(Xy,)dW, g;-(Xu)V(Xu)qu.
ti—1 ti—1
In the case when pu(-,6) is a constant function, (A.3) would have the same
form as (A.7). It can be shown that there exist constants ks, k3, k4, k5, k¢ such
that

L& p(Xia,60)
E ——g; (X)) V(X)) dWyds||2 < kan/ A VT,
X[ [ X iWadsls < kBT

H\/—Z / / (X B0)(Xs o) + 34" (Xo, )30 (X))

QYR CBEEATIATAE

1 00

< ks AT

|¢%—n;/tiil/ti1(/til,u’(Xz,@o)l/(Xl)dWl)-(gé(Xu)V(Xu))qudsHQ
S k4An\/T
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1 n ti s u , ,
x93 / / K / KR - (4 (Ko O X)) ]
< ksANT
= > / / W (X 00)0 (X)g, (X duds| < ko /DT,

0 (A.7),(A.8),(A.9) and (A.10) converge in L?-norm to zero, and (A.11) con-
verges almost surely to zero. From this we conclude that (A.3) converges in
probability to zero.

For example, let us show how we can get constant k2. The other constants
in this article can be calculated in similar way. For (A.7) we have

Z 1;9() g/(Xu)I/(Xu)qudS)Q]

J

:ALZE[(/; /t Mig;mg;(Xu)u(Xu)quds)Q]

™ oi=1

Xi— ,9
Ta / / 20 g (X ) (X ) AW, ds)-
1<’L<k<n ti—1 Jtia
Xi_
. (/t /t Mgg(Xu)y(Xu)quds)]
k=1 Jth—1
1 Al 1790 10 2
A_ 95(Xu)v(Xu)dW.,ds)?]
<1” HX1.00) 1o (X )d)2d
_A_Z ti ti_ oo g]( u)y( U) u)] S
Ly Xi_1,0
A_Z / /t 0'01 O)g;(XU)V(Xu))2]duds
k2 o~ s ,
<A DAL S KA.

<
Il
A

For (A.4) there exists constant k7 such that

R I S
- (X )(X ) AW, )ds|a < kvr/ AW VT,
=X [ o B eanils < kvVa,
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from which follows that (A.4) converges in probability to zero. For (A.5) there
exists constant kg such that

1 <Xy, [° 1
o= 3 22 [ g XX b0) + 507 (X)),
n ;—1/ti—1 ti—1
< ks /AT,

from which we conclude that (A.5) converges in probability to zero. We can
conclude that Z,(#) converges in probability to zero. O

PRrRooOF OF LEMMA 5.7. Since
{ sup [(D*Lr(0) — D*Lr(0 + v(B, — 0)))ij| < €}
v€e(0,1]

1

C (| [ (D*Le@) = DLal@+ (6, — 6))sd] < o)

0
fori,j=1,...,d it is sufficient to prove that
sup ||D*Ly(8) — D*Ly(6 + v(8, — 6))|| - 0.

v€e(0,1]

Let us define the functions
F(6,v) = F(w,0,v) := ||D2LT(w, é(w)) — D2LT(w, é(w) +v(0 — é(w)))”

Function F' is uniformly continuous on CI(0) x [0, 1], for each w € € and the
functions sup,,cp 1) £'(6, v) are continuous for each w € €.
We want to prove that

sup F(0,,v) 5o.
v€e(0,1]
If it is not true then there exist €, > 0 such that for all k¥ € N exists ng > k
such that

(A.12) P(w: | sup F(w,0p, (w),v)] >€) > 6.
v€e(0,1]
(4.3) implies 0,,, 5 07, when k — 0o, hence there exist subsequence (énkj) of

the sequence (6, ) such that

énkj 5 é, Jj — oo.
Let us denote by € the event such that P(£29) = 1 and for all w € £ holds
énkj (w) = O(w),j — oco. Let w € Qy. Then, because of continuity of the
function sup,¢o 1) F(w,-,v), follows

sup F(w,0,, (w),v) = sup F(w,0(w),v) =0, j— oo,
vel0,1] ! vel0,1]
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from which we conclude that sup,¢jo 1) £ (anj ,v) converges almost surely to
0, when j7 — oo, hence it converges in probability to 0, which is contradiction

with (A.12). O
PROOF OF LEMMA 5.8. For the sequence D?Ly(0) \/lA—(én — 0) holds
A 1 _ A
D*Ly(0 0, — 0
1
A A _ A 1 _ A
= D?Ly(0) — D*L7(0 4 v(6,, — 0)))dv On —0)
/O ( T( T( ( \/A_n(

! 2 N n N 2 N n N 1 ) N
+ /O (DL (6 -+ 0(0 ~ 0) = DLy(0 + (B~ 0)))dv—= (0 )
+ Aé,én 1An (én - é)

Sequence ﬁ(én — 0) is bounded in probability, so by Lemma 5.7 follows

/ DPLr(@) — D*Li(d+ v(6, — 0))du

(4.6) yields sup,c (g i [[(D*Lr(8 + v(8, — 0)) — D*Ly(8 + v(8, — 9))[| = 0.

Hence, we can conclude that
1
/ (DL (0 + v(By, — 0)) — D2Lon(0 + v(Bry — 6)))dv 5 0,
0

which implies

1
/ (D2Lr(8 + v(0 — 0)) — DL (0 + v(6r — 6)))dv
0
Lemma 5.6 and [11, (2.2)] yields the conclusion. O

PrOOF OoF LEMMA 5.11. It is sufficient to prove that Lemma holds for
each jk component of matrices. Since

2 (én)jk =Y (én)jk - 2(§n)jk + 2(§n)jk - E(é)jk + E(é)jka
it is sufficient to prove that 3,,(,,)7* — %(6,,)7* _g 0 and 2(6,)7* — £+ 5
0. Let w € Q be fixed. Then the functions fjx : [0,7] — R, defined by

i) == fir(Xi(w), 0, (w)), are uniformly continuous. Let € > 0 be arbitrary
fixed number. Then, there exists § > 0, such that

- ~ €
|57t| <d = |fjk(X579n)*fjk(Xt79n)| < f
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Let ng € N, such that for all n > ng holds A,, < 4. Then

ti—1
€
< Z ?An =€,
i=1

50 D (0,)7F — $(6,)7% “5 0, which implies £,,(8,)7* — 2(8,)7* 5 0. For
fixed w € Q and s € [0,T] let fjrs: © — R be the function defined by
fjk,s(e) = fir(Xs(w),0). (A3) yields that fjk,s € CY(O), for all w € €, hence

n t; B B
50 (B0)7* — $(8,)*] = S / (X, 1 B) — Fx(XoB))ds
i=1"t

d
| Fjb,s(0n) = Fis O)] <Y sup 00, s (0)1[16 — 6.
= oco
If we assume that all of the functions are bounded, then there exists constant
M > 0 such that
|fjk,s(§n) - fjk,s(é)l < MHén - é”

Let € > 0 be arbitrary, fixed number. Let 6 > 0. Then, due to (4.3), there
exists ng € N such that for all n > ng holds

_ A )
P10, — 8] > ) < e.

MT
For n > ng let us define the set B, := {||6, — 0] < +2-}. Let w € E,,. Then
P PR - - 5 0
| fik,s(0n) = Fis O] = |(fik (Xs, 0n) = Fi(Xs, 0))] < M = 7,

for all s € [0,T], which implies

T -_— ~
| / (F3(Xe. ) — Fi5(Xa,0))ds| < 6.
0
hence

B(| / (i (Xar B) — Fi5(XanB))ds| > 8) < P(ES) < e,

which proves that %(6,)* — $(§)7* 5 0. For general case convergence in
probability can be proved by defining the stopping times T, as seen before.
O

ProOF OF LEMMA 5.12. Let € > 0 such that A\yy — € > 0. Lemma 5.11

implies A\ (X,(0,)) — M1 (X(6)) 5 0. Since ¥, (0y) is symmetric real matrix,
for all w € €2, it follows that

P(%,,(0,) is regular matrix) = P(A1(3,(6,)) > 0).
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Since

{M(Z002) = M(EO)] < € € Az =€ < Au(Sa(a))} S {0 < M (Ea(8))}

A P

we can conclude that P(A1 (2, (0,)) > 0) — 1, which proves our Lemma. 0O
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