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Abstract. We assume that the diffusion X satisfies a stochastic
differential equation of the form: dXt = µ(Xt, θ)dt + σ0ν(Xt)dWt, with
unknown drift parameter θ and known diffusion coefficient parameter σ0.
We prove that approximate maximum likelihood estimator of drift param-
eter θ̄n obtained from discrete observations (Xi∆n , 0 ≤ i ≤ n) along fixed

time interval [0, T ], and when ∆n = T

n
tends to zero, is locally asymptotic

mixed normal, with covariance matrix which depends on MLE θ̂ obtained
from continuous observations (Xt, 0 ≤ t ≤ T ) along fixed time interval
[0, T ], and on path (Xt, 0 ≤ t ≤ T ).

1. Introduction

Let W = (Wt, t ≥ 0) be a one-dimensional standard Brownian motion
defined on filtered probability space (Ω,F , (Ft)t≥0,P). We suppose that fil-
tration (Ft)t≥0 is the smallest one such that satisfies the usual conditions and
to which W is adapted. Let X = (Xt, t ≥ 0) be a one-dimensional diffusion
which satisfies Itô’s stochastic differential equation (SDE) of the form (for
details see [19])

(1.1) dXt = µ(Xt, θ)dt+ σ0ν(Xt)dWt, X0 = x0, t ≥ 0,
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where ν and µ are real functions and x0 is a given deterministic initial value
of X . For example, if both functions ν and µ(·, θ) are locally Lipschitz, then
diffusion given by (1.1) has strong solution, see [20, Theorem V.12.1].

Let θ0 and σ0 be true values of drift parameter and diffusion coefficient
parameter respectively. We assume that σ0 > 0 is known. Let T > 0 be a
fixed real number and 0 =: t0 < t1 < · · · < tn := T , n ∈ N be a deterministic
subdivision of segment [0, T ] such that ti = i∆n, i = 0, . . . , n, ∆n = T

n
. Given

a discrete observation (Xti , 0 ≤ i ≤ n) of the trajectory (Xt, t ∈ [0, T ]), the
problem is to estimate the unknown drift parameter θ of X . We assume that
θ belongs to the parameter space Θ which is a relatively compact, open and
convex set in Euclidean space Rd.

The maximum likelihood estimator (MLE) of drift parameters based on
continuous observation (Xt, t ∈ [0, T ]) has good properties, such as consis-
tency and asymptotic efficiency when T goes to infinity in case of ergodic
diffusions (see [3, 16]). The same holds for MLE based on discrete observa-
tions (see [4]) but in most cases it can not be explicitly calculated. Hence,
other methods of estimations have to be considered. In this paper we use
method based on a Gaussian approximation of the transition density (see
[14]) to construct contrast function used for getting approximate maximum
likelihood estimator (AMLE) of drift parameters based on discrete observa-
tions. We consider the simplest case based on approximation of diffusion X by
a solution to difference equation obtained from (1.1) by Euler approximation
of Riemann and Itô integrals (see [9, 15]). In such a way obtained AMLE is
consistent and asymptotically normal in case of ergodic diffusions when n∆n

goes to infinity (T → +∞) such that n∆3
n goes to zero (see [6]). In case when

T is fixed and ∆n goes to zero it was proved that measurable AMLE exists,
and it converges to MLE based on continuous observations over [0, T ] with
rate

√
∆n in probability (see [15] for linear case, and [10] for general case).

The existence, measurability and some asymptotic properties of the
AMLE are proved in [15], under assumption that observations can be taken
only up to some maximal observational time T , when ∆n tends to zero and
under the assumption that the diffusion satisfies a linear SDE with completely
determined and constant diffusion coefficient function. The similar results are
proved in [10] in more general case (without assumption on linearity of SDE).

In this paper we prove that the difference between AMLE and MLE
based on continuous observations over fixed observational time interval [0, T ],
normed with

√
∆n is asymptotically mixed normal when ∆n goes to zero, and

that covariance matrix of the limit random vector depends on MLE and the
continuous trajectory. This result can be applied for estimations of AMLE’s
standard errors, and hence asymptotic confidence intervals for drift parame-
ters in ergodic diffusions case, which include a correction due to discretization,
for example, in a sense of Example 6.3 from Sect. 6.
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The paper is organized in the following way. In the next section we
introduce notation and definitions we need. The main results are presented
in Sect. 4, followed by proofs in Sect. 5. In the last section we will present
simulation study throughout two examples.

2. Preliminaries

We denote by 〈·, ·〉 the scalar product in the d-dimensional Euclidean
space Rd and by ‖ · ‖ the induced norm. The drift parameter space Θ ⊆ Rd

is relatively compact, which means that its closure Cl(Θ) is a compact set
in Rd. We will denote by E an open interval such that E ⊆ R. We will
say that U is relatively compact in E if U ⊆ E and Cl(U) is compact set
in E. If (x, θ) 7→ f(x, θ) is a real function then we will denote by Dm

θ f

the m-th partial derivatives with respect to θ of the function f , m ∈ N,
provided that they exist. If θ 7→ f(θ) is a real-valued function defined on an
open subset of Rd, then we will denote by Df(θ), D2f(θ) its first and second
derivatives with respect to θ, provided that they exist. Let K be a relatively
compact set in Rd. We say that a partial derivative Dm

θ f of a real function
f : E×Cl(K) → R exists on E×Cl(K) if there exists an open set UK ⊆ Rd,

such that E×Cl(K) ⊆ E×UK , and an extension f̃ of f , defined on E×UK ,

such that Dm
θ f̃ exists.

For fixed T > 0 let (Ω,FT , (Ft)0≤t≤T ,P) be a given filtered probability

space. Let (Ω̃, F̃T , F̃ = (F̃t)0≤t≤T , P̃) be an extension of (Ω,FT , (Ft)0≤t≤T ,P)
(for details see [11]). The extension is called very good if all martingales on the

space (Ω,FT , (Ft)0≤t≤T ,P) are also martingales on (Ω̃, F̃T , F̃ = (F̃t)0≤t≤T , P̃).
Let A be some Polish space. In our case A will be the Skorokhod space
A = D([0, T ],Rd) or d-dimensional Euclidean space A = Rd. Let (Zn) be
a sequence of A-valued random vectors, all defined on (Ω,FT , (Ft)0≤t≤T ,P),

and let Z be an A-valued random vector defined on the extension (Ω̃, F̃T , F̃ =

(F̃t)0≤t≤T , P̃). We will say that (Zn) converges stably in law to Z, and write

Zn
st⇒ Z, if

lim
n→∞

E[Y f(Zn)] = Ẽ[Y f(Z)],

for all bounded continuous functions f : A → R and all bounded random
variable Y on (Ω,FT , (Ft)0≤t≤T ,P). This kind of convergence is introduced by
Rényi (see [18]) and studied by Aldous and Eagleson (see [1]). Nice properties
of this kind of convergence can also be found in [12, 11].

We will say that an Rd-valued random vector Y has mixed normal dis-
tribution with FT -measurable random covariance matrix C = (Cjk)j,k=1,...,d,
and we write Y ∼ MN(0, C) if

E[ei〈t,Y 〉|FT ] = e−
1
2

∑
j,k=1,...,d tjtkC

jk
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(see [1]). If Y ∼ MN(0, C), then Y has the same distribution as
√
CZ,

where
√
C is square symmetric root of C and Z ∼ N(0, I) is standard normal

random vector independent of FT . An Rd-valued process (Yt)0≤t≤T is centered
Gaussian process if for all 0 ≤ s1 < s2 < · · · < sk ≤ T random matrix
(Ys1 , . . . , Ysk) ∈ Rdk has multivariate normal distribution and E[Yt] = 0, t ∈
[0, T ].

For n ∈ N, let ti := i∆n, i = 0, . . . , n be an equidistant subdivision of
segment [0, T ], ∆n = T

n
. Let At

n := max{j : tj ≤ t} and Fn,i := Fti , i =
0, . . . , n, n ∈ N. For proving local mixed normality of the AMLE we use the
following theorem, which is a version of [11, Theorem 3-2], but with notation
adjusted for our article.

Theorem 2.1. Let W be a one-dimensional Brownian motion on (Ω,FT ,
F = (Ft)0≤t≤T ,P), and let χn

i be Fti-measurable square integrable Rd-valued
random vectors. Let C = (Cjk) be continuous adapted process defined on
(Ω,FT , F = (Ft)0≤t≤T ,P) such that Ct is positive semidefinite symmetric
d× d matrix for all t ∈ [0, T ]. Assume that next conditions hold:

sup
0≤t≤T

‖
At

n
∑

i=1

E[χn
i |Fn,i−1]‖ P→ 0,(2.1)

At
n
∑

i=1

(E[χn,j
i χ

n,k
i |Fn,i−1]− E[χn,j

i |Fn,i−1]E[χ
n,k
i |Fn,i−1])

P→ C
j,k
t ,

∀t ∈ [0, T ], j, k = 1, . . . , d,(2.2)

At
n
∑

i=1

E[χn
i (Wti −Wti−1

)|Fn,i−1]
P→ 0, ∀t ∈ [0, T ],(2.3)

n
∑

i=1

E[‖χn
i ‖21{‖χn

i ‖>ǫ}|Fn,i−1]
P→ 0, ∀ǫ > 0,(2.4)

At
n
∑

i=1

E[χn
i (Nti −Nti−1

)|Fn,i−1]
P→ 0, ∀t ∈ [0, T ],(2.5)

where N is bounded Ft-martingale orthogonal to W .
Then we have

At
n
∑

i=1

χn
i

st⇒ Y on D([0, T ],Rd),

where Y is a continuous process defined on a very good filtered extension
(Ω̃, F̃ , F̃ = (F̃t)0≤t≤T , P̃) of (Ω,FT ,F = (Ft)0≤t≤T ,P) and which, condition-
ally on σ-field FT , is centered Gaussian Rd-valued process with independent

increments satisfying Ẽ[Y j
t Y

k
t |FT ] = C

jk
t , t ∈ [0, T ], j, k = 1, . . . , d.
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Let (γn, n ∈ N) be a sequence of positive numbers and let Y = (Yn, n ∈ N)
be a sequence of random vectors defined on some probability space. We will
say that Y is of order OP(γn), n ∈ N, and we will write Yn = OP(γn), if
(Yn

γn
, n ∈ N) is bounded in probability, which means that

lim
A→+∞

lim
n
P{γ−1

n ‖Yn‖ > A} = 0.

We will denote L1(P)-norm by ‖ · ‖1 := E[| · |] and L2(P)-norm by ‖ · ‖2 :=
√

E[(·)2].

3. Estimation method

Let us now introduce our AMLE of d-dimensional parameter θ ∈ Θ. Let
X be a strong solution of SDE (1.1) for true parameter value θ0 ∈ Θ and
given Brownian motion W . If we discretize the SDE over interval [ti−1, ti] by
using the Euler discretization scheme, we get stochastic difference equation of
the form:

(3.1) Zti−Zti−1
= µ(Zti−1

, θ)(ti−ti−1)+σ0ν(Zti−1
)(Wti−Wti−1

), Z0 = x0,

for 1 ≤ i ≤ n. If it exists, the solution of (3.1) is a discrete-time process
Z = (Zt0 , Zt1 , . . . , Ztn) which is an approximation of X on [0, T ]. The log
likelihood function, shortly LLF, of the process Z, up to the constant not
depending on the parameter θ is

(3.2) −n

2
ln(σ2

0)−
1

2

n
∑

i=1

(zi − zi−1 − µ(zi−1, θ)(ti − ti−1))
2

σ2
0ν

2(zi−1)(ti − ti−1)
.

The contrast function is obtained from (3.2) by substituting vector (z0, . . . , zn)
with the discrete observations (Xt0 , Xt1 , . . . , Xtn) of the process X and ne-
glecting the part which does not depend on parameter θ:

(3.3) Ln(θ) =

n
∑

i=1

(

(Xti −Xti−1
)µ(Xti−1

, θ)

σ2
0ν

2(Xti−1
)

− 1

2

µ2(Xti−1
, θ)(ti − ti−1)

σ2
0ν

2(Xti−1
)

)

.

Here we assumed that ν 6= 0 on the state space of X . A point of global
maximum θ̄n of the function (3.3), if it exists, is an estimator of the parameter
θ which we call approximate maximum likelihood estimator, shortly AMLE.
Further in the text, if it is written point of maximum, it means point of global
maximum.

4. Main results

We assume that drift parameter space Θ is a relatively compact, open
and convex set in Rd, d ≥ 1, and state space E is an open interval in R.

Let the following assumptions be satisfied:



382 S. LUBURA STRUNJAK AND M. HUZAK

(A1) For all θ ∈ Θ, there exists strong solution X of SDE (1.1) on time
interval [0,+∞〉. This solution X has continuous paths with values in
E and if X ′ is any other solution of SDE (1.1), with the same Brownian
motion W , then the law of X ′ is identical to the law of X .

(A2) For all θ ∈ Cl(Θ), function µ(·, θ) : E → R is continuously differ-

entiable on E. Functions (x, θ) 7→ µ(x, θ), (x, θ) 7→ ∂3

∂x2∂θj
µ(x, θ),

(x, θ) 7→ ∂2

∂x2µ(x, θ), (x, θ) 7→ ∂
∂x

µ(x, θ), (x, θ) 7→ ∂
∂θi

∂
∂x

∂
∂θj

µ(x, θ) are

continuous on E × Cl(Θ), for all i, j = 1, . . . , d. Function x 7→ ν(x) is
two-times continuously differentiable on E, and ν(x) > 0 for all x ∈ E.

(A3) For all m ≤ d + 3, there exist partial derivatives Dm
θ µ(x, θ) and

∂
∂x

Dm
θ µ(x, θ) onE×Cl(Θ). Furthermore, functions (x, θ) 7→Dm

θ µ(x, θ),

(x, θ) 7→ ∂
∂x

Dm
θ µ(x, θ), m ≤ d+ 3, are continuous on E × Cl(Θ).

Let

(4.1) LT (θ) =

∫ T

0

µ(Xs, θ)

σ2
0ν

2(Xs)
dXs −

1

2

∫ T

0

µ2(Xs, θ)

σ2
0ν

2(Xs)
ds

be a continuous-time log-likelihood function, shortly LLF (see [5]).

(A4) For all ω ∈ Ω, LLF θ 7→ LT (θ) ≡ LT (ω, θ) has a unique point of global

maximum θ̂(ω) ∈ Θ, and D2LT (θ̂) < 0 which means that Hessian

D2LT (θ̂) is a negatively definite matrix.

For example, the general growth diffusion process (see [8]) satisfies assump-
tions (A1-3) obviously, and (A4) on an event which probability tends to unity.
Generally, these assumptions (and in the same sense) satisfies any ergodic
diffusion such that (H1B-5B) from [10] hold. More precisely, these diffusions
have a property that a.s. there exists a time τ > 0 such that for all times
T ≥ τ , (A4) holds. Diffusions that satisfy (A4) with certainty are those that
satisfy (A1-3) and have drift functions that are linear combinations of linearly
independent functions defined on state space with coefficients equal to drift
parameters such that the values of (vector) parameters are in Θ = Rd (see
[3]). For such diffusions we will say briefly that are linear in drift parameters.
To prove that the main results of this paper hold for diffusions linear in drift
parameters we do not need the assumption of relatively compactness of drift
parameter space (see Remark 5.5).

For each θ ∈ Θ let Σ(θ) be d × d random matrix which jk component is
defined by

Σ(θ)jk =
1

2

∫ T

0

ν4(Xs)
∂

∂x

∂
∂θj

µ(Xs, θ)

ν2(Xs)

∂

∂x

∂
∂θk

µ(Xs, θ)

ν2(Xs)
ds.

Under conditions (A1)-(A4) in [10] is proved that there exists a sequence

(θ̂n, n ∈ N) ⊆ Θ of FT -measurable random vectors such that the following



LOCAL ASYMPTOTIC MIXED NORMALITY OF AMLE 383

hold:

lim
n

P{DLn(θ̂n) = 0} = 1,(4.2)

θ̂n
P→ θ̂, n → ∞,(4.3)

if (θ̃n, n ∈ N) is any other sequence of random vectors which

satisfies (4.2) and (4.3), then lim
n

P{θ̃n = θ̂n} = 1,(4.4)

(
1√
∆n

‖θ̂n − θ̂‖, n ∈ N) is bounded in probability.(4.5)

(4.2)-(4.5) are consequences of

(4.6) sup
θ∈Θ

‖DrLn(θ)−DrLT (θ)‖ = OP(
√

∆n), n ∈ Nr = 1, 2,

and so called the general theorem on approximate maximum likelihood esti-

mation (see [9]). In the proof of this theorem θ̂n is constructed to be a point
of global maximum of Ln in Θ on an event with probability tending to unity,

and hence we can take θ̄n = θ̂n on this event. It is sufficient to assume that
(θ̄n, n ∈ N) satisfies (4.2)-(4.5), and all of our results are stated for that kind
of sequence.

Theorem 4.1. Assume that (A1)-(A4) hold. Assume that (θ̄n, n ∈ N)
satisfies (4.2)-(4.5). Then

1√
∆n

(θ̄n − θ̂)
st⇒ MN(0, (D2LT (θ̂))

−1Σ(θ̂)(D2LT (θ̂))
−1).

For real symmetric d × d matrix C let us denote by λk(C) its k-th in
order eigenvalue in the ordered sequence of eigenvalues λ1(C) ≤ λ2(C) ≤
· · · ≤ λd(C). Let us additionally assume:

(A5) For all ω ∈ Ω, matrix Σ(ω, θ̂(ω)) is regular. There exists a constant

λΣ > 0 such that λ1(Σ(ω, θ̂(ω)) ≥ λΣ, for all ω ∈ Ω.

For n ∈ N let us define random matrix Σn(θ) by defining its jk- component
in the following way:

Σn(θ)
jk =

n
∑

i=1

1

2
ν4(Xti−1

)∂x(
∂θjµ(Xti−1

, θ)

ν2(Xti−1
)

)∂x(
∂θkµ(Xti−1

, θ)

ν2(Xti−1
)

)∆n,

where ∂θj :=
∂

∂θj
, j = 1, . . . , d. It is obvious, from the definition, that Σn(θ)

jk

can be considered as a discretization of Σ(θ)jk .

Corollary 4.2. Assume that (A1)-(A5) hold. Assume that (θ̄n, n ∈ N)
satisfies (4.2)-(4.5). Then
(

√

Σn(θ̄n)

)−1

D2Ln(θ̄n)
1√
∆n

(θ̄n − θ̂)1{Σn(θ̄n) is regular matrix}
st⇒ N(0, I).
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Remark 4.3. In the case when the subdivision of the segment [0, T ] is
not equidistant, all of the results will still hold under the assumptions that
limn ∆n = 0 and limn→∞ maxi=1,...,n |hi−∆n

∆n
| = 0, where hi := ti − ti−1, i =

1, . . . , n, ∆n := max1≤i≤n hi, and by replacing Σn(θ) with Σ̃n(θ) such that

Σ̃n(θ)
jk =

n
∑

i=1

1

2
ν4(Xti−1

)∂x(
∂θjµ(Xti−1

, θ)

ν2(Xti−1
)

)∂x(
∂θkµ(Xti−1

, θ)

ν2(Xti−1
)

)hi.

5. Proofs

We will prove Theorem 4.1 in number of steps. Some of the lemmas will
be proved in Appendix.

Let θ̂ be a continuous-time MLE, and θ̄n be an AMLE which satisfies
(4.2)-(4.5). Using mean value theorem for the function DLn which is, due to
(A2), continuously differentiable on Θ, for all ω ∈ Ω, we get

DLn(θ) = DLn(θ̂) +A
θ̂,θ

(θ − θ̂),

for all θ ∈ Θ, where A
θ̂,θ

:=
∫ 1

0
D2Ln(θ̂ + v(θ − θ̂))dv, and integration is by

components. If we put θ = θ̄n, then on the event {DLn(θ̄n) = 0} we have

0 = DLn(θ̄n) = DLn(θ̂) +A
θ̂,θ̄n

(θ̄n − θ̂),

where A
θ̂,θ̄n

:=
∫ 1

0 D2Ln(θ̂ + v(θ̄n − θ̂))dv. Since DLT (θ̂) = 0, we can write

A
θ̂,θ̄n

(θ̄n − θ̂) = −DLn(θ̂) = DLT (θ̂)−DLn(θ̂)

which implies

(5.1) A
θ̂,θ̄n

1√
∆n

(θ̄n − θ̂) =
1√
∆n

(DLT (θ̂)−DLn(θ̂)),

on the event {DLn(θ̄n) = 0}.
First, in Theorem 5.3 we will prove that the right hand side of equation

(5.1) converges stably in law, for fixed parameter θ ∈ Θ, and then in Theorem

5.4 we will prove the same result but for MLE θ̂. After that we will prove
Theorem 4.1.

Let θ ∈ Θ be fixed, arbitrary parameter value. Let us denote Xi :=
Xti , i = 0, . . . , n, and ∂θj :=

∂
∂θj

, j = 1, . . . , d. Define functions

gj(x) = gj(x, θ) :=
∂θjµ(x, θ)

ν2(x)
, j = 1, . . . , d,

and denote by g′j and g′′j its first and second derivative with respect to x.
Define functions

fj(x) = fj(x, θ) :=
µ(x, θ)∂θjµ(x, θ)

ν2(x)
, j = 1, . . . , d,

and denote by f ′
j and f ′′

j its first and second derivative with respect to x.
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(A6) Functions µ, ν, 1
ν
, gj, g

′
j , g

′′
j , fj, f

′
j , f

′′
j ,

∂
∂x

µ, ∂2

∂x2µ, ν
′, ν′′ are bounded.

Remark 5.1. The assumption (A6) is only here for technical reasons.
First, we will prove our results under assumption (A6), and then we will
prove our results without that assumption.

Lemma 5.2. Assume that (A1)-(A4), (A6) hold. Then, for arbitrary fixed
θ ∈ Θ we have

1√
∆n

(DLT (θ)−DLn(θ)) = Zn(θ)

+
1√
∆n









∑n
i=1

∫ ti

ti−1
ν(Xs)

∫ s

ti−1
g′1(Xu)ν(Xu)dWudWs

...
∑n

i=1

∫ ti

ti−1
ν(Xs)

∫ s

ti−1
g′d(Xu)ν(Xu)dWudWs









,

where Zn(θ)
P→ 0, n → +∞.

Proof. For details see the Appendix.

Theorem 5.3. Assume that (A1)-(A4) hold. Then, for arbitrary fixed
parameter θ ∈ Θ we have

(5.2)
1√
∆n

(DLT (θ)−DLn(θ))
st⇒ Y (θ),

where Y (θ) ∼ MN(0,Σ(θ)).

Proof. First, let us assume that (A6) holds.
Let us denote

R
j
t (θ) := g′j(Xt)ν(Xt) = g′j(Xt, θ)ν(Xt),

hence

Σ(θ)jk =
1

2

∫ T

0

ν2(Xs)R
j
s(θ)R

k
s (θ)ds, j, k = 1, . . . , d.

Let us define continuous adapted process C = (Cjk
t )0≤t≤T by

C
jk
t =

1

2

∫ t

0

ν2(Xs)R
j
s(θ)R

k
s (θ)ds, j, k = 1, . . . , d, t ∈ [0, T ],

and define Fti-measurable random vectors χn
i , i = 1, . . . , n by

χn
i =







χ
n,1
i
...

χ
n,d
i






=

1√
∆n









∫ ti

ti−1
ν(Xs)

∫ s

ti−1
R1

u(θ)dWudWs

...
∫ ti

ti−1
ν(Xs)

∫ s

ti−1
Rd

u(θ)dWudWs









.

We will prove that for C and χn
i Theorem 2.1 holds. Random vectors χn

i

are square integrable due to (A6). Because of its definition, Ct is symmetric
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positive semidefinite random matrix, for all t ∈ [0, T ]. Using notation Fn,i :=
Fti , i = 1, . . . , n, we have

E[χn,j
i |Fn,i−1] = 0, ∀j = 1, . . . , d, ∀i = 1, . . . , n,

hence (2.1) is trivially satisfied.
Let ǫ > 0. Then, there exists constant k9 > 0, such that

‖
n
∑

i=1

E[‖χn
i ‖21{‖χn

i ‖>ǫ}|Fn,i−1]‖1 ≤ d

ǫ2

n
∑

i=1

E[

d
∑

j=1

(χn,j
i )4] ≤ k9∆nT,

hence (2.4) is satisfied. The last inequality and existence of k9 follows in a way
similar to the proof of the existence of constant k2 (see the proof of Lemma
5.2 in Appendix).

Let N = (Nt)0≤t≤T be any bounded Ft-martingal orthogonal to W . Since
(Ft)0≤t≤T is generated by Brownian motion W , it follows from martingale
representation theorem (see [13, Theorem III.4.33]) that any Ft- martingale
can be represented as the sum of constant term and a stochastic integral with
respect to W . Since Nt is bounded Ft-martingale orthogonal to W , it follows
that Nt is equal to constant, so (2.5) is satisfied.

Let us recall that θ0 is the true value of (vector) drift parameter. For
j = 1, . . . , d, we have

At
n
∑

i=1

E[χn,j
i (Wti −Wti−1

)|Fn,i−1]

=
1√
∆n

At
n
∑

i=1

E[

∫ ti

ti−1

ν(Xs)

∫ s

ti−1

Rj
u(θ)dWuds|Fn,i−1]

=
1√
∆n

At
n
∑

i=1

E[

∫ ti

ti−1

(

∫ s

ti−1

(ν′(Xu)µ(Xu, θ0) +
1

2
ν′′(Xu)σ

2
0ν

2(Xu))du)·

· (
∫ s

ti−1

Rj
u(θ)dWuds)|Fn,i−1](5.3)

+
1√
∆n

At
n
∑

i=1

E[

∫ ti

ti−1

(

∫ s

ti−1

ν′(Xu)σ0ν(Xu)dWu)·(
∫ s

ti−1

Rj
u(θ)dWuds)|Fn,i−1].(5.4)

If ν ≡ c > 0 is a constant function, then (2.3) is trivially satisfied, because

1√
∆n

At
n
∑

i=1

E[

∫ ti

ti−1

ν(Xs)

∫ s

ti−1

Rj
u(θ)dWuds|Fn,i−1]

=
c√
∆n

At
n
∑

i=1

E[

∫ ti

ti−1

∫ s

ti−1

Rj
u(θ)dWuds|Fn,i−1] = 0.
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So, let us assume that ν is not a constant function. There exist constants
k10, k11 such that

‖ 1√
∆n

At
n
∑

i=1

E[

∫ ti

ti−1

(

∫ s

ti−1

(ν′(Xu)µ(Xu, θ0) +
1

2
ν′′(Xu)σ

2
0ν

2(Xu))du)·

· (
∫ s

ti−1

Rj
u(θ)dWu)ds|Fn,i−1]‖1 ≤ k10

√

∆nT,

and

| 1√
∆n

At
n
∑

i=1

E[

∫ ti

ti−1

(

∫ s

ti−1

ν′(Xu)σ0ν(Xu)dWu) · (
∫ s

ti−1

Rj
u(θ)dWu)ds|Fn,i−1]|

= | 1√
∆n

At
n
∑

i=1

E[

∫ ti

ti−1

∫ s

ti−1

ν′(Xu)σ0ν(Xu)R
j
u(θ)duds|Fn,i−1]|

≤ k11
√

∆nT,

so (5.3) converges in L1-norm to zero and (5.4) converges almost surely to zero,
hence (2.3) is satisfied. For example, for proving the existence of constant k10
let us define M := sup0≤s≤T |

∫ s

0
Rj

u(θ)dWu|. We have

E[| 1√
∆n

At
n
∑

i=1

E[

∫ ti

ti−1

(

∫ s

ti−1

(ν′(Xu)µ(Xu, θ0) +
1

2
ν′′(Xu)σ

2
0ν

2(Xu))du)·

· (
∫ s

ti−1

Rj
u(θ)dWu)ds|Fn,i−1]|]

≤ 1√
∆n

At
n
∑

i=1

E[|
∫ ti

ti−1

(

∫ s

ti−1

(ν′(Xu)µ(Xu, θ0) +
1

2
ν′′(Xu)σ

2
0ν

2(Xu))du)·

· (
∫ s

ti−1

Rj
u(θ)dWu)ds|]

≤ const1√
∆n

At
n
∑

i=1

∫ ti

ti−1

(s− ti−1)E[M ]ds ≤ const2
√

∆nTE[M ].

From Doob’s inequality we conclude that E[M ] < +∞, and we define k10 :=
const2E[M ].
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It is only left to prove that (2.2) is satisfied. Let 1 ≤ j ≤ k ≤ d. Then

At
n
∑

i=1

(E[χn,j
i χ

n,k
i |Fn,i−1]− E[χn,j

i |Fn,i−1]E[χ
n,k
i |Fn,i−1])

=
1

∆n

At
n
∑

i=1

E[

∫ ti

ti−1

ν2(Xs)

∫ s

ti−1

J (i,j)
u Rk

u(θ)dWuds|Fn,i−1](5.5)

+
1

∆n

At
n
∑

i=1

E[

∫ ti

ti−1

ν2(Xs)

∫ s

ti−1

J (i,k)
u Rj

u(θ)dWuds|Fn,i−1](5.6)

+
1

∆n

At
n
∑

i=1

E[

∫ ti

ti−1

ν2(Xs)

∫ s

ti−1

Rj
u(θ)R

k
u(θ)duds|Fn,i−1],(5.7)

where J
(i,j)
s :=

∫ s

ti−1
Rj

u(θ)dWu. If ν is constant function, then (5.5) and

(5.6) are equal to zero, and the proof that (5.7) converges in probability to

C
jk
t , ∀t ∈ [0, T ] would stay the same as in the rest of the proof. So, let us

assume that ν is not a constant function. It can be shown that there exist
constants k12, k13, such that

‖ 1

∆n

At
n
∑

i=1

E[

∫ ti

ti−1

ν2(Xs)

∫ s

ti−1

J (i,j)
u Rk

u(θ)dWuds|Fn,i−1]‖2 ≤ k12
√

∆n(T +
√
T ),

‖ 1

∆n

At
n
∑

i=1

E[

∫ ti

ti−1

ν2(Xs)

∫ s

ti−1

J (i,k)
u Rj

u(θ)dWuds|Fn,i−1]‖2 ≤ k13
√

∆n(T +
√
T ),

so (5.5) and (5.6) converge in probability to zero. It is left to prove that (5.7)

converges in probability to C
jk
t . There exists constant k14 such that

1

∆n

At
n
∑

i=1

E[

∫ ti

ti−1

ν2(Xs)

∫ s

ti−1

Rj
u(θ)R

k
u(θ)duds|Fn,i−1] =

=
1

∆n

At
n
∑

i=1

(E[

∫ ti

ti−1

ν2(Xs)

∫ s

ti−1

Rj
u(θ)R

k
u(θ)duds|Fn,i−1]

−
∫ ti

ti−1

ν2(Xs)

∫ s

ti−1

Rj
u(θ)R

k
u(θ)duds)(5.8)

+
1

∆n

At
n
∑

i=1

∫ ti

ti−1

ν2(Xs)

∫ s

ti−1

Rj
u(θ)R

k
u(θ)duds,(5.9)
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and

‖ 1

∆n

At
n
∑

i=1

(E[

∫ ti

ti−1

ν2(Xs)

∫ s

ti−1

Rj
u(θ)R

k
u(θ)duds|Fn,i−1]

−
∫ ti

ti−1

ν2(Xs)

∫ s

ti−1

Rj
u(θ)R

k
u(θ)duds)‖2 ≤ k14

√

∆n

√
T ,

hence (5.8) converges in probability to zero.

We will show that (5.9) converges in probability to C
jk
t . Let

l(u, s)(ω) := (ν2(Xs)R
j
u(θ)R

k
u(θ))(ω)

be a function defined on [0, T ]× [0, T ]×Ω. For fixed ω ∈ Ω function l(u, s)(ω)
is bounded, continuous function on [0, T ]×[0, T ], which means that there exist
u∗
i (ω), s

∗
i (ω) ∈ [ti−1, ti] such that u∗

i (ω) ≤ s∗i (ω) and

∫ ti

ti−1

∫ s

ti−1

l(u, s)duds =
∆2

n

2
l(u∗

i , s
∗
i ), i ∈ {1, . . . , n}.

Hence,

1

∆n

At
n
∑

i=1

∫ ti

ti−1

ν2(Xs)

∫ s

ti−1

Rj
u(θ)R

k
u(θ)duds− C

jk
t

=

At
n
∑

i=1

∆n

2
l(u∗

i , u
∗
i )−

1

2

∫ t

0

ν2(Xs)R
j
s(θ)R

k
s (θ)ds(5.10)

+

At
n
∑

i=1

∆n

2
(l(u∗

i , s
∗
i )− l(u∗

i , u
∗
i )).(5.11)

Continuity of integrand function assures that there exist some t∗(ω) ∈ [tAt
n
, t],

such that 1
2

∫ t

tAt
n

ν2(Xs)R
j
s(θ)R

k
s (θ)ds = 1

2 (t−tAt
n
)ν2(Xt∗)R

j
t∗(θ)R

k
t∗(θ), there-

fore for (5.10) we have

At
n
∑

i=1

∆n

2
l(u∗

i , u
∗
i )−

1

2

∫ t

0

ν2(Xs)R
j
s(θ)R

k
s (θ)ds =

=

At
n
∑

i=1

∆n

2
ν2(Xu∗

i
)Rj

u∗

i
(θ)Rk

u∗

i
(θ) +

1

2
(t− tAt

n
)ν2(Xt∗)R

j
t∗(θ)R

k
t∗(θ)

− 1

2

∫ t

0

ν2(Xs)R
j
s(θ)R

k
s (θ)ds−

1

2

∫ t

tAt
n

ν2(Xs)R
j
s(θ)R

k
s (θ)ds

a.s.→ 0,
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hence (5.10) converges in probability to zero. For (5.11) there exists constant
k15 such that we have

|
At

n
∑

i=1

∆n

2
(l(u∗

i , s
∗
i )−l(u∗

i , u
∗
i ))| = |

At
n
∑

i=1

∆n

2
(ν2(Xs∗

i
)−ν2(Xu∗

i
))Rj

u∗

i
(θ)Rk

u∗

i
(θ)|

≤ k15

At
n
∑

i=1

∆n

2
|ν2(Xs∗

i
)− ν2(Xu∗

i
)|.

Let ǫ > 0. For fixed ω ∈ Ω the function t 7→ ν2(Xt(ω)) is continuous on [0, T ],
so it is uniformly continuous. It means that

(∃δ > 0)(∀s, t ∈ [0, T ])(|s− t| < δ) ⇒ |ν2(Xs(ω))− ν2(Xt(ω))| < ǫ.

We omitted writing ω, because it is fixed. limn→∞ ∆n = 0, so there exists
n0 ∈ N such that for all n ≥ n0 holds ∆n < δ. Then, for all n ≥ n0 we have

At
n
∑

i=1

∆n

2
|ν2(Xs∗i

)− ν2(Xu∗

i
)| ≤ ǫ

T

2
,

which means that (5.11) converges almost surely to zero 0, so it converges in
probability to zero.

Therefore, conditions of Theorem 2.1 are satisfied provided that (A6)
holds. If we denote by πT projection function πT : D([0, T ],Rd) → Rd, defined
by πT ((Xs, s ∈ [0, T ])) := XT , then by [2, Theorem 12.5] projection πT is
continuous function. Notice that

1√
∆n

(DLT (θ)−DLn(θ)) = πT ((

At
n
∑

i=1

χn
i , t ∈ [0, T ])) + Zn(θ),

hence by definition and properties of stable convergence in law, our theorem
holds under assumption (A6).

In general case (i.e. without assumption (A6)), let (EM ,M ∈ N) be a
sequence of open and relatively compact subsets of E such that x0 ∈ E1,
Cl(EM ) ⊆ EM+1, ∀M ∈ N and ∪∞

M=1EM = E. For that sequence and the
solution (Xt, t ≥ 0) of our SDE (1.1) define for M ∈ N

TM := inf{t ≥ 0: Xt ∈ Ec
M},

where inf ∅ = +∞. Since X exists on [0,∞〉 and it is continuous process,
(TM ,M ∈ N) is an increasing sequence of stopping times such that TM ↑
+∞ a.s., when M → +∞. Let (ΦM ,M ∈ N) be a sequence of C∞(E)-
functions such that ΦM = 1 on Cl(EM ), and Φm = 0 on Cl(EM+1)

c. Let
us define the functions µM (x, θ) := ΦM (x)µ(x, θ), (x, θ) ∈ E × Θ and let νM
be continuous functions on E such that νM (x) = ν(x) for x ∈ Cl(EM ) and
νM (x) = const for x ∈ E\Cl(EM+1) (for example, νM can be defined as
νM (x) = ΦM (x)ν(x) + (1 − ΦM (x))cM , where cM := minx∈Cl(EM+1) ν(x)).
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The functions µM , νM are bounded and satisfy assumptions (A2) and (A3).
Let, for a fixed M ∈ N, the process XM = (XM

t , 0 ≤ t ≤ T ) be a unique
strong solution of the SDE (see [17])

dXM
t = µM (XM

t , θ0)dt+ σ0νM (XM
t )dWt, XM

0 = x0, x0 ∈ E.

Moreover, for almost all ω ∈ Ω and all t ∈ [0, TM (ω)], it holds Xt(ω) =

(XM )t(ω). Let Y (θ) be a random vector such that Y (θ) =
√

Σ(θ)Z, where Z
is standard normal random vector independent of FT . Let YM be a random
vector such that YM (θ) =

√

ΣM (θ)Z, where ΣM (θ) is a random matrix Σ(θ)

from first part of this proof which we apply on process XM and functions
νM and µM . Let 1√

∆n
(DLT,M (θ) −DLn,M (θ)) be the left hand side of (5.2)

for the process XM , and the functions νM and µM . Then, from first part of

the proof 1√
∆n

(DLT,M (θ)−DLn,M (θ))
st⇒ YM (θ). With notation Zn,M (θ) :=

1√
∆n

(DLT,M (θ)−DLn,M (θ)) we can write Zn,M (θ)
st⇒ YM (θ). Let us denote

by Zn(θ) :=
1√
∆n

(DLT (θ)−DLn(θ)). We want to show that Zn(θ)
st⇒ Y (θ),

for fixed θ ∈ Θ.
Let f : Rd → R be bounded continuous function, and let U be bounded

FT -measurable random variable. LetB,H > 0 be constants such that |f | ≤ H

and |U | ≤ B. Now, we have:

|E[f(Zn(θ))U ]− Ẽ[f(Y (θ))U ]|
≤ |E[f(Zn,M (θ))U1{TM>T}]− Ẽ[f(YM (θ))U1{TM>T}]|+ 2BHP(TM ≤ T ).

U1{TM>T} is bounded, FT -measurable random variable, and Zn,M (θ)
st⇒

YM (θ), hence

lim
n
|E[f(Zn(θ))U ]− Ẽ[f(Y (θ))U ]| ≤ 2BHP(TM ≤ T ),

and by letting M → ∞ we have

lim
n
|E[f(Zn(θ))U ]− Ẽ[f(Y (θ))U ]| = 0,

which implies

lim
n

|E[f(Zn(θ))U ]− Ẽ[f(Y (θ))U ]| = 0,

that proves our statement.

Theorem 5.4. Assume that (A1)-(A4) hold. Then

1√
∆n

(DLT (θ̂)−DLn(θ̂))
st⇒ Y (θ̂),

where Y (θ̂) ∼ MN(0,Σ(θ̂)).
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Remark 5.5. From the proofs of Lemma 5.2 and Theorem 5.3 the follow-
ing holds. If X is a diffusion linear in drift parameters then the statement of

Lemma 5.2 holds directly with θ replaced with θ̂. In that case the double-Itô
integral term from the lemma does not depend on θ. Hence the statement of
Theorem 5.4 can be proved directly by following the proof of Theorem 5.3 and
so without need for the additional assumption about relatively compactness
of Θ. Consequently Y (θ) does not depend on θ.

Proof. Let Zn(θ) ≡ Zn(ω, θ) := 1√
∆n

(DLT (ω, θ) − DLn(ω, θ)). Since

θ̂ is FT - measurable random vector, see [9, Lema 4.1.], and the functions
(ω, θ) 7→ Zn ≡ Zn(ω, θ) are FT ⊗ B(Θ)-measurable (see the beginning of the

proof of [9, Lemma 4.2.]), for each n, then ω 7→ Zn(θ̂) ≡ Zn(ω, θ̂(ω)) are
FT -measurable functions. We want to prove that

Zn(θ̂)
st⇒ Y (θ̂).

First, let us assume that all of the functions which appear in the proof are
bounded. Let t ∈ Rd be arbitrary, fixed, vector, and let U be bounded FT -
measurable random variable. Let B > 0 be a constant such that |U | ≤ B.
For each n ∈ N, let us define the functions Fn in the following way:

Fn(ω, θ) := cos(〈t, Zn(ω, θ)〉) + i sin(〈t, Zn(ω, θ)〉) − e−
1
2

∑d
i,j=1

titjΣ(ω,θ)ij .

For all ω ∈ Ω, the functions θ 7→ Fn(θ) ≡ Fn(ω, θ) are continuously differ-
entiable on Θ, and hence there exist nonnegative random variable Gn and
constant R ≥ 0 (not depending on n) such that E[Gn] ≤ R and

(5.12) |Fn(θ1)− Fn(θ2)| ≤ Gn‖θ1 − θ2‖, ∀n ∈ N, ∀θ1, θ2 ∈ Θ.

Namely, since the rationals from Θ ∩ Qd are dense in Θ and for i = 1, . . . , d,
|∂θiFn(θ)| are continuous on compact Cl(Θ),

Gn := sup
θ∈Θ

d
∑

i=1

|∂θiFn(θ)| = sup
θ∈Θ∩Qd

d
∑

i=1

|∂θiFn(θ)|

is bounded and measurable, i.e. random variable.
By [1, Proposition 1] it is enough to prove that

lim
n

|E[Fn(θ̂)U ]| = 0.

Let ǫ > 0 be arbitrary, fixed real number. Define δ := ǫ
2RB

. For all θ ∈ Θ,

let K(θ, δ) be a open ball in Rd with center θ and radius δ. Since Cl(Θ) is
compact set and Θ ⊆ Cl(Θ) ⊆ ⋃θ∈ΘK(θ, δ), there exist finite number of balls

K(θl, δ), l = 1, . . . , N such that Θ ⊆ ⋃N
l=1 K(θl, δ) and θl ∈ Θ, l = 1, . . . , N .
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Let us define a finite partition {K1, . . . ,KN} of Θ in the following way:

K1 := K(θ1, δ) ∩Θ

K2 := K(θ2, δ) ∩Θ ∩Kc
1

...

KN := K(θN , δ) ∩Θ ∩Kc
1 ∩Kc

2 ∩ · · · ∩Kc
N−1.

This partition does not depend on subdivision of the segment [0, T ]. Since

1 = 1{θ̂∈Θ} =
∑N

l=1 1{θ̂∈Kl}, we have

|E[Fn(θ̂)U ]| = |
N
∑

l=1

E[Fn(θ̂)U1{θ̂∈Kl}]| =

= |
N
∑

l=1

E[(Fn(θ̂)− Fn(θl))U1{θ̂∈Kl}] +
N
∑

l=1

E[Fn(θl)U1{θ̂∈Kl}]|

≤ |
N
∑

l=1

E[(Fn(θ̂)− Fn(θl))U1{θ̂∈Kl}]|+ |
N
∑

l=1

E[Fn(θl)U1{θ̂∈Kl}]|.(5.13)

Events {{θ̂ ∈ K1}, . . . , {θ̂ ∈ KN}} make complete system of events for Θ. On

the event {θ̂ ∈ Kl} holds ‖θ̂ − θl‖ < δ, so from (5.12) it follows

|
N
∑

l=1

E[(Fn(θ̂)− Fn(θl))U1{θ̂∈Kl}]| ≤
N
∑

l=1

E[|Fn(θ̂)− Fn(θl)||U |1{θ̂∈Kl}]

≤ B

N
∑

l=1

E[Gn‖θ̂ − θl‖1{θ̂∈Kl}] <Bδ

N
∑

l=1

E[Gn1{θ̂∈Kl}]

= BδE[Gn] ≤ BRδ=
ǫ

2
.

Since θ̂ is FT - measurable random vector, it implies that U1{θ̂∈Kl} is bounded,

FT -measurable random variable, l = 1, . . . , N . Theorem 5.3 and [1, Proposi-
tion 1] implies

lim
n

E[Fn(θl)U1{θ̂∈Kl}] = 0, l = 1, . . . , N,

which yields

lim
n

|
N
∑

l=1

E[Fn(θl)U1{θ̃∈Kl}]| = 0.

Let n0 = n0(ǫ) ∈ N be natural number such that for all n ≥ n0

|
N
∑

l=1

E[Fn(θl)U1{θ̂∈Kl}]| <
ǫ

2
.
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For (5.13) we have

|E[Fn(θ̂)U ]| ≤ |
N
∑

l=1

E[(Fn(θ̂)− Fn(θl))U1
θ̂∈Kl}]|+ |

N
∑

l=1

E[Fn(θl)U1{θ̂∈Kl}]|

≤ ǫ

2
+

ǫ

2
= ǫ, ∀n ≥ n0,

so the theorem holds for bounded functions. In the general case, let us define

stopping times TM as in the proof of Theorem 5.3. Let θ̂M be a solution of

the equation DLT,M (θ) = 0. Since θ̂ is a unique solution of DLT (θ) = 0,

and DLT,M = DLT on {TM > T } × Θ, it implies that θ̂M and θ̂ coincide

on {TM > T }. In the first part of the proof we proved 1√
∆n

(DLT,M (θ̂M ) −
DLn,M (θ̂M ))

st⇒ YM (θ̂M ), shortly Zn,M (θ̂M )
st⇒ YM (θ̂M ). Let f : Rd → R

be bounded continuous function and let H > 0 be a real number such that
|f(x)| ≤ H, ∀x ∈ Rd.

|E[f(Zn(θ̂))U ]− Ẽ[f(Y (θ̂))U ]|
≤ |E[f(Zn,M (θ̂M ))U1{TM>T}]− Ẽ[f(YM (θ̂M ))U1{TM>T}]|
+ 2BHP(TM ≤ T ).

Since U1{TM>T} is bounded, FT -measurable random variable and Zn,M (θ̂M )
st⇒ YM (θ̂M ), we have

lim
n
|E[f(Zn(θ̂))U ]− Ẽ[f(Y (θ̂))U ]| ≤ 2BHP(TM ≤ T ),

and by letting M → ∞, we get

lim
n
|E[f(Zn(θ̂))U ]− Ẽ[f(Y (θ̂))U ]| = 0,

which implies

lim
n

|E[f(Zn(θ̂))U ]− Ẽ[f(Y (θ̂))U ]| = 0.

Lemma 5.6. Assume that (A1)-(A4) hold. Assume that (θ̄n, n ∈ N) sat-
isfies (4.2)-(4.5). Then

A
θ̂,θ̄n

1√
∆n

(θ̄n − θ̂)
st⇒ Y (θ̂),

where Y (θ̂) ∼ MN(0,Σ(θ̂)).

Proof. First, let ν−1 be a bounded function and let µ, ν and all of the
functions which appear in the proof be bounded. Since (4.2) holds, it implies
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that 1{DLn(θ̄n)=0}
P→ 1 and 1{DLn(θ̄n) 6=0}

P→ 0. For A
θ̂,θ̄n

1√
∆n

(θ̄n − θ̂) holds

A
θ̂,θ̄n

1√
∆n

(θ̄n − θ̂) =

=
1√
∆n

(DLT (θ̂)−DLn(θ̂))1{DLn(θ̄n)=0}

+A
θ̂,θ̄n

1√
∆n

(θ̄n − θ̂)1{DLn(θ̄n) 6=0}.

Theorem 5.4 and [12, (2.2.5)] imply

(
1√
∆n

(DLT (θ̂)−DLn(θ̂)), 1{DLn(θ̄n)=0})
st⇒ (Y (θ̂), 1),

hence from [1, Theorem 1] follows that

1√
∆n

(DLT (θ̂)−DLn(θ̂))1{DLn(θ̄n)=0}
st⇒ Y (θ̂).

It holds

‖A
θ̂,θ̄n

1√
∆n

(θ̄n − θ̂)1{DLn(θ̄n) 6=0}‖ ≤ ‖A
θ̂,θ̄n

‖ 1√
∆n

‖θ̄n − θ̂‖1{DLn(θ̄n) 6=0}.

1{DLn(θ̄n) 6=0}
P→ 0 and sequences ‖A

θ̂,θ̄n
‖ and 1√

∆n
‖θ̄n − θ̂‖ are bounded in

probability, so we can conclude that A
θ̂,θ̄n

1√
∆n

(θ̄n − θ̂)1{DLn(θ̄n) 6=0}
P→ 0,

hence by [11, (2.2)] this theorem holds for bounded functions. For general
case, we define a sequence of stopping times TM (as in the proof of Theorem

5.4). Let θ̂M be defined in the same way as in Theorem 5.4. Let θ̄n,M
be a sequence which satisfies (4.2)-(4.5) for the functions µM , νM and the
process XM . Since (4.4) holds, we have limn P(θ̄n,M = θ̄n|TM > T ) = 1.
Let f be bounded real function, and U be a bounded random variable. Let
B,H > 0 be a constants such that |U | ≤ B and |f | ≤ H . Then, with definition

Aθ1,θ2,M :=
∫ 1

0
D2Ln,M (θ1 + v(θ2 − θ1))dv, we have

|E[f(A
θ̂,θ̄n

1√
∆n

(θ̄n − θ̂))U ]− Ẽ[f(Y (θ̂))U ]|

≤ |E[f(A
θ̂,θ̄n,M

1√
∆n

(θ̄n − θ̂))U1{TM>T}1{θ̄n,M=θ̄n}]

− Ẽ[f(YM (θ̂M ))U1{TM>T}]|+ 2BHP(TM ≤ T )

+BHP(θ̄n,M 6= θ̄n, TM > T ),

and the proof is over once we let first n → +∞, and then M → +∞.
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Lemma 5.7. Assume that (A1)-(A4) hold. Assume that (θ̄n, n ∈ N) sat-
isfies (4.2)-(4.5). Then

(5.14)

∫ 1

0

D2LT (θ̂)−D2LT (θ̂ + v(θ̄n − θ̂))dv
P→ 0.

Proof. It is sufficient to prove that supv∈[0,1] ‖D2LT (θ̂) − D2LT (θ̂ +

v(θ̄n − θ̂))‖ P→ 0. We will prove that supv∈[0,1] F (θ̄n, v)
P→ 0, for the functions

F (θ, v) ≡ F (ω, θ, v) := ‖D2LT (ω, θ̂(ω))−D2LT (ω, θ̂(ω) + v(θ − θ̂(ω)))‖.
For details see the Appendix.

Lemma 5.8. Assume that (A1)-(A4) hold. Assume that (θ̄n, n ∈ N) sat-
isfies (4.2)-(4.5). Then

(5.15) D2LT (θ̂)
1√
∆n

(θ̄n − θ̂)
st⇒ MN(0,Σ(θ̂)).

Proof. We will prove that the sequence D2LT (θ̂)
1√
∆n

(θ̄n − θ̂) can be

written as the sum of the sequence which converges in probability to zero and

the sequence which converges stably in law to MN(0,Σ(θ̂)). For details see
the Appendix.

Lemma 5.9. Assume that (A1)-(A4) hold. Assume that (θ̄n, n ∈ N) sat-
isfies (4.2)-(4.5). Then

D2Ln(θ̄n)
1√
∆n

(θ̄n − θ̂)
st⇒ Y (θ̂).

Proof.

D2Ln(θ̄n)
1√
∆n

(θ̄n − θ̂)

= (D2Ln(θ̄n)−D2LT (θ̄n))
1√
∆n

(θ̄n − θ̂)

+ (D2LT (θ̄n)−D2LT (θ̂))
1√
∆n

(θ̄n − θ̂) +D2LT (θ̂)
1√
∆n

(θ̄n − θ̂).

(4.6) implies

D2Ln(θ̄n)−D2LT (θ̄n)
P→ 0,

and since the sequence 1√
∆n

(θ̄n − θ̂) is bounded in probability, it follows that

(D2Ln(θ̄n)−D2LT (θ̄n))
1√
∆n

(θ̄n − θ̂)
P→ 0.

From Lemma 5.7, when v = 1, we get

D2LT (θ̄n)−D2LT (θ̂)
P→ 0,
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hence

(D2LT (θ̄n)−D2LT (θ̂))
1√
∆n

(θ̄n − θ̂)
P→ 0.

Lemma 5.8 and [11, (2.2)] imply the conclusion.

Lemma 5.10. Assume that (A1)-(A5) hold. Assume that (θ̄n, n ∈ N)
satisfies (4.2)-(4.5). Then

(
√

Σ(θ̂)

)−1

D2Ln(θ̄n)
1√
∆n

(θ̄n − θ̂)
st⇒ N(0, I).

Proof. This Lemma is consequence of Lemma 5.9 and [1, Theorem 1].

Lemma 5.11. Assume that (A1)-(A4) hold. Assume that (θ̄n, n ∈ N)
satisfies (4.2)-(4.5). Then

Σn(θ̄n)
P→ Σ(θ̂).

Proof. We will prove that each component Σn(θ̄n)
jk can be written as

the sum of sequence which converges in probability to zero and the random

variable Σ(θ̂)jk. For details see the Appendix.

Lemma 5.12. Assume that (A1)-(A5) hold. Assume that (θ̄n, n ∈ N)
satisfies (4.2)-(4.5). Then

lim
n→∞

P(Σn(θ̄n) is regular matrix) = 1.

Proof. For details see the Appendix.

5.1. Proofs of Theorem 4.1 and Corollary 4.2.

Proof of Theorem 4.1. Since D2LT (θ̂) is regular symmetric matrix,

there exists (D2LT (θ̂))
−1, and it is symmetric matrix. Since D2LT (θ̂) is

FT -measurable random matrix, and multiplication with inverse is continuous
mapping, [1, Theorem 1] and Lemma 5.8 imply

1√
∆n

(θ̄n − θ̂)
st⇒ (D2LT (θ̂))

−1MN(0,Σ(θ̂)),

where (D2LT (θ̂))
−1MN(0,Σ(θ̂)) ∼ MN(0, (D2LT (θ̂))

−1Σ(θ̂)(D2LT (θ̂))
−1).

Proof of Corollary 4.2. Using continuous mapping theorem, from
Lemma 5.11 and Lemma 5.12 it follows that

(

√

Σn(θ̄n)

)−1

1{Σn(θ̄n) is regular matrix}
P→
(

√

Σ(θ̂)

)−1

, n → ∞.
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For
(

√

Σn(θ̄n)
)−1

D2Ln(θ̄n)
1√
∆n

(θ̄n−θ̂)1{Σn(θ̄n) is regular matrix} one may write

(

√

Σn(θ̄n)

)−1

D2Ln(θ̄n)
1√
∆n

(θ̄n − θ̂)1{Σn(θ̄n) is regular matrix}

=

(

(

√

Σn(θ̄n)

)−1

1{Σn(θ̄n) is regular matrix}

−
(
√

Σ(θ̂)

)−1
)

D2Ln(θ̄n)
1√
∆n

(θ̄n − θ̂)

+

(

√

Σ(θ̂)

)−1

D2Ln(θ̄n)
1√
∆n

(θ̄n − θ̂).

Since D2Ln(θ̄n)
1√
∆n

(θ̄n − θ̂), n ∈ N converges stably in law (Lemma 5.9), it

also converges in distribution, which implies that this sequence is bounded in
probability. Hence, it follows that

(

(

√

Σn(θ̄n)

)−1

1{Σn(θ̄n) is regular matrix}

−
(
√

Σ(θ̂)

)−1
)

D2Ln(θ̄n)
1√
∆n

(θ̄n − θ̂)
P→ 0,

and Lemma 5.10 and [11, (2.2)] yields the result.

6. Simulations

Example 6.1. SDE

dXt = aXtdt+ dWt, X0 = 0,

is given, where a ∈ R is unknown parameter, and process is observed over fixed
time interval [0, T ]. For n ∈ N, define h = T

n
and equidistant subdivision of

[0, T ] with ti = ih, i = 1, . . . , n. Then MLE, based on the continuous-time
sample (Xt)t∈[0,T ], â is given by (see [16])

â =
X2

T − T

2
∫ T

0 X2
t dt

.

Let (X1, . . . , Xn) := (Xt1 , . . . , Xtn) be discrete random sample from the

model. For the simulation study,
∫ T

0
X2

t dt will be approximated by h
∑n

i=1X
2
i−1,

hence â will be estimated by the formula

(6.1) â =
X2

T − T

2h
∑n

i=1 X
2
i−1

.
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If we define the functions µ(x, a) = ax, ν(x) = 1, and σ0 = 1, then using (3.3)
we get

Ln(a) =
n
∑

i=1

(

(Xi −Xi−1)Xi−1a−
1

2
X2

i−1ha
2

)

,

from which we calculate AMLE ān, which is given by formula

ān =

∑n
i=1(Xi −Xi−1)Xi−1

h
∑n

i=1 X
2
i−1

.

Therefore, all of the assumptions of Corollary 4.2 are satisfied, and we have

(6.2) −
√
2√
n

n
∑

i=1

X2
i−1(ān − â)

st⇒ N(0, 1).

Let −zα
2
be α

2 -quantile of standard normal distribution. We simulated M

realizations of discrete random sample (Xt1 , . . . , Xtn) with parameter a = 2
over equidistant points ti = i∆n, where n = 2k, T = 1 and ∆n = T

n
. Then

we calculated how many times values of the variable

(6.3) −
√
2√
n

n
∑

i=1

X2
i−1(ān − â)

are in the interval [−zα
2
, zα

2
] and we present that number as a percentage.

Results are presented in Tables 1, 2 and 3. Simulations showed (see Tables 1, 2

Table 1. M=100, α = 0.05

k 2 4 6 8 10 12 14 16
% 0.51 0.55 0.82 0.84 0.90 0.97 0.95 0.96

Table 2. M=100, α = 0.01

k 2 4 6 8 10 12 14 16
% 0.52 0.72 0.83 0.91 0.95 0.98 1 0.97

Table 3. M=1000, α = 0.05

k 2 4 6 8 10 12 14 16
% 0.541 0.670 0.825 0.918 0.976 0.989 0.987 0.988

and 3) that increasing the number n causes increase in percentage of values of
variable (6.3) which are in the interval [−zα

2
, zα

2
], in the sense that percentage

becomes value near (1 − α) · 100%, what was expected.
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Example 6.2. Gompertz model is given by SDE

dXt = (a− b lnXt)Xtdt+ σ0XtdWt, X0 = 1,

where a, b ∈ R are unknown parameters, and σ2
0 = 0.84. Process is observed

over time-interval [0, T ]. In this example, we define the functions µ(x, a, b) =

(a − b lnx)x and ν(x) = x. MLE â, b̂ of the parameters a, b are calculated
using [3, Equation 20] and given by

b̂ =
T
∫ T

0
lnXs

Xs
dXs −

∫ T

0
1
Xs

dXs ·
∫ T

0 lnXsds

(
∫ T

0 lnXsds)2 − T
∫ T

0 (lnXs)2ds
,

â =
b̂
∫ T

0 lnXsds+
∫ T

0
1
Xs

dXs

T
.(6.4)

If (X1, . . . , Xn) := (Xt1 , . . . , Xtn) is discrete random sample from the model,
then using (3.3) we get

Ln(a, b) =

n
∑

i=1

(

(Xi −Xi−1)(a− b lnXi−1)

0.84Xi−1
− 1

2

(a− b lnXi−1)
2h

0.84

)

.

Ln is quadratic function of a and b, which means that there exists a point of
maximum of that function. Hence, AMLE ān and b̄n of the parameters a and
b can be calculated using formulas

b̄n =

∑n
i=1

Xi−Xi−1

Xi−1
·∑n

i=1 lnXi−1 − n
∑n

i=1
Xi−Xi−1

Xi−1
lnXi−1

T
∑n

i=1(lnXi−1)2 − h(
∑n

i=1 lnXi−1)2
,

ān =
b̄nh

∑n
i=1 lnXi−1 +

∑n
i=1

Xi−Xi−1

Xi−1

T
.(6.5)

In this case MLE given by (6.4) can not be calculated exactly, so we will use
formulas (6.5) as their good approximation. For that purpose we used different
(much larger) number of points for calculating MLE then for AMLE. In this
way obtained estimate of MLE is not equal to estimate of AMLE. If we define
the functions µ(x, a, b) = a − b lnx, ν(x) = x, then all of the assumptions of
Corollary 4.2 are satisfied, and we have

‖
(

√

Σn(θ̄n)

)−1

D2Ln(θ̄n)
1√
∆n

(θ̄n − θ̂)‖2 st⇒ χ2
2 ,

where θ = (a, b), and matrices Σn(θ̄n) and D2Ln(θ̄n) are given by formulas

Σn(θ̄n) =

[

T
2

T−h
∑n

i=1
lnXi−1

2
T−h

∑n
i=1

lnXi−1

2

T−2h
∑n

i=1
lnXi−1+h

∑n
i=1

(lnXi−1)
2

2

]

,

D2Ln(θ̄n) =
1

σ2
0

[

−T h
∑n

i=1 lnXi−1

h
∑n

i=1 lnXi−1 −h
∑n

i=1(lnXi−1)
2

]

.
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We simulated M realizations of discrete random sample (Xt1 , . . . , Xtn) with
parameters a = 9.72, b = 3.7, over equidistant points ti = i∆n, where n = 2k,
T = 1 and ∆n = T

n
. We simulated in the way that n′ = 2l > 2k and we

use all of these points to estimate MLE θ̂ by using (6.5). Then we take sub-
sample of length n = 2k and calculate AMLE θ̄n by (6.5). Then, we calculate
percentage of values

〈(
√

Σn(θ̄n))
−1D2Ln(θ̄n)

1√
∆n

(θ̄n − θ̂), (

√

Σn(θ̄n))
−1D2Ln(θ̄n)

1√
∆n

(θ̄n − θ̂)〉

which are in the interval [0, χ2
1−α], where χ2

1−α is (1 − α)-quantile of χ2 dis-
tribution with 2 degrees of freedom. Results are presented in Tables 4, 5, 6, 7
and 8. Simulations showed (see Tables 6, 7, 8) that increase in number k

Table 4. M=100, α=0.025

l 4 5 6 8 10 10 10 10 12 13
k 2 2 2 2 2 4 6 8 6 6
% 0.26 0.26 0.17 0.29 0.28 0.65 0.93 0.99 0.9 0.9

l 13 13 14 14 14 14 15 15 15 16 16
k 7 8 7 8 9 10 9 10 11 8 10
% 0.96 0.97 0.91 0.93 0.98 0.99 0.98 0.98 0.97 0.98 0.94

Table 5. M=100, α=0.05

l 4 5 6 8 10 10 10 10 12 13 13
k 2 2 2 2 2 4 6 8 6 6 7
% 0.21 0.23 0.14 0.22 0.25 0.53 0.90 0.99 0.84 0.88 0.93

l 13 14 14 14 14 15 15 15 16 16 16
k 8 7 8 9 10 9 10 11 8 10 12
% 0.90 0.91 0.92 0.96 0.98 0.95 0.98 0.95 0.94 0.93 0.94

Table 6. M=100, α=0.05, l=12

k 4 5 6 7 8 9 10 11
% 0.66 0.75 0.83 0.92 0.94 0.94 0.95 1

Table 7. M=100, α=0.05, l=14

k 4 5 6 7 8 9 10 11 12 13
% 0.67 0.75 0.85 0.85 0.95 0.94 0.96 0.99 1 1



402 S. LUBURA STRUNJAK AND M. HUZAK

Table 8. M=100, α=0.05, l=16

k 4 5 6 7 8 9
% 0.60 0.67 0.86 0.85 0.94 0.97

k 10 11 12 13 14 15
% 0.94 0.94 0.94 0.95 0.98 0.99

causes increase of percentage, in the sense that percentage, for large enough
k, is value close to 1− α, for given α, what we expected.

Example 6.3. Let us consider ergodic recurrent diffusion X which satis-

fies SDE (1.1). Let θ̄n,T and θ̂T be AMLE and MLE of drift parameters over
interval [0, T ]. Let us assume that

limT→+∞ θ̂T = θ0 a.s., limT→+∞
1
T
D2LT (θ̂T ) = −M0 a.s.,√

T (θ̂T − θ0) ⇒ N(0,M−1
0 ), T → +∞, and limT→+∞

1
T
Σ(âT ) = Σ0 a.s.

for some d × d positive definite matrices M0 and Σ0. Since the difference√
T (θ̄n,T − θ0) can be written in the form

√
T (θ̄n,T − θ0) =

√

∆nT
θ̄n,T − θ̂T√

∆n

+
√
T (θ̂T − θ0),

for large enough T and n one can say that the difference
√
T (θ̄n,T − θ0)

asymptotically behaves as
√
∆n(

1
T
D2LT (θ̂T ))

−1( 1
T
Σ(θ̂T ))

1
2ZT + (M−1

0 )
1
2Z.

But if T is large enough, then we can say that the difference
√
T (θ̄n,T − θ0)

asymptotically behaves as
√
∆n(−M0)

−1(Σ0)
1
2ZT + (M−1

0 )
1
2Z, where ZT is

standard normal random vector independent of FT , and Z is standard normal
random vector. For example, if we look at the variance at one dimensional
case

V ar(
√

∆n(
1

T
D2LT (θ̂T ))

−1(
1

T
Σ(θ̂T ))

1
2ZT +

√
T (θ̂T − a0))

= V ar(
√

∆n(
1

T
D2LT (θ̂T ))

−1(
1

T
Σ(θ̂T ))

1
2ZT ) + V ar(

√
T (θ̂T − a0)),

then for simulation study we can use this variance to explain standard error
and to get asymptotic confidence intervals for true parameter value. This is
only the hint how to use the result presented in this paper in future simulation
study in the case of ergodic diffusions.
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Appendix

Proof of Lemma 5.2. For the j-th component of 1√
∆n

(DLT (θ) −
DLn(θ)), j = 1, . . . , d, using Itô’s formula, we get

1√
∆n

(DLT (θ)−DLn(θ))j

=
1√
∆n

n
∑

i=1

∫ ti

ti−1

µ(Xs, θ0)

σ2
0

(

∫ s

ti−1

(g′jµ(·, θ0)+g′′j
σ2
0

2
ν2)(Xu)du)ds(A.1)

− 1√
∆n

n
∑

i=1

∫ ti

ti−1

1

σ2
0

(

∫ s

ti−1

(f ′
jµ(·, θ0)+f ′′

j

σ2
0

2
ν2)(Xu)du)ds(A.2)

+
1√
∆n

n
∑

i=1

∫ ti

ti−1

µ(Xs, θ0)

σ0
(

∫ s

ti−1

g′j(Xu)ν(Xu)dWu)ds(A.3)

− 1√
∆n

n
∑

i=1

∫ ti

ti−1

1

σ0
(

∫ s

ti−1

f ′
j(Xu)ν(Xu)dWu)ds(A.4)

+
1√
∆n

n
∑

i=1

∫ ti

ti−1

ν(Xs)

σ0
(

∫ s

ti−1

(g′jµ(·, θ0)+g′′j
σ2
0

2
ν2)(Xu)du)dWs(A.5)

+
1√
∆n

n
∑

i=1

∫ ti

ti−1

ν(Xs)(

∫ s

ti−1

g′j(Xu)ν(Xu)dWu)dWs.(A.6)

If we define Zn,j(θ) :=(A.1)+(A.2)+(A.3)+(A.4)+(A.5), then

Zn(θ) =







Zn,1(θ)
...

Zn,d(θ)






.

If, for some j = 1, . . . , d, gj is a constant function, then we define Zn,j(θ) as
Zn,j(θ) := (A.2) + (A.4). If, for some j = 1, . . . , d, fj is a constant function,
then we define Zn,j(θ) as Zn,j(θ) := (A.1) + (A.3) + (A.5) + (A.6). So, the
conclusion and the proof of this Lemma stay the same in those special cases.
It is sufficient to prove that each component Zn,j(θ), j = 1, . . . , d, of the vector
Zn(θ) converges in probability to zero. Using (A6) it is easy to prove that
there exists constant k1 > 0, such that

| 1√
∆n

n
∑

i=1

∫ ti

ti−1

µ(Xs, θ0)

σ2
0

(

∫ s

ti−1

(g′j(Xu)µ(Xu, θ0) +
1

2
g′′j (Xu)σ

2
0ν

2(Xu))du)ds

− 1√
∆n

n
∑

i=1

∫ ti

ti−1

1

σ2
0

(

∫ s

ti−1

(f ′
j(Xu)µ(Xu, θ0) +

1

2
f ′′
j (Xu)σ

2
0ν

2(Xu))du)ds|

≤ k1
√

∆nT,
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so we conclude that (A.1) + (A.2) converges in probability to zero.
Let us denote with µ′ and µ′′ first and second derivative of the function

x 7→ µ(x, θ0) with respect to x. For (A.3), we have

1√
∆n

n
∑

i=1

∫ ti

ti−1

µ(Xs, θ0)

σ0
(

∫ s

ti−1

g′j(Xu)ν(Xu)dWu)ds

=
1√
∆n

n
∑

i=1

∫ ti

ti−1

∫ s

ti−1

µ(Xi−1, θ0)

σ0
g′j(Xu)ν(Xu)dWuds(A.7)

+
1√
∆n

n
∑

i=1

∫ ti

ti−1

(

∫ s

ti−1

(µ′(·, θ0)µ(·, θ0) +
1

2
µ′′(·, θ0)σ2

0ν
2)(Xu)du)·

· (
∫ s

ti−1

1

σ0
g′j(Xu)ν(Xu)dWu)ds(A.8)

+
1√
∆n

n
∑

i=1

∫ ti

ti−1

∫ s

ti−1

(

∫ u

ti−1

(µ′(·, θ0)ν)(Xl)dWl) · (g′jν)(Xu))dWuds(A.9)

+
1√
∆n

n
∑

i=1

∫ ti

ti−1

∫ s

ti−1

(

∫ u

ti−1

(g′jν)(Xl)dWl) · (µ′(·, θ0)ν)(Xu)dWuds(A.10)

+
1√
∆n

n
∑

i=1

∫ ti

ti−1

∫ s

ti−1

µ′(Xu, θ0)ν
2(Xu)g

′
j(Xu)duds,(A.11)

where (A.9)-(A.11) we get by applying Itô’s formula for
∫ s

ti−1

µ′(Xu, θ0)ν(Xu)dWu

∫ s

ti−1

g′j(Xu)ν(Xu)dWu.

In the case when µ(·, θ0) is a constant function, (A.3) would have the same
form as (A.7). It can be shown that there exist constants k2, k3, k4, k5, k6 such
that

‖ 1√
∆n

n
∑

i=1

∫ ti

ti−1

∫ s

ti−1

µ(Xi−1, θ0)

σ0
g′j(Xu)ν(Xu)dWuds‖2 ≤ k2

√

∆n

√
T ,

‖ 1√
∆n

n
∑

i=1

∫ ti

ti−1

(

∫ s

ti−1

(µ′(Xu, θ0)µ(Xu, θ0) +
1

2
µ′′(Xu, θ0)σ

2
0ν

2(Xu))du)·

· (
∫ s

ti−1

1

σ0
g′j(Xu)ν(Xu)dWu)ds‖2

≤ k3
√

∆nT

‖ 1√
∆n

n
∑

i=1

∫ ti

ti−1

∫ s

ti−1

(

∫ u

ti−1

µ′(Xl, θ0)ν(Xl)dWl) · (g′j(Xu)ν(Xu))dWuds‖2

≤ k4∆n

√
T
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‖ 1√
∆n

n
∑

i=1

∫ ti

ti−1

∫ s

ti−1

(

∫ u

ti−1

g′j(Xl)ν(Xl)dWl) · (µ′(Xu, θ0)ν(Xu))dWuds‖2

≤ k5∆n

√
T

| 1√
∆n

n
∑

i=1

∫ ti

ti−1

∫ s

ti−1

µ′(Xu, θ0)ν
2(Xu)g

′
j(Xu)duds| ≤ k6

√

∆nT,

so (A.7),(A.8),(A.9) and (A.10) converge in L2-norm to zero, and (A.11) con-
verges almost surely to zero. From this we conclude that (A.3) converges in
probability to zero.

For example, let us show how we can get constant k2. The other constants
in this article can be calculated in similar way. For (A.7) we have

E[
( 1√

∆n

n
∑

i=1

∫ ti

ti−1

∫ s

ti−1

µ(Xi−1, θ0)

σ0
g′j(Xu)ν(Xu)dWuds

)2
]

=
1

∆n

n
∑

i=1

E[(

∫ ti

ti−1

∫ s

ti−1

µ(Xi−1, θ0)

σ0
g′j(Xu)ν(Xu)dWuds)

2]

+
2

∆n

∑

1≤i<k≤n

E[(

∫ ti

ti−1

∫ s

ti−1

µ(Xi−1, θ0)

σ0
g′j(Xu)ν(Xu)dWuds)·

· (
∫ tk

tk−1

∫ s

tk−1

µ(Xk−1, θ0)

σ0
g′j(Xu)ν(Xu)dWuds)]

=
1

∆n

n
∑

i=1

E[(

∫ ti

ti−1

∫ s

ti−1

µ(Xi−1, θ0)

σ0
g′j(Xu)ν(Xu)dWuds)

2]

≤ 1

∆n

n
∑

i=1

∆n

∫ ti

ti−1

E[(

∫ s

ti−1

µ(Xi−1, θ0)

σ0
g′j(Xu)ν(Xu)dWu)

2]ds

=
1

∆n

n
∑

i=1

∆n

∫ ti

ti−1

∫ s

ti−1

E[(
µ(Xi−1, θ0)

σ0
g′j(Xu)ν(Xu))

2]duds

≤ k22
∆n

n
∑

i=1

∆3
n ≤ k22∆nT.

For (A.4) there exists constant k7 such that

‖ 1√
∆n

n
∑

i=1

∫ ti

ti−1

1

σ0
(

∫ s

ti−1

f ′
j(Xu)ν(Xu)dWu)ds‖2 ≤ k7

√

∆n

√
T ,
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from which follows that (A.4) converges in probability to zero. For (A.5) there
exists constant k8 such that

‖ 1√
∆n

n
∑

i=1

∫ ti

ti−1

ν(Xs)

σ0
(

∫ s

ti−1

(g′j(Xu)µ(Xu, θ0) +
1

2
g′′j (Xu)σ

2
0ν

2(Xu))du)dWs‖2

≤ k8
√

∆n

√
T ,

from which we conclude that (A.5) converges in probability to zero. We can
conclude that Zn(θ) converges in probability to zero.

Proof of Lemma 5.7. Since

{ sup
v∈[0,1]

|(D2LT (θ̂)−D2LT (θ̂ + v(θ̄n − θ̂)))ij | < ǫ}

⊆ {|
∫ 1

0

(D2LT (θ̂)−D2LT (θ̂ + v(θ̄n − θ̂)))ijdv| < ǫ},

for i, j = 1, . . . , d it is sufficient to prove that

sup
v∈[0,1]

‖D2LT (θ̂)−D2LT (θ̂ + v(θ̄n − θ̂))‖ P→ 0.

Let us define the functions

F (θ, v) ≡ F (ω, θ, v) := ‖D2LT (ω, θ̂(ω))−D2LT (ω, θ̂(ω) + v(θ − θ̂(ω)))‖.
Function F is uniformly continuous on Cl(Θ)× [0, 1], for each ω ∈ Ω and the
functions supv∈[0,1] F (θ, v) are continuous for each ω ∈ Ω.

We want to prove that

sup
v∈[0,1]

F (θ̄n, v)
P→ 0.

If it is not true then there exist ǫ, δ > 0 such that for all k ∈ N exists nk ≥ k

such that

(A.12) P(ω : | sup
v∈[0,1]

F (ω, θ̄nk
(ω), v)| ≥ ǫ) ≥ δ.

(4.3) implies θ̄nk

P→ θ̂T , when k → ∞, hence there exist subsequence (θ̄nkj
) of

the sequence (θ̄nk
) such that

θ̄nkj

a.s.→ θ̂, j → ∞.

Let us denote by Ω0 the event such that P(Ω0) = 1 and for all ω ∈ Ω0 holds

θ̄nkj
(ω) → θ̂(ω), j → ∞. Let ω ∈ Ω0. Then, because of continuity of the

function supv∈[0,1] F (ω, ·, v), follows

sup
v∈[0,1]

F (ω, θ̄nkj
(ω), v) → sup

v∈[0,1]

F (ω, θ̂(ω), v) = 0, j → ∞,
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from which we conclude that supv∈[0,1] F (θ̄nkj
, v) converges almost surely to

0, when j → ∞, hence it converges in probability to 0, which is contradiction
with (A.12).

Proof of Lemma 5.8. For the sequence D2LT (θ̂)
1√
∆n

(θ̄n − θ̂) holds

D2LT (θ̂)
1√
∆n

(θ̄n − θ̂)

=

∫ 1

0

(D2LT (θ̂)−D2LT (θ̂ + v(θ̄n − θ̂)))dv
1√
∆n

(θ̄n − θ̂)

+

∫ 1

0

(D2LT (θ̂ + v(θ̄n − θ̂))−D2Ln(θ̂ + v(θ̄n − θ̂)))dv
1√
∆n

(θ̄n − θ̂)

+ A
θ̂,θ̄n

1√
∆n

(θ̄n − θ̂).

Sequence 1√
∆n

(θ̄n − θ̂) is bounded in probability, so by Lemma 5.7 follows

∫ 1

0

(D2LT (θ̂)−D2LT (θ̂ + v(θ̄n − θ̂)))dv
1√
∆n

(θ̄n − θ̂)
P→ 0.

(4.6) yields supv∈[0,1] ‖(D2LT (θ̂ + v(θ̄n − θ̂)) − D2Ln(θ̂ + v(θ̄n − θ̂))‖ P→ 0.
Hence, we can conclude that

∫ 1

0

(D2LT (θ̂ + v(θ̄n − θ̂))−D2Ln(θ̂ + v(θ̄n − θ̂)))dv
P→ 0,

which implies

∫ 1

0

(D2LT (θ̂ + v(θ̄n − θ̂))−D2Ln(θ̂ + v(θ̄n − θ̂)))dv
1√
∆n

(θ̄n − θ̂)
P→ 0.

Lemma 5.6 and [11, (2.2)] yields the conclusion.

Proof of Lemma 5.11. It is sufficient to prove that Lemma holds for
each jk component of matrices. Since

Σn(θ̄n)
jk = Σn(θ̄n)

jk − Σ(θ̄n)
jk +Σ(θ̄n)

jk − Σ(θ̂)jk +Σ(θ̂)jk,

it is sufficient to prove that Σn(θ̄n)
jk −Σ(θ̄n)

jk P→ 0 and Σ(θ̄n)
jk −Σ(θ̂)jk

P→
0. Let ω ∈ Ω be fixed. Then the functions f̄jk : [0, T ] → R, defined by
f̄jk(t) := fjk(Xt(ω), θ̄n(ω)), are uniformly continuous. Let ǫ > 0 be arbitrary
fixed number. Then, there exists δ > 0, such that

|s− t| < δ ⇒ |fjk(Xs, θ̄n)− fjk(Xt, θ̄n)| <
ǫ

T
.
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Let n0 ∈ N, such that for all n ≥ n0 holds ∆n < δ. Then

|Σn(θ̄n)
jk − Σ(θ̄n)

jk| =
n
∑

i=1

∫ ti

ti−1

(fjk(Xti−1
, θ̄n)− fjk(Xs, θ̄n))ds

<

n
∑

i=1

ǫ

T
∆n = ǫ,

so Σn(θ̄n)
jk − Σ(θ̄n)

jk a.s.→ 0, which implies Σn(θ̄n)
jk − Σ(θ̄n)

jk P→ 0. For

fixed ω ∈ Ω and s ∈ [0, T ] let f̂jk,s : Θ → R be the function defined by

f̂jk,s(θ) = fjk(Xs(ω), θ). (A3) yields that f̂jk,s ∈ C1(Θ), for all ω ∈ Ω, hence

|f̂jk,s(θ̄n)− f̂jk,s(θ̂)| ≤
d
∑

l=1

sup
θ∈Θ

|∂θlf̂jk,s(θ)|‖θ̄n − θ̂‖.

If we assume that all of the functions are bounded, then there exists constant
M > 0 such that

|f̂jk,s(θ̄n)− f̂jk,s(θ̂)| ≤ M‖θ̄n − θ̂‖.
Let ǫ > 0 be arbitrary, fixed number. Let δ > 0. Then, due to (4.3), there
exists n0 ∈ N such that for all n ≥ n0 holds

P(‖θ̄n − θ̂‖ ≥ δ

MT
) < ǫ.

For n ≥ n0 let us define the set En := {‖θ̄n − θ̂‖ < δ
MT

}. Let ω ∈ En. Then

|f̂jk,s(θ̄n)− f̂jk,s(θ̂)| = |(fjk(Xs, θ̄n)− fjk(Xs, θ̂))| < M
δ

MT
=

δ

T
,

for all s ∈ [0, T ], which implies

|
∫ T

0

(fjk(Xs, θ̄n)− fjk(Xs, θ̂))ds| < δ,

hence

P(|
∫ T

0

(fjk(Xs, θ̄n)− fjk(Xs, θ̂))ds| ≥ δ) ≤ P(Ec
n) < ǫ,

which proves that Σ(θ̄n)
jk − Σ(θ̂)jk

P→ 0. For general case convergence in
probability can be proved by defining the stopping times TM , as seen before.

Proof of Lemma 5.12. Let ǫ > 0 such that λΣ − ǫ > 0. Lemma 5.11

implies λ1(Σn(θ̄n)) − λ1(Σ(θ̂))
P→ 0. Since Σn(θ̄n) is symmetric real matrix,

for all ω ∈ Ω, it follows that

P(Σn(θ̄n) is regular matrix) = P(λ1(Σn(θ̄n)) > 0).
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Since

{|λ1(Σn(θ̄n))−λ1(Σ(θ̂))| < ǫ} ⊆ {λΣ− ǫ < λ1(Σn(θ̄n))} ⊆ {0 < λ1(Σn(θ̄n))},

we can conclude that P(λ1(Σn(θ̄n)) > 0)
P→ 1, which proves our Lemma.
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