FEASIBILITY STUDY ON HIGH TEMPERATURE ELECTROLYTIC DESULFURIZATION IN HOT METAL PRETREATMENT

Z. C. Lv, K. Liu, N. Luo, W. Z. Lv

INTRODUCTION

Hot metal pretreatment desulfurization is an important way in the metallurgical industry, and Mg as a desulfurizer is widely used in the steel industry. In this paper, magnesite based desulfurizer that the ratio is 63 % MgF₂, 12 % CaF₂, 18 % NaF and 7 % MgO is used and at the molten iron temperature, magnesite based desulfurizer molten salt system is electrolyzed and the counter electromotive force and cell voltage is measured. The results of X-ray diffraction (XRD) analysis of the desulfurization reaction products show that the counter electromotive force and the cell voltage of the magnesite desulfurizer is linear with current; MgO is electrolyzed and generated Mg, but other substances are not electrolyzed; The generated Mg is successfully desulfurized. All those indicated that it is feasible for magnesite based desulfurizer electrolytic desulfurization at the temperature of molten iron.

Key words: magnesite, desulfurization, high temperature, electrolytic process, X-ray diffraction (XRD)

ELECTROCHEMICAL THEORY BASIS of MAGNESITE BASED DESULFURIZER

In this paper, magnesite based desulfurizer is used as the material, and electrolysis desulfurization reaction is carried out at the hot metal temperature. In the process of electrolyzing magnesite based desulfurizer, the characteristics of counter electromotive force are studied mainly. When the electrolytic cell voltage is greater than the theoretical decomposition voltage, the magnesite based desulfurizer electrolysis reaction occurs. And the theoretical decomposition voltage is the minimum voltage value that allows the products to be generated at the cathode and anode, and it is equal to the potential difference between the anode and cathode. The formula is (1).

\[E^\theta_T = \phi^{\alpha^+} - \phi^{\beta^-} \]

In the above formula:
- \(E^\theta_T \) - The theoretical decomposition voltage value / V;
- \(\phi^{\alpha^+} \) - Anode potential / V;
- \(\phi^{\beta^-} \) - Cathode potential / V;

Because the electric energy that material decomposition required is equal to the difference of Gibbs free energy, so we can get the formula of theoretical decomposition voltage. It is showed in formula (2).

\[G^\theta_T = -E^\theta_T nF \]

(2)

\[E^\theta_T = -\Delta G^\theta_T / nF \]

(3)

So:

\[\Delta G_T = \Delta G^\theta_T + RT \ln \frac{\alpha_{\text{product}}}{\alpha_{\text{boringal contrast}}} \]

(4)

In the above formula:
- \(\Delta G_T \) - The change value of free enthalpy when the compound generated;
- \(G^\theta_T \) - The change value of free enthalpy at constant pressure;
- \(\alpha \) - Substance activity;
- \(R \) - Avogadro constant, 8.314 J/mol·K;
- \(F \) - Faraday constant, 96500.

When the substance activity is approximately 1, we can get the formula \(\Delta G_T = \Delta G^\theta_T \) and formula (5).

\[E^\theta_T = -\frac{\Delta G^\theta_T}{nF} \]

(5)

The counter electromotive force value is equal to the sum of the theoretical decomposition voltage and over-
voltage, and its value not only reflects the over-voltage in the cathode and anode, but also reflects the mass of the electrolyte, composition, pole distance and other information. In the electrolysis process, metal is reduced at the cathode and the voltage at this time is actual voltage, which also known as counter electromotive force. If the voltage applied to the electrolytic cell is less than the counter electromotive force, the entire electrolytic cell output voltage. So, the counter electromotive force can be expressed as the formula (6).

$$E_c = E^* + \eta_a + \eta_c$$ \hspace{1cm} (6)

In the above formula:
- E_c – The counter electromotive force / V;
- E^* – Theoretical decomposition voltage / V;
- η_a, η_c – Over-voltage of cathode and anode / V;

The magnesite based desulfurizer contains sodium fluoride, magnesium fluoride, calcium fluoride and magnesium oxide. The theoretical decomposition voltage of fluoride at the molten iron temperature are shown in Figure 1 and Figure 2.

As can be seen from Figure 1, in the fluoride system, the electronegativity of calcium ions and sodium ions is relatively large, and the theoretical decomposition voltage of magnesium ions is lower than that of calcium ions and sodium ions. Therefore, the electrolysis of magnesium fluoride takes precedence over calcium fluoride and sodium fluoride. As can be seen from Figure 2, the theoretical decomposition voltage of oxide molten salt system is lower than that of fluoride molten salt system. In summary, the electrolysis of magnesium oxide priors to other substances. In addition, because the desulfurizer contains only magnesium oxide, so it is magnesium oxide electrolyzed before the anode effect[8] occurs. After the anode effect happened, the fluoride system begins to be electrolyzed. In this study process, the critical current density at which the anode effect occurs be measured firstly, and then let the current density below this value in the whole experiment[9] to ensure that magnesium oxide is electrolyzed but fluoride is not electrolyzed. The counter electromotive force that critical current density corresponded is equal to the actual decomposition voltage.

EXPERIMENTAL PART

Experimental reagents and devices

In order to ensure the accuracy of the experimental results, all are analytic reagents. The experimental reagents are shown in Table 1.

<table>
<thead>
<tr>
<th>Name</th>
<th>Specifications</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MgO</td>
<td>Analytic Reagents</td>
<td>Disney’s Aladdin</td>
</tr>
<tr>
<td>MgF2</td>
<td>Analytic Reagents</td>
<td>Mclean</td>
</tr>
<tr>
<td>CaF2</td>
<td>Analytic Reagents</td>
<td>Chinese Medicine Reagent</td>
</tr>
<tr>
<td>NaF</td>
<td>Analytic Reagents</td>
<td>Chinese Medicine Reagent</td>
</tr>
</tbody>
</table>

The experimental device includes the molten salt electrolysis equipment and monitoring equipment. The monitoring equipment uses method of continuous pulse computer. When the single-phase alternating current is rectified, the computer shows a periodic half-sine wave and its minimum value is the actual decomposition voltage.

The process of magnesite based desulfurizer electrolytic experiment

The magnesite based desulfurizer used in this experiment is the mixture of MgF2, CaF2, NaF and MgO. The four components are ground and placed into the hot air oven of 3 00 °C for two hours. Then, compound the desulfurizer according to the percentage of mass. Their proportions are MgF2 is 63 %, CaF2 is 12 %, NaF is 18 % and MgO is 7 %, and the total mass is 200 g.

Firstly, the desulfurizer is mixed and placed into the corundum crucible.Secondly, put the corundum crucible into the high temperature furnace and open its heating program. Finally, set the heating rate is less than or equal to 5 °C/min. The furnace is heated gradually to 1 300 °C and keep the temperature constant. Set the heating time is two hours. In the condition of no pig iron is added, tested the counter electromotive force and the cell voltage of the magnesite based desulfurizer using the desulfurization experimental device.
Therefore, when the current changes from 0 A to 2.5 A, the change of counter electromotive force is mainly caused by the increase of anode polarization voltage.

The products of magnesite based desulfurizer are detected by XRD and the results are shown in Figure 5. As can be seen from Figure 5, only MgS is included in the generated sulfide, which indicates that MgO is successfully electrolyzed and the generated Mg achieved the effect of desulfurization. However, the other substances in the magnesite based desulfurizer are not electrolyzed.

CONCLUSION

(1) When the magnesite based desulfurizer is melted, metal compounds distributed in the crucible in the form of ions and the ions generated the complex ions, which reduced the melting point of MgO. And this provides the conditions for electrolysis of MgO at the molten iron temperature.

(2) With the increase of the current intensity, the counter electromotive force and the cell voltage increase linearly. When the current intensity increases from 0
A to 2.5 A, the counter electromotive force increases from 0.86 V to 2.27 V.

(3) In the electrolysis process, the anode current occurs when the current is 2.5 A, and the corresponding current density is 0.25 A/cm², and the actual decomposition voltage is 2.27 V.

(4) In the electrolysis system of magnesite based desulfurizer, MgO is successfully electrolyzed and the generated Mg achieved the effect of desulfurization but other substances in the magnesite based desulfurizer are not electrolyzed.

Acknowledgments

The authors are grateful to the Program of the National Natural Science Foundation of China (No. 51374126) for financial support of this research.

REFERENCES

Note: Kun Liu is the responsible for English language, Anshan, LiaoNing, China