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ON A DIOPHANTINE EQUATION RELATED TO A

CONJECTURE OF ERDÖS AND GRAHAM

F. Luca and P. G. Walsh

UNAM, Mexico and University of Ottawa, Canada

Abstract. A particular case of a conjecture of Erdös and Graham,
which concerns the number of integer points on a family of quartic curves,
is investigated. An absolute bound for the number of such integer points
is obtained.

1. Introduction

In [3], Erdös and Graham posed a conjecture concerning the product of blocks
of consecutive integers. Specifically, for fixed positive positive integers k ≥ 2
and l ≥ 4, the assertion states that the equation

(1) y2 =

k
∏

i=1

(xi)l

has at most finitely many solutions in positive integers (y, x1, . . . , xk) which
satisfy the conditions

0 < x1 < · · · < xk, xi + l ≤ xi+1, i = 1, . . . , k,

and with (x)l defined as

(x)l = (x + 1)(x + 2) · · · (x + l).

Recently, Ulas [11] has shown that this statement is false when either k =
l = 4, or k ≥ 6 and l = 4. In the same paper, Ulas states a conjecture that
for any integer l ≥ 4, there is an integer k0 = k0(l) with the property that if
k ≥ k0, equation (1) has infinitely many integer solutions.
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In the present paper, we consider the particular pair of values (k, l) =
(2, 4). In this case, it follows from the identity

(x − 1)x(x + 1)(x + 2) = (x2 + x − 1)2 − 1

that a positive integer solution to (1) corresponds to two integer points (x, y),
with positive coordinates, on a quartic curve of the form

(x2 + x − 1)2 − dy2 = 1

for some squarefree integer d > 1.
For a squarefree integer d > 1, let (X, Y ) = (T, U) denote the minimal

solution of the Pell equation X2 − dY 2 = 1, and for i ≥ 1, let

Ti + Ui

√
d = (T + U

√
d)i.

The problem we consider here, for a given squarefree integer d > 1, is to
determine an absolute upper bound for the number of solutions in positive
integers (i, x) to the equation

(2) Ti = x2 + x − 1.

Problems of this type have a long history, with many fundamental results. For
instance, the combined work of Ljunggren [5] and Cohn [2] completely solved
the equation Ti = x2, in which it was shown that equation (2) implies that
either i = 1 or i = 2, and that a solution exists for both i = 1, 2 only when
d = 1785. More general results on polynomial values in linear recurrence
sequences have been proved by Nemes and Pethö [9], and also by Shorey and
Stewart [10].

Extensive computation on equation (2) indicates that the following is
likely true.

Conjecture. The equation Ti = x2 + x − 1 implies that either i = 1 or

i = 2, and a solution exists for both i = 1, 2 only when d = 39270.

Evidently, the conjecture of Erdös and Graham, for the particular case
(k, l) = (2, 4), is a consequence of this conjecture. Unfortunately, we are
unable to prove such a sharp result. However, we are able to obtain the
following absolute upper bound for the number of solutions to (2). In what
follows, d > 1 represents a squarefree positive integer.

Theorem. There is a computable constant C1 such that for d > C1, there

are at most two positive integer solutions (i, x) to equation Ti = x2 + x − 1.
For all remaining d, there are at most three positive integer solutions (i, x) to

the equation Ti = x2 + x − 1.

This theorem comes very close to proving the Erdös-Graham conjecture
for the pair of values (k, l) = (2, 4). What is still needed in order to solve this
case of the conjecture is a proof that there are only finitely many d for which
equation (2) is solvable for both an even index i1 and an odd index i2.
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2. Proof

In the proof of the theorem, for any given squarefree integer d, it will be
shown that there is at most one even index i, and at most two odd indices
i, for which equation (2) is solvable. Also, for d > C1, it will be shown that
there is at most one odd index i for which equation (2) is solvable.

We begin by dealing with the case that the index i is even. Assume that

T2i = x2 + x − 1

for some integer x. The identity T2i = 2T 2
i − 1 implies that

2T 2
i = x(x + 1).

Therefore, there are positive integers u, v for which either

x = u2, x + 1 = 2v2, Ti = uv

or

x = 2v2, x + 1 = u2, Ti = uv.

We see that u2 − 2v2 = ±1, and so upon putting α = u + v
√

2, we deduce
that

α2 = (u2 + 2v2) + Ti

√
8

is a unit. In other words, (X, Y, Z) = (u2 + 2v2, Ti, Ui) is a solution to the
system of simultaneous Pell equations

X2 − 8Y 2 = 1, Y 2 − dZ2 = 1.

Such a system has recently been shown by Yuan [12] to have at most one
solution in positive integers (X, Y, Z), which in turn implies that the equation
T2i = x2 + x − 1 has at most one solution.

We now consider the equation

(3) T2i+1 = x2 + x − 1.

The following lemma provides the starting point for our analysis.

Lemma 2.1. Let d > 1 be a squarefree integer, and let ǫd = T + U
√

d
denote the minimal unit (> 1) of norm 1 in Z(

√
d). Then

ǫd = τ2,

where

τ =
a
√

r + b
√

s√
c

,

c ∈ {1, 2}, d = rs, r > 1 not a square, and a2r − b2s = c.

Proof. This is well known, for example see Nagell [7].
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Remark 2.2. We note that all solutions to a2r−b2s = c arise from taking
odd powers of τ . In particular, if

τ2i+1 =
a2i+1

√
r + b2i+1

√
s√

c
,

then all solutions to a2r − b2s = c are given by a = a2i+1, b = b2i+1. We also
remark that for all i ≥ 0, the highest power of 2 dividing a2i+1 (resp. b2i+1)
is the same as the highest power of 2 dividing a1 (resp. b1). This fact will be
used in the arguments presented below.

In our situation, namely equation (3), we see that since T2i+1 is odd, T1 is
also odd, and hence the value of c in the lemma is necessarily equal to 1.

With τ as in the lemma, let

τ2i+1 = a2i+1

√
r + b2i+1

√
s.

It is readily checked that

T2i+1 = 2ra2
2i+1 − 1,

from which equation (3) implies that

2ra2
2i+1 = x(x + 1).

It follows that there are positive integers m, n, u, v for which

x + 1 = mu2, x = nv2, mn = 2r, a2i+1 = uv.

Let α = u
√

m + v
√

n, then

α2 = (2u2m − 1) + a2i+1

√
8r

is a unit. Putting (X, Y, Z) = (2u2m−1, a2i+1, b2i+1), it follows that (X, Y, Z)
is a solution to the system of simultaneous Pell-type equations

(4) X2 − 8rY 2 = 1, rY 2 − sZ2 = 1.

We must now deal with two subcases separately, depending on whether
X , in (4), is divisible by 3 or not. We make an important remark here. We
claim that if there is a solution (X0, Y0, Z0) to (4) with 3 dividing X0, then
3 divides X for all solutions to (4). The reason is as follows. Assume that 3
divides such an integer X0, where (X0, Y0, Z0) is a solution to (4). Then by

the properties of solutions to Pell equations (for example see [4]), X0 +Y0

√
8r

is an odd power of the fundamental solution to X2 − 8rY 2 = 1. Conversely,
3 divides X1 for any solution X1 + Y1

√
8r to X2 − 8rY 2 = 1 which is an

odd power of the fundamental solution. Now let (X1, Y1, Z1) be any solution
to (4). Now, by the remark after the lemma above, the highest power of 2
dividing Y1 is the same as the highest power of two dividing Y0, and so using
the binomial theorem, it is easily deduced that X1 + Y1

√
8r is an odd power

of the fundamental solution to X2 − 8rY 2 = 1. Therefore, 3 divides X1.
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We first deal with the subcase that 3 divides X for all solutions (X, Y, Z)
to the system of equations in (4). The two equations in (4) imply that

8rY 2 = X2 − 1 = 8(sZ2 + 1),

from which it follows that

X2 − 9 = 8sZ2.

Since s is squarefree, it follows that 3 divides Z. Putting x = X/3, y = Y, z =
Z/3, we obtain the system of Pell equations

(5) x2 − 8sz2 = 1, ry2 − 9sz2 = 1.

We remark that this system is equivalent to the system of equations

(6) x2 − 8sz2 = 1, 9x2 − 8ry2 = 1.

We will assume that r > 1, for otherwise the desired result is a consequence
of the main result in [12]. With r > 1 and squarefree, all solutions (y, z) to
ry2 − 9sz2 = 1 arise from a positive odd power of a minimal solution. A
consequence of this fact is that if (y0, z0) is the minimal solution to ry2 −
9sz2 = 1, and 2a0 and 2b0 properly divide y0 and z0 respectively, then these
same powers of 2 properly divide y and z, respectively, for any integer solution
to ry2 − 9sz2 = 1. This fact implies that the powers of 2 that divide x, y,
and z, for any solution to equation (5), remain constant. With this in mind,
we appeal to Lemma 2.1, and deduce that if (x1, y1, z1) is a solution to the
system of equation in (6), then there are unique squarefree positive integers
m1, m2, m3 (i.e. independent of the particular solution to the system in (6)),
and integers u1, u2, u3 for which (x − 1)/2 = m1u

2
1, (3x − 1)/2 = m2u

2
2, and

(3x + 1)/2 = m3u
2
3. It follows that 3(x − 1)/2 = 3m1u

2
1, (3x − 1)/2 = m2u

2
2,

and (3x + 1)/2 = m3u
2
3 are three consecutive integers of fixed quadratic type

in their factorizations. It follows from the main result of [1] that there can be
only one solution to such a system of equations, and consequently, the system
of equations in (5) has at most one solution.

We now deal with the case that 3 does not divide x for all solutions
(x, y, z) to the system of equations (4). Firstly, as noted already, all solutions
(x, y, z) to (4) have the property that the highest power of 2 dividing y is
constant. This implies that among all solutions to (4), the highest power of

2 dividing the power of the fundamental solution, t + u
√

8r say, of the Pell
equation X2 − 8rY 2 = 1 which equals x + y

√
8r is also constant. This forces

there to be a unique factorization 2r = r1r2 for which

(x − 1)/2 = r1u
2
1, (x + 1)/2 = r2u

2
2,

for some integers u1, u2, as x ranges over all solutions (x, y, z) to equation (4).
As in the previous subcase, we see that x and z are related by

x2 − 9 = 8sz2,
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where in this case we know that (x, 6) = 1. Therefore, there are positive
integers A, B, u, v for which

(x − 3)/2 = Au2, (x + 3)/2 = Bv2,

where AB = 2s, Z = uv, and Bv2 − Au2 = 3.
The desired result is now a consequence of the following lemma.

Lemma 2.3. Let D > 1 be a squarefree integer, then there exist at most

two factorizations D = AB, 1 ≤ A < B ≤ D for which the equation BX2 −
AY 2 = 3 is solvable in positive integers X, Y .

Proof. Let ǫD = T + U
√

D denote the minimal solution to the Pell
equation X2 − DY 2 = 1. Let D = A1B1 be a fixed factorization of D with
the above properties, and let A2B2 denote any other factorization of D with
the above properties. We will show that there is only one possibility for A2, B2.
Let X1, Y1, X2, Y2 denote corresponding integer solutions to BiX

2
i −AiY

2
i = 3,

and for i = 1, 2 put

αi = Xi

√

Bi + Yi

√

Ai

and

βi = α2
i = Vi + Wi

√
D.

By mimicking the proof of Theorem 110 on p.208 of [8], we find that, up to
sign,

(7) β2 = ǫt
Dβ1,

for some integer t. If t is even, then it is trivial to check that B1 = B2 and
A1 = A2. Therefore, assume that t is odd. Let τ = a

√
R+b

√
S be as described

in Lemma 2.1, that is, τ2 = ǫD. We will prove the lemma only in the case
that the value c = 1, as this is the only case required in the application of
this lemma, and the proof for the case c = 2 is very similar. It follows from
(7) that

α2 = τ tα1.

Therefore, since A1, A2, B1, B2, R, S are all squarefree, it is not difficult to
check that

B2 = B1R/(B1, R)2, A2 = B1S/(B1, S)2.

In other words, B2 and A2 are completely determined once D and B1, A1 are
fixed.

Returning to the proof of the main theorem, we see that

(x − 3)/2 = Au2, (x − 1)/2 = r1u
2
1, (x + 1)/2 = r2u

2
2

are three consecutive integers with prescribed quadratic type in terms of their
factorizations. By a theorem of Bennett in [1], for each fixed triple (A, r1, r2)
there is at most one solution in integers (u, u1, u2). As argued above, for fixed
r, s as in (4), there is only one choice for r1, one choice for r2, and two choices
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for A. Since r and s are completely determined by d, it follows that for a
fixed d in the statement of the theorem, there are at most two odd indices i
for which Ti is of the form x2 + x − 1.

To complete the proof of the theorem, we must show that for d sufficiently
large, there is at most one odd index i for which equation (2) holds. As noted
earlier, an integer solution to equation (2) leads to a factorization d = rs, and
positive integers x, y, z satisfying equation (4). We remark that if r = 1, then
the main result of [12] shows that (4) has at most one solution, thus we may
assume that r is a squarefree positive integer greater than 1.

Assume that equation (4) is solvable in positive integers, and let x1, y1, z1

denote the smallest such solution. Let x2, y2, z2 denote another solution to
(4) in positive integers. Standard arguments, similar to those given in [12,
Lemma 2.1-2.3], and using the fact that r > 1 and squarefree, show that
x2/x1, y2/y1, z2/z1 are all odd integers. Let m = ry2

1 and put

α =
√

m +
√

m − 1, β =
√

8m + 1 +
√

8m.

It follows that there are odd positive integers t > 1 and s > 1 for which

y2

√
r + z2

√
s = αt, x2 + y2

√
8r = βs.

It follows that

(8) y2/y1 =
αt + α−t

α + α−1
=

βs − β−s

β − β−1
,

and as α+α−1 = 2
√

m and β−β−1 = 4
√

2m, it is readily deduced that t > s.
Furthermore, it is easy to prove by induction that for s, t odd, the coeffi-

cient of
√

m in αt is congruent to (−1)(t−1)/2t modulo m, and the coefficient

of
√

8m in βs is congruent to s modulo m. Therefore, since this coefficient is
precisely y2/y1, we have that

y2/y1 ≡ (−1)(t−1)/2t ≡ s (mod m),

and hence that m divides t±s. Consequently, the fact that t > s implies that
t > (m + 1)/2.

Now using equation (8) again, we deduce that

βs

2
√

2αt
− 1 =

β−s + 2
√

2α−t

2
√

2αt
<

1

αt
.

Define z = s logβ−t log α− log(2
√

2), then z > 0 by the above, and moreover,
since ez − 1 > z, we find that

0 < s log β − t log α − log(2
√

2) < α−t.

Quantitative results on estimates for linear forms in three logarithms of alge-
braic numbers (for example see [6]), show that

(9) z > exp(−c1 log H(α) log H(β) log t),
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where c1 is an absolute positive constant, and H(α) ≥ 3, H(β) ≥ 3 are upper
bounds for the height of the minimal polynomials of α and β respectively.
These polynomials are given explicitly by

(X2 − 1)2 = 4mX and (X2 + 1)2 = 4(4m + 1)X,

and hence we see that H(α) = H(β) = 4(4m + 1). Therefore, equation (9)
shows that

t log α ≤ − log z ≤ c1(log(4(4m + 1)))2 log t.

Using the fact that t ≥ (m + 1)/2, and the definition of α, it follows that m
is absolutely bounded. Since both r and s are bounded by m, we see that
d = rs is also absolutely bounded.
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