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ON LINEAR SUBSPACES OF M, AND THEIR SINGULAR
SETS RELATED TO THE CHARACTERISTIC MAP
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ABSTRACT. We study linear subspaces £ C My, (over an algebraically
closed field F of characteristic zero) and their singular sets S(£) defined by
S(L) = {A € My : x(A+ L) is not dense in F*}, where x : My, — F"
is the characteristic map. We give a complete characterization of the sub-
spaces L C Ma such that 0 # S(L) # M. We also provide a complete
characterization of the singular sets S(£) in the case of n = 2. Finally, we
give a characterization of the n-dimensional subspaces £ C M,, such that
S(L£) = 0 by means of their intersections with conjugacy classes.

1. PRELIMINARIES AND INTRODUCTION

We work throughout over an algebraically closed field F of characteristic
zero. We define F* = F \ {0}. We denote by #E the cardinality of a finite
set E. The set of all (n X n)-matrices whose entries are elements of F is
denoted by M,,. (We assume throughout that n > 2.) The zero matrix
and the unit matrix belonging to M,, are denoted by O and I, respectively.
We define GL,, to be the full linear group of size n over the field F, i. e.
GL, ={U € M,, : det(U) # 0}. The conjugacy class of a matrix A € M,, is
denoted by O(A). (In other words, O(A) = {U AU : U € GL,}.) A subset
& C M, is said to be triangularizable if there is a U € GL, such that
U'eU .= {UYAU : A € &} consists of upper triangular matrices. The
subset £ is said to be GL,,-invariant if U~'EU C € for all U € GL,,.

We consider F”, M,, = F"Q, and their subsets as topological spaces en-
dowed with the Zariski topology. We say that a property holds for a generic
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matrix A € M, if there exists a nonempty Zariski open subset W C M,,
such that the property holds for all A € W. The Zariski closure of a set F
contained either in F™ or in M,, is denoted by E.

For an A € M,, and a positive integer j < n we define s;(A) to be the
sum of all principal minors of size j of the matrix A. (Therefore,

T + zn:(—njsj(A)T"—j € F[T)

is the characteristic polynomial of A.) The regular map x : M,, — F"
defined by x(A4) = (s1(A), ..., sn(A)) is referred to as the characteristic map.
Notice that Helton, Rosenthal and Wang [3] define the characteristic map by
A (=185 (A,

For a linear subspace £ C M,, we define a singular set S(£) related to
the characteristic map. Namely,

S(L)y={Ae M, : x(A+ L) is not dense in F"}.

Observe that the condition which defines the set S(£) may be reformulated
in the following way: the regular map £ > B — x(A + B) € F" is not
dominant. We refer to [2] for all needed information about matrix theory, to
[5] for algebra, and to [6, 4] for algebraic geometry and invariant theory.

In [3] Helton, Rosenthal and Wang proved that the image y(A 4+ £) is
dense in F™ for a generic matrix A € M, if and only if the dimension of a
linear subspace £ C M,, is not smaller than n and there is a B € L such that
tr(B) # 0. (Notice that x(A + £) is a constructible subset of F".) Applying
the above introduced language we can rephrase the Helton — Rosenthal —
Wang result as follows: S(£) # M, if and only if dim £ > n and tr does not
identically vanish on £; moreover, S(£) is a (Zariski) closed subset of M,,.
In [7] we studied basic set-theorical, geometrical and topological properties
of the singular sets S(£). In particular, we derived a counterpart of the
Helton — Rosenthal — Wang theorem in the case of n = 2 and obtained a
characterization of the linear subspaces £ C M,, such that S(£) = 0. The
present note is a continuation of [7]. Our first goal is to complete the study
of the linear subspaces of My and their singular sets. The second goal is to
give a characterization of the n-dimensional linear subspaces of M,, whose
singular set is empty by means of their intersections with conjugacy classes
(the case of n = 2 being considered in a detailed way).

2. THE CASE OF n =2

We start with a continuation of the study of linear subspaces of Ms
originated in [7, Section 2]. Our purpose is to characterize the subspaces

L C My such that 0§ # S(L) # M.
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For A € F we define

Furthermore, we define

([0 1] uees).

THEOREM 2.1. Let L be a linear subspace of Msy. Then the following
conditions are equivalent:
(1) 0 #S(L) # Ma,
(2) either L=U"'T\U for aU € GL3 and a X € F\{—1}, or L =U'KU
for a U € GL,.

PROOF. If condition (2) is satisfied, then dim x(£) = 1 and

Ul[(l) 8}U§Z$(£).

Condition (1) follows.

Assume that (1) is satisfied. Since S(L£) # Mo, we have that dim £ > 2
and that tr does not identically vanish on £. The nonemptiness of S(£)
yields dim £ < 3 [7, Corollary 1.7]. Pick two matrices A, B € £ such that
tr(A) # 0 # tr(B) and (A, B) is a basis for L.

Consider first the case where A is not diagonalizable. Then there are a
V € GLs and a p € F* such that

A= V(A = [ . }

Define £ = V'LV and B = V-!BV. It is easy to see that S(£) =
V~1S(£)V. Furthermore, (E, E) is a basis for £. Put B = [Bjk). By implica-
tion (1) = (2) in [7, Proposition 2.3], we obtain £11 + B22 — f21 = B11 + P22
and 4(05110822 — B120821) = (B11 + B22)(B11 + B2z — Ba1). These equalities yield
P21 = 0 and (17 = [22. Notice that 812 # 11 # 0 (because A and B are
linearly independent and tr(é ) # 0). Consequently,

5 t+Biis t+ Pias |
E{[ 0 t+ﬁ118].t,s€F}.

Condition (2) follows (with A = 1).
Now, counsider the case where A ¢ FI is a diagonalizable matrix. Then
there are a V € GL-s and a p € F* such that

A=V (A = { - ]
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with an @ € F\ {#1}. Define £ and B = [8;;] € L as in the previous part of
the proof. By implication (1) = (2) in [7, Proposition 2.3], we get

(o) (14 a)(Baz + afi1) = 2a(B11 + B22)
and
(e0) 2(1 + a)(B11P22 — Bi2f21) = (Bi1 + P22)(B22 + afr1).

Observe that equality (e) yields 311 # 0. (If 811 = 0, then 822 = 0, because
a # 1. This contradicts the fact that tr(B) # 0.) Reformulating (e) we obtain

(o — 1)(af11 — Ba2) = 0. Therefore, a = % This means that the diagonal
11

entries of the matrix ﬁng coincide with the diagonal entries of B. The linear
independence of A and B implies now that at least one of the elements (312, F21

is different from 0. On the other hand, substituting o = % into equality
11

(ee) we get (12021 = 0. Consequently, either

~ i Biz 7
L= bt B ® ct,seF
0  a(t+s) |
with f12 # 0, or
~ [ t+s 0 |
E{_%s a(tJrs)_'t’SGF}

with B21 # 0. In the first case condition (2) follows in an obvious way. Define
0 1
P { 0! ]
In the second case, PILP = 7,-1 whenever a # 0, and PP = K
whenever o = 0.
_ Finally, consider the case of A = I. Let V € GLs be such that
B = V!BV is an upper triangular matrix. Implication (1) = (2) in [7,
Proposition 2. 3] applied to the matrices I and B yields (tr(B))? = 4 det(B),

which means that §~ has the double eigenvalue. In virtue of the linear inde-
pendence of I and B we have

o]
|
| — |
[enl7a %

MR
—_

for some &, v € F*. Thus,

-1 -~ t+&s  wvs )
vrev- ([ ] sen)

Condition (2) follows. O
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We have proven that each linear subspace of My with "nontrivial” sin-
gular set is triangularizable. As a simple consequence we obtain a complete
characterization of the singular sets S(£) in the case of n = 2.

COROLLARY 2.2. Let £ be a nonempty proper subset of Ms and let
T C My be the set of all upper triangular matrices. Then the following
are equivalent:

(1) €=S8(L) for a linear subspace L C Ma,
(2) thereis a U € GLy such that £ =U1TU.

PrOOF. A direct calculation shows that S(U'T,U) = U 'S(T)U =
U'TU = S(U'KU) for an arbitrary U € GLo, an arbitrary A € F\ {—1},
and the subspaces 7 and K defined as at the beginning of the section. Now
implication (2) = (1) is obvious. Furthermore, if condition (1) is satisfied,
then, by Theorem 2.1, either £L=U"'T,U for aU € GLs and a A € F\ {—1}
or L=U"'KU for a U € GL5. Condition (2) follows. O

Notice that for each subspace £ C Ma such that § # S(L) # M there is
amatrix A € My such that y(A+L) = F2. (To see this take into consideration

_af0 0
A=U [1 O}U

with a suitable U € GLo, as at the beginning of the proof of Theorem 2.1.) In
[7, Example 1.9] we considered a two-dimensional linear subspace £y C Ms
with S(Lo) = 0 such that (A + Lo) # F? for all A € Mo.

Let X be a finite-dimensional vector space over F. Denote by Gg(X)
the Grassmann variety of all k-dimensional linear subspaces of X. The full
linear group GL, acts on Gi(M,,) by Gp(M,) x GL,, > (L, U) — U LU €
Gr(M,,). Tt is obvious that the family of all linear subspaces £ C M,, such
that dim £ = k and 0 # S(L) # M,, is invariant under that action. Let §
be the family of all linear subspaces £ C My whose singular sets S(L) are
nontrivial. Theorem 2.1 implies that § C G(M2) contains infinitely many
orbits of the above defined action of GL4 on Go(Ms). Furthermore, observe
that the orbit of the subspace K is disjoint with the orbit of any subspace of
the form 7.

We conclude the section with an example of a linear subspace of M3 that
is not triangularizable and whose singular set is nontrivial.

EXAMPLE 2.3. Define

L= s, t,uel

oS »
-+ »n O
»n O o+
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It is easy to verify that £ is not a triangularizable subspace of M3. Making
use of the Jacobian determinant of the map

( o1+ s 12 a3+t
F3 > (s, t, u) — x ag1 +u Qo+ S Q93 eF3
Q31 azy+t azz+s

(cf. the proof of [7, Theorem 2.1]) one can prove that a matrix A = [a;,] € M3
is an element of the singular set S(£) if and only if aa3+a3; = 0 and a2 = 0.
Therefore, S(L£) is a linear subspace of codimension 2 in Ms.

3. SUBSPACES OF DIMENSION 1 WHOSE SINGULAR SET IS EMPTY
We begin with certain remarks on the set of all diagonal matrices.

ExAMPLE 3.1. Let D C M,, be the set of all diagonal matrices. Obvi-
ously, x(D) = F". Define

Z ={A € M, | the eigenvalues of A are pairwise distinct}.

It is easy to see that #(DNO(A)) = n! for all A € Z. In [1] Friedland proved
that the map D > A — x(B + A) € F", where B € M,, is a fixed matrix,
is onto and that each fibre of this map has n! elements (when counted with
multiplicities). Friedland’s result implies that 0 < #((B+D)NO(A)) < n! for
an arbitrary B € M,, and an arbitrary A € Z. (Notice that (B+D)NO(A) =
(B+D)nx~'(x(4)).)

The above observations lead to a characterization of the n-dimensional
subspaces £ C M,, with S(£) = 0.

THEOREM 3.2. Let L be an n-dimensional linear subspace of M,,. Then
the following conditions are equivalent:
(1) 8(£) =0,
(2) the image x(L) is dense in F",
(3) for each B € M,, there is a nonempty open subset Wg C M,, and an
integer gg > 0 such that #((B + L) NO(A)) =gg for all A € W5,
(4) 0 < #(LNO(A)) < 0 for a generic A € M,,.

PRrROOF. Equivalence (1) < (2) follows from [7, Theorem 1.5]. Implica-
tion (3) = (4) is obvious.

Consider the set Z defined in Example 3.1. It is open in M,, and GL,,-
invariant. Furthermore, x~1(x(A4)) = O(A) for all A € Z.

Assume that condition (1) is satisfied, pick a B € M, and denote
Lp = B+L. Tt follows from (1) that x(£Lp) is dense in F". Thus, LpNZ # ().
(If Lg N Z =, then the discriminant of the characteristic polynomial of the
matrix A vanishes for all A € L£p, which implies that x(£p) is contained in a
hypersurface in F™, a contradiction.) Since the restriction x|z, : L — F”
is a dominant map and dim L5 = dim £ = n, we get that there is a nonempty



SINGULAR SETS FOR LINEAR SUBSPACES OF M,, 297

open subset Y C F" and an integer gg > 0 such that #(Lp N x"1(y)) = qB
for all y € Y. Define W = x~'(Y) N Z. Then Wg is a nonempty open
subset of M,,. For an arbitrary A € Wp we have

#(Lp N O(4)) = #(Ls X" (x(4))) = gz,

because A € Z and x(A) € Y. Condition (3) follows.

Assume that (4) is satisfied. Denote by W a nonempty open subset of
M,, such that 0 < #(LNO(A)) < oo for all A € W. Observe that ZNW # ()
and that UaeywO(A) is an open subset of M,,. Thus,

Ww=cLnzn |J o4)
Aew

is a nonempty open subset of L. Pick an arbitrary C' € W. Thereisan A € W
such that C' € O(A). Since C € Z, we have LN x }(x(C)) = LN O(C) =
LNO(A). Consequently, 0 < #(LNx 1 (x(C))) < co. By the theorem on the
dimension of fibres of a dominant map and by the openess of 17\7, we obtain
dim x(£) = dim £ — dim(LNx ' (x(Cp))) = n— 0 = n, where Cy is a suitable
element of W. Condition (2) follows. O

We conclude the note with a two-dimensional counterpart of Friedland’s
result.

THEOREM 3.3. Let L C My be a two-dimensional linear subspace with
S(L) =0 and let B € My be an arbitrary matriz. Then

(i) #((B+ L)NO(A)) = 2 for a generic A € M,, provided there is no
nilpotent matriz in L\ {O},

(i) #((B+ L)NO(A)) = 1 for a generic A € M,, provided there is a
nilpotent matric N € L\ {O}.

PrOOF. Let f, g : Mo — F be linearly independent linear forms such
that £ = f~1(0)N g '(0). For A € F define

Xy ={CeMy: f(C—B)=0=g(C— B), tr(C) = A}

Making use of the fact that tr does not identically vanish on £ (because S(£) =
#) and of elementary properties of systems of linear equations, we get that
there is a matrix Cy € £\ {O} and a nonconstant affine map ® : F — M,
such that tr(Cp) = 0 and Xy = ®(\)+FCy. Now, for an arbitrary (\, u) € F?
define Y, ) = {C € X\ : det(C) = pu}. Observe that

det(®(N) + tCo) = det(Co)t? + h(A\)t + det(®(N)),
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where t € F and h : F — F is an affine function. Consequently, #Y(x, ,) < 2.
Furthermore, if A € M5 is a matrix with two different eigenvalues, then

(B+L)NO(A)
={CeMy: f(C—B)=0=g(C— B), tr(C) = tr(A), det(C) = det(A)}
= Vx(a):

Assume that there is no nilpotent matrix in £\ {O}. Then det(Cy) # 0.
Therefore, the set Yy, ) (with an arbitrary (X, u) € F?) has exactly two
elements if and only if A(X, p) = (h()\))? — 4det(Co)(det(P(N)) — p) # 0.
Consequently, Y := {(\, u) € F? : #Y 0\, w) = 2} is a nonempty open subset
of F2. Define

W={Acx ' (Y): Ahas two different eigenvalues}.

The set W is nonempty and open in Ms. Moreover, for an arbitrary A € W
we have #((B + £) N O(A)) = #Yy(a) = 2. This completes the proof for
case (i).

If there is a nilpotent matrix N € £\ {O}, then Cy = aN for an o € F*.
Consequently, det(®(X) +tCp) = h(A)t +det(®(N)). Thus, Yy, ) has at most
one element (for an arbitrary (A, u) € F?). Let Wg C Mj be a nonempty
open subset from condition (3) of Theorem 3.2. Recall that Wp consists of
matrices with two different eigenvalues. Therefore,

L<A#((B+L)NO(A)) = #Vya) <1
for all A € Wg. The proof is complete. O

Notice that the subspace

EO:{[Z z}:s,tGF}CMg

considered in [7, Example 1.9] satisfies the assumptions of case (ii) in the
above theorem.
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